Antonio García-Martíncmp.physics.iastate.edu/wavepro/program/presentations/Garcia... · 3...

20
1 Magnetoplasmonics: fundamentals and applications Instituto de Microelectrónica de Madrid Consejo Superior de Investigaciones Científicas http://www.imm-cnm.csic.es/magnetoplasmonics Antonio García-Martín

Transcript of Antonio García-Martíncmp.physics.iastate.edu/wavepro/program/presentations/Garcia... · 3...

1

Magnetoplasmonics:

fundamentals and applications

Instituto de Microelectrónica de Madrid

Consejo Superior de Investigaciones Científicas

http://www.imm-cnm.csic.es/magnetoplasmonics

Antonio García-Martín

2

MEETING COSTAS

Simulations of classical scattering

Ordered structures Disordered structures

3

MAGNETO-PLASMONICS

Systems where constituents with Plasmonic and Ferromagnetic

(Magneto-Optical) properties coexist

Magneto

Plasmonics

Magneto

Plasmonics

http://www.imm-cnm.csic.es/magnetoplasmonics

4

Group Members

http://www.imm-cnm.csic.es/magnetoplasmonics

J.V.Anguita

Staff scientistsPhD Students

Post docs

Technician

A.Vitrey

G.Armelles

A.Cebollada

A.Garcia-Martin

J.M.

Garcia-Martin

M.U.Gonzalez

J.C.BanthíJ.Fernandez

R.Fermento

E.Ferreiro

D.Martin

D.MenesesA. Calle

P.Prieto

Prof. E.Muñoz

(visiting scientist)

Staff

(Collaboration)

N. Sousa

B. Caballero

A.Vitrey

J.C.Banthí

J.Fernández

E.Ferreiro

D.Martin

Magnetoplasmonic Activity in Systems with

Localized and Extended Surface Plasmons

Magnetoplasmon interferometry

and sensing applications

Near field studies of

magnetoplasmonic

structuresMulti-mode magnetoplasmonic

nanoresonators

Magnetoplasmonic nanodiscs

-80 -60 -40 -20 0 20 40 60 80y (nm)

-40

-20

0

20

40

60

80

z (

nm

)

00.20.40.60.811.21.41.61.822.22.42.62.833.23.43.6

E

Incident light Magnetic fieldB = B0 sin t

Co

Au

Dielectricoverlayer

Au

MO and SPP k modulation in

continuous layers

Au

AuCo

http://www.imm-cnm.csic.es/magnetoplasmonics

D.MenesesN. Sousa

(Col. MoLE

group @ UAM)

B. Caballero

(Col. Cuevas

group @ UAM)

R.Fermento

MO active dielectrics

Theoretical developments

E. Ferreiro

NS. Coupled diplole method

BC. Scattering Matrix Techniques

6

PLASMONICS

Active topic, but not so new …The Lycurgus cup

(British Museum. 4th Century)

When illuminated from outside the cup

appears green, but turns into red when

illuminated from inside.

“Labors of the Months”

(Norwich, England, ca. 1480)

The ruby color is probably due to

embedded gold nanoparticles.

7

PLASMONICS

… based on …

“Electromagnetic excitation (TM polarized) localized at the interface between a

media r <0 (metal) and a media r >0 (dielectric material) ”

Main characteristics

Strong localization of EM in subwavelength volumes: Optical nanodevices

Very sensitive to metal dielectric interface: Sensors

8

PLASMONICS

… that are excited if …

both frequency and wavevector match those of the SPP (propagating plasmon)

the frequency matches that of the LSPP (localized plasmon)

c

Extra k

Ways to produce the extra k

A prism A grating A defect

12

MAGNETO-OPTICS

New effect …

Faraday effect: 1845

1791-1867

Bd

Kerr effect: 1876

Miranda Kerr Lucas Kerr

1824-1907

B

13

MAGNETO-OPTICS

… depends on relative orientation of B …

Kerr effect

M

Eεk

x

y

z

M

Eεk

θ0θ0

M

Ek

k

0

0 00

y

y

aM

aM

00

0 0

z

z

aMaM

0 00

0x

x

aM

aM

Polar

+ i = f(Mz)

