Antenna Optical Design and Wide Band Feed Development for the … · 2008. 11. 3. · Antenna...

57
By Germán Cortés M. Antenna Optical Design and Wide Band Feed Development for the SKA TDP Cornell University Cornell University Ithaca NY 14853, USA National Astronomy and Ionosphere Center

Transcript of Antenna Optical Design and Wide Band Feed Development for the … · 2008. 11. 3. · Antenna...

  • By Germán Cortés M.

    Antenna Optical Design and Wide Band Feed Development

    for the SKA TDP

    Cornell UniversityCornell UniversityIthaca NY 14853, USA

    National Astronomy and Ionosphere Center

  • Cornell UniversityCornell UniversityIthaca NY 14853, USA

    Acknowledgements

    National Astronomy and Ionosphere Center

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    r

    Overview

    • US SKA Technology Development Project (SKA TDP)• SKA Technology Paths: Dishes + WBSPF• The TDP Wide Band Feed Development: QSC Feed• SKA TDP Optics Design• Summary and Concluding Remarks

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rThe US-SKA Technology Development Project (TDP)

    US SKA Technology Development Project– NSF-funded 2007-2011 for $12M– Complementary to and integrated with PrepSKA– Targets areas that bear strongly on cost and basic performance

    (Ae, Tsys, B, cross polarization, processing) – Will deliver to the SKA project:

    • Technology options for LNSD array with single-pixel feeds• Costing of reflectors+mounts vs. D and fmax• Optical designs that include both WBSP + PAF options• An SKA optimized, fully outfitted antenna• Calibration and processing algorithms for LNSD arrays• Cost-modeling information

    US Technology Development Project for the SKA, Jim CordesAWG Meeting , 13-14 March 2008, San Francisco, USAhttp://skatdp.astro.cornell.edu/

    US Technology Development Project for the SKA, Jim CordesAWG Meeting , 13-14 March 2008, San Francisco, USAhttp://skatdp.astro.cornell.edu/

    I

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rThe US-SKATechnology Development Project (TDP)

    Work Breakdown Structure for the TDP1. Antennas, Feeds and Receivers2. Calibration and Processing3. Cost Function Analysis4. Interface to International SKA Design Project

    I

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rThe US-SKATechnology Development Project (TDP)

    Cost Function Analysis

    Parabolic Dishes,David DeBoer, France, Sep 2006Parabolic Dishes,David DeBoer, France, Sep 2006

    I

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rThe US-SKATechnology Development Project (TDP)

    The Timeline

    I

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    r

    SKA Technology Path Implementation:Dishes + Wide Band Single Pixel Feeds

    II

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rInternational SKATechnology Path Implementation

    II

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rInternational SKATechnology Path Implementation

    Frequency

    2a

    2bPH

    AS

    E I 1

    PAF’sAA’s

    0.07 0.2 0.5 0.8 1.5 10 GHzAA’s

    1.5 GHz 10 GHz

    0.5 GHz 10 GHz 65%

    65%

    ηA

    35K

    35K

    Tsys

    Dishes + WBSPF

    Dishes Ø15m + WBSPF

    II

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rInternational SKATechnology Path Implementation

    70%

    70%

    70%

    ηA

    30K

    30K

    30K

    Tsys

    Frequency

    3cPH

    AS

    E I

    I

    AA’s

    AA’s

    1.5 GHz 10 GHz

    0.8 GHz 10 GHz

    0.5 GHz 10 GHz3a

    3b

    1

    2

    0.07 0.2 0.5 0.8 1.5 10 GHzDishes Ø15m + WBSPF

    AA’s

    PAF’s

    II

    Dishes + WBSPF

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rUS SKA TDPTop Level Specs for Dishes + WBSP Feeds

    70%

    70%

    70%

    ηA

    30K

    30K

    30K

    Tsys

    Frequency

    1.5 GHz 10 GHz

    0.8 GHz 10 GHz

    0.5 GHz 10 GHz

    0.07 0.2 0.5 0.8 1.5 10 GHzDishes Ø15m + WBSPF

    II

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rUS SKA TDPTop Level Specs for Dishes + WBSP Feeds

    70%

    70%

    70%

    ηA

    30K

    30K

    30K

    Tsys

    Frequency

    1.5 GHz 10 GHz

    0.8 GHz 10 GHz

    0.5 GHz 10 GHz

    0.07 0.2 0.5 0.8 1.5 10 GHz

    1.0 GHz 10 GHz

    0.3 3 GHz

    TDP

    Fee

    ds

    Room Temp

    Cooled

    30K

    Dishes Ø15m + WBSPF

    II

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    r

    SKA TDP Wide Band Feed Development:The QSC Feed

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rUS SKA TDPThe TDP WBSP Feeds

    www.seti.org

    •Allen Telescope Array or ATA

    •Frequency: 0.5 to 11.5 GHz

    •The -10dB HBW=43°

    •Phase Center is frequency dependent•Size: 0.3 m x 0.3 m x 1.2 m

    •Good Match, better than –14 dB

    The ATA Feed

    Non-planar log-periodic antenna feed for integration with a cryogenic microwave amplifier, G. EngargiolaAntennas and Propagation Society International Symposium 2002, IEEE San Antonio, TX, Volume 4, 16-21 June 2002 Page(s):140 - 143 vol.4

    Tn ~40 to 45K over 7:1 BW

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rUS SKA TDPThe TDP WBSP Feeds

    The eleven antenna: a compact low-profile decade bandwidth dual polarized feed for reflector antennas. R. Olson, P.S. Kildal, and S. Weinreb. IEEE Transactions on Ant and Prop, vol 54, no 2, part 1, Feb 2006, pp. 368–375.

    The Chalmers Feed or “Eleven” Feed

    •Frequency: 11:1 Bandwidth

    •The -10dB HBW ~ 62°

    •Phase Center is frequency independent

    •Compact Size (0.65 λmax)2 x 0.21 λmax•Input Matching better than –8 (-10?) dB

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rUS SKA TDPThe TDP WBSP Feeds

    •Frequency: 8:1 Bandwidth

    •The -10dB HBW is frequency dependent

    •Phase Center varies with frequency

    •Size ~(1.1 λmax)2 x 1.2 λmax•Input Matching better than –6 dB

    Feed Based on the Quad-Ridge Lindgren Horn

    Design of a Wideband Radio Telescope, William A. Imbriale, Sander Weinreb and Handi Mani.IEEE 2007 Aerospace Conference, Big Sky, Montana, March, 2007

    S. Weinreb, Caltech

    Frequency: 4 to 12 GHzTn ~30K

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rUS SKA TDPThe TDP WBSP Feeds

    •Frequency: 10:1 Bandwidth

    •The -10dB HBW is ~ 65°

    •Phase Center is frequency independent

    •Size ~(?λmax)2 x ? λmax•Input Matching better than –8? dB

    Inverted, Conical, Sinuous Antenna over a Ground Plane

    The Inverted, Conical, Sinuous Antenna over a Ground Plane, Rohit S. Gawande and Richard F. Bradley.URSI 2007 Ottawa, Canada, July, 2007

    Frequency: 0.5 to 3 GHz

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rUS SKA TDPThe TDP WBSP Feeds

    •Frequency: >10:1 Bandwidth

    •The -10dB HBW is ~ 65°

    •Phase Center is frequency independent

    •Now Compact Size ~(0.75λmax)2 x 0.2 λmax•Input Matching better than –10 dB

    QSC-Feed

    Novel Non Planar Ultra Wide Band Quasi Self-Complementary Antenna, Germán Cortés M. IEEE AP-S International Simposium, Honolulu, Hawaii, June, 2007

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rQSC FeedCalculated S11

    III

    Zn=270 Ohms

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rQSC FeedCalculated VSWR

    III

    Zn=270 OhmsZn=270 Ohms

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rQSC Feed Calculated Directivity

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rQSC FeedCalculated Prime Focus Spillover

    III

    θ

    θ [deg]

    φ

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rQSC FeedCalculated Prime Focus Spillover