Transverse

Rpp = f(My)

Longitudinal

+ i = f(Mx)

16

MAGNETO-PLASMONICS

Fair plasmonic modes

Good MO activity

Magnetoplasmonic materials

Noble metals: Nice plasmon resonances, too low magneto-optical activity

Ferromagnetic metals: good magneto-optical activity, broad resonances

40 60 80

20

40

60

80

100 22nm Au / 6 nm Co / 6nm Au

50 nm Au

Re

flectivity (

%)

Incident angle

Hybrid ferromagnetic – noble metal systems

19

Magneto-optics and LSPR

Magneto

Plasmonics

Magneto

Plasmonics

20

Adv. Mat. 19, 2643 (2007)

Nanoscale Res. Lett. 6, 408 (2011)

Ferromagnetic membranesFerromagnetic nanowiresAppl. Phys. Lett. 94, 062502(2009)

Phys. Rev. B 81, 054424 (2010)

Phys. Stat. Sol. (RRL) 4, 271 (2010)

Plasmonic, magento-plasmonic dotsPhys. Rev. Lett. 104, 147401 (2010)

Small 4,202 (2008)

Opt. Express 16, 16104 (2008)

Appl. Phys. Lett. 97, 043114 (2010)

Opt. Express 18, 15635 (2010)

1.5 2.0 2.5 3.0

1

2

3

4

5

(2+

) NP/(

f*(

2+

) CF)

Energy (eV)

60

110

Peak in the LSPR

spectral region

26

Magneto

Plasmonics

Magneto

Plasmonics

Controlling the plasmon

via magnetic fields

27

Controlling the plasmon

via magnetic fields

Magnetoplasmonic Interferometers

Layer thickness: 200nm

Groove and slit width:200nm

Groove and slit length:15 m

Groove depth:100nm

Co layer thickness: 10nm

V.V. Temnov et al. Nature Photonics 4, 107 (2010)

D. Martin-Becerra, et al., APL 97, 183114 (2010)

V. V. Temnov, Massachusetts Institute of Technology, Cambridge (MA), USA

T. Thomay, A. Leitenstorfer, R. Bratschitsch, University of Konstanz, Germany

U. Woggon, Technical University Berlin, Germany

28

Operation principle

•Photons produced by the SP generated at the

groove interfere with incident photons

•Groove and Slit nonparallel: Phase varies

along the slit

50 μm

V.V. Temnov et al. Opt. Exp 17, 8423 (2009)

2 2 2 cos( )ip sp ib sp spI A A A A k d

d

100 nm

200 nm100 nm

GrooveSlit

29

Operation principle

V.V. Temnov et al. Nature Photonics 4, 107 (2010)

00

(1 )YMspsp sp

sp

kk k

k

The SP wave vector depends on Co magnetization

2

0

0

2cos(

( ) 2sin

)

( )ip sp ip sp

sp

sp

Y sp

kI M A A A A

d k M k

d

d

The intensity (linear response) has two components:

•Optical

•MO (shifted 90) α d, ΔKsp , M

Co layer

100 nm

200 nm100 nm

GrooveSlit

2 220

2

2 AuCo z

Co

Co d mosp

Au Co

z kt k ik eWe can use a dielectric

with a higher

we add a thin dielectric overlayer

Enhancement factor = 0/d

sp spk k

ksp depends on environment

34

D. Martin-Becerra, et al., APL 97, 183114 (2010)

0 150 300 450 600

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

kd sp/

k0 sp

PMMA thickness, tPMMA (nm)

0 = 633 nm

7-fold enhancement of theSPP wavevector modulation

36

Funding

National (MICINN,CSIC)

www.nanomagma.org

EU

Regional (CAM)

Crimafot Magplas + Plasmar(EXPLORA)

38

Instituto de Microelectrónica de Madrid

Consejo Superior de Investigaciones Científicas

http://www.imm-cnm.csic.es/magnetoplasmonics

Magnetoplasmonics:

fundamentals and applications