    III

    θ [deg]θ [deg]

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    r

    QSC Feed Development

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rQSC Feed Development

    • US SKA TDP: – Feed #1: 300 MHz to 3 GHz (room

    temperature)– Feed #2: 1 to 10 GHz (cryocooled)

    • Challenge: Manufacture – Feature size ratio 500:1– Differential Input (Zin~270 Ohms)

    • Prototype 500 MHz to 4 GHz– Characterize QSC Feed Input Impedance– Straightforward extension to 300MHz

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rQSC Feed PrototypeInput Impedance Characterization

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rQSC Feed PrototypeInput Impedance Characterization: De-Embeding

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rQSC Feed PrototypeCoaxial Fixture de-Embeding

    Open Circuit

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    r

    Open Circuit

    QSC Feed PrototypeCoaxial Fixture de-Embeding

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rQSC Feed PrototypeCoaxial Fixture de-Embeding

    Open Circuit Short Circuit

    AUT

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rQSC Feed PrototypeInput Impedance Characterization

    Coax Plug II SC-Short

    Measured Data Data+Best-Fit

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rQSC Feed PrototypeInput Impedance Characterization

    Coax Plug II Open Circuit

    Measured Data Data+Best-Fit

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rQSC Feed PrototypeInput Impedance Characterization

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rQSC Feed PrototypeMeasured De-Embeded Differential |S11|

    III

    Zn=270 Ohms

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rQSC Feed PrototypeMeasured De-Embeded VSWR

    Zn=270 Ohms

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    r

    QSC Feed Development Timeline

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    r

    Scaled Feed Design & Prototype FabricationScaled EM Feed DesignScaled Feed Manufacture DesignScaled Feed Fabrication

    Input Impedance CharacterizationCharacterization Fixture DesignCharacterization Fixture FabricationInput Impedance Measurements and Analysis

    2007Q1 Q2 Q3 Q4

    2008Q1 Q2 Q3 Q4

    2009Q1 Q2 Q3 Q4

    2010Q1 Q2 Q3 Q4

    Room Temperature Feed PrototypeDevelopment

    Passive BALUN DevelopmentPassive BALUN EM Design and Fabrication

    Feed Pattern Measurements IMechanical Interface Design and FabricationRadiation Patterns Measurements I

    Radome Design and Fabrication

    Feed Pattern Measurements IINoise Temperature MeasurementsRadiation Patterns Measurements II

    Active BALUN Development and Integration4-wire/twin_wire/u-strip EM launcher DesignActive BALUN Design and FabricationActive BALUN-Feed Integration

    QSC Feed DevelopmentRoom Temperature Feed Prototype

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    r

    2011Q1 Q2 Q3 Q4

    2008Q1 Q2 Q3 Q4

    Feed Pattern Measurements IINoise Temperature MeasurementsCryostat+Feed Radiation Patterns Measurements II

    2009Q1 Q2 Q3 Q4

    2010Q1 Q2 Q3 Q4

    Cooled UWB Feed PrototypeDevelopment

    Scaled Feed Design & FabricationScaled EM Feed DesignScaled Feed Manufacture DesignScaled Feed Fabrication

    Room Temp Feed Pattern Measurements IRadiation Patterns Measurements I

    Cryostat Development and IntegrationCryostat EM DesignMechanical Design and FabricationCryostat Monitoring and LNA Electronics Integration

    2007Q1 Q2 Q3 Q4

    LNA Integration4-wire/twin_wire/u-strip EM launcher DesignActive BALUN Design and FabricationActive BALUN-Feed Integration

    QSC Feed DevelopmentCooled UWB Feed Prototype

    III

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    r

    SKA TDP Dishes + WBSPF Optics Design

    IV

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rSKA TDP Reflector + WBSP Feed Optics Design

    • Detailed WBSP Feed characterization– Co-Pol and Cross-Pol Radiation Patterns– Gain– Input Matching– Losses– Phase Center Variations– Matching Optics Parameters

    IV

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rWBSP Feed ExampleFar Field Radiation Pattern 10 GHz

    Co-PolDir = 10.11 dBi

    X-Pol-1.08 dBi

    IV

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rSKA TDP Reflector + WBSP Feed Optics Design

    • Detailed WBSP Feed characterization– Co-Pol and Cross-Pol Radiation Patterns– Gain– Input Matching– Losses– Phase Center Variations– Matching Optics Parameters

    IV

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rSKA TDP ReflectorsPossible Configurations

    Symmetric Reflector Off-Axis Reflector

    IV

    Gregorian is Preferred

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rSKA TDP Reflector + WBSP Feed Optics Design

    • Antenna Analysis and Design Optimization– Co-Pol and Cross-Pol Radiation Patterns– Aperture Efficiency– Antenna Temperature vs. elev & freq– Aeff/Tsys Optimization

    • Matching Optics for Different Configurations– Prime Focus– Secondary Focus Solutions– Multiple Focus Solutions

    IV

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    r∅8m Reflector+Baseline FeedFar Field Radiation Pattern at 700 MHz

    Symmetric ReflectorCo-Pol

    Symmetric ReflectorX-Pol

    IV

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    r∅6m Offset Reflector+Baseline FeedFar Field Radiation Pattern at 500 MHz

    Off-Axis ReflectorCo-Pol

    Off-Axis ReflectorX-Pol

    IV

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rSKA TDP Reflector + WBSP Feed Optics DesignAntenna Noise Temperature vs. elev & Freq

    IV

    Antenna Noise Temperature

    The Integrand:

    Antenna Noise Temperature Calculations, Germán Cortés-Medellín, SKA Technical Memo Series No. 95, Oct., 2004 (at SKA site 2007)Antenna Noise Temperature Calculations, Germán Cortés-Medellín, SKA Technical Memo Series No. 95, Oct., 2004 (at SKA site 2007)

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rSKA TDP Reflector + WBSP Feed Optics DesignAntenna Noise Temperature vs. elev & Freq

    IV

    The Sky Brightness Temperature:

    Atmospheric Absorption:

    Cosmic Emission:

    Short Formulation:

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    r

    SKA TDP Reflector + WBSP Feed Aeff/Tsys Optimization Prime Focus Symmetric Reflector

    IV

    0.2 to 2.5 GHz TRW Feed TA @ 45 deg, TRX =10 K

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rSKA TDP Reflector + WBSP Feed Optics Design

    • Antenna Analysis and Design Optimization– Co-Pol and Cross-Pol Radiation Patterns– Aperture Efficiency– Antenna Temperature vs. elev & freq– Aeff/Tsys Optimization

    • Matching Optics for Different Configurations– Prime Focus– Secondary Focus Solutions– Multiple Focus Solutions

    IV

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rSKA TDP Reflector + WBSP Feed Prime Focus Analysis

    Symmetric Reflector Off-Axis Reflector

    IV

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rSKA TDP Reflector + WBSP Feed Prime Focus Low Frequency Analysis

    IV

    N=4500N=4500

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    rSKA TDP Reflector + WBSP Feed Optics Design

    • Antenna Analysis and Design Optimization– Co-Pol and Cross-Pol Radiation Patterns– Aperture Efficiency– Antenna Temperature vs. elev & freq– Aeff/Tsys Optimization

    • Matching Optics for Different Configurations– Prime Focus– Secondary Focus Solutions– Multiple Focus Solutions

    • PAF’s Optics + WBSPF Optics Convergence

    IV

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    r

    Summary and Concluding Remarks

    V

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    r

    • Useful Links:

    56

    International SKA Project http://www.skatelescope.org

    International SKA Project http://www.skatelescope.org

    US-SKA TDP Project http://skatdp.astro.cornell.edu

    US-SKA TDP Project http://skatdp.astro.cornell.edu

    Author: German Cortes [email protected]

    Author: German Cortes [email protected]

    V

  • © Germán Cortés M 2008

    Nat

    iona

    l Ast

    rono

    my

    and

    Iono

    sphe

    re C

    ente

    r

    End