ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: … · 2016. 12. 16. · ANs(Hos) Subj....

10
ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: MB30,54D18, s4D45, !WX% Multittaactivc subcategory E-rcfktive hull (E, Ml-category (& lbfj-factorkation Structure I&fittmg subcategory In all that follcws, every subcategory A of a category K will be assumed to have the, fobming property: if k :A -)X is a K-iscmorph&m and A belongs to Oh(A), than h is ZUL ~A~morphism. AU undefined tmnixmlagy is that of [IS]. 1 / is said ts be

Transcript of ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: … · 2016. 12. 16. · ANs(Hos) Subj....

Page 1: ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: … · 2016. 12. 16. · ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: MB30,54D18, s4D45, !WX% Multittaactivc

ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: MB30,54D18, s4D45, !WX%

Multittaactivc subcategory E-rcfktive hull (E, Ml-category

(& lbfj-factorkation Structure I&fittmg subcategory

In all that follcws, every subcategory A of a category K will be assumed to have

the, fobming property: if k :A -)X is a K-iscmorph&m and A belongs to Oh(A), than h is ZUL ~A~morphism. AU undefined tmnixmlagy is that of [IS].

1 /

is said ts be

Page 2: ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: … · 2016. 12. 16. · ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: MB30,54D18, s4D45, !WX% Multittaactivc

192 e; ,&dicmp / lkfidtie**ti* SW&~&S” ’ . b r *” * k

1 .I

. 1

1. ’ , ,+ ” -/ ”

Bj)jeJ are two A-mdti~fl~e~ti~~~~ then the* t&St: 3~ bijection CL! : 14 and, for each i E i, an isomorphism &i : Ai + Bati, SW& that ?~i Q Q = cm(i) (SM [5]).

(2) If M is a cortglomeraae of sources in a category closed under cc~mpi~ioa with isomorphisms and A is a multi A-multireflection belongs X-J particular, if M is the conglomera then A is said to be moncrmu&i~@&~.

-mwphisms ciosed under amposition with iswwwphisms e subcategory of K such that, for each A-m&reflection

(& : x -p ,4 j)l, @{ belongs to E for each i e 1, then A is said to bw&ti-E-~$‘kcti~e in K. Xn particular, if E is the cblss of all K-epimorphisms and A is multi-E-reflective ia K, then A is said to be Pn&epie,flectit in K,

(4) (see [3]) If A is a subcatepry of SB categury K, A is said to k batty futt in if for each C E Oh(A), the comma category (AiC) is full in (K&C), i.e. if given a commutative diagram in K:

R A-B

\/

f h

c

whenever f and h are A-morphisms, g is an A-morphism.

oposition 1.2. If A is a multiwfiective subcategory of Q category K urrd A has a

casqpurutot S, then A is morsomdtirefle~tive in

roof. Let (ei : X + AI)1 be an A-multireflection and let r, s : Y +X be K-morphisms such that, for each i E 1, ei 0 r = ei 0 s, If r f Q’$ then there exists a K-morphism k :X -+ s

such thiat k 0 r # k 0 s. Since S belonp to Oh(A), there exists a unique if I such that there exists an A-morphism f : Ai 4 such that &ei=k. Hence heir+

& 0 ei 0 s, a contradiction. Therefore r = $ and (ei 3. -‘Arjl is a monosource.

Page 3: ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: … · 2016. 12. 16. · ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: MB30,54D18, s4D45, !WX% Multittaactivc

e closed under compositions with isomorphisms.

In this uepimorphisms [171.

For a list of properties of factorization structures see [ 151.

T~WBB l.!L If (E, M) is a factorization structure for sources in a category A is a multirv@ectk subcategory of K, then there exists a full subcategory such that the folio wing properties hold :

(a) AcBcK. (b) B is E-reflective in IL (c) A is M-multireflective in B. (d) If (ri :X -1, Ai)1 is an A-multireflection and

is an (E, M)-factorization of (ri)f, then e :X-,X’ is an E-rej?ection of X in and (m : X’+A& is an M-multrxf?ection of X’ in A.

Proof. Let B be the full subcategory of K whose objects are all those X for which there exists a source (mi :X -* Ai)i belonging to M and such that or each i G I. Hence B is the full E-reflective hull of A [IS]. Sin= is multirefiective in B. Let X be a B-object and (ri : X -+ Ai)l an A-multirefkctian of X. Since X E Oh(B) there exists (q : X + A:)J belonging to M and such that A; E Oh(A) for p:ach j E J. Therefore, for each j e J, there exist i(j) (3 I and k1 : Ar such that k, 0 ri(i) = rnj. Hence (ricil : X li+ Ai( and (ri IX + Ai)* belong to [IS]). Therefore A is M-multireflective in

To prove (d) Ie -I multi refiectiorn of X and (fi : X + A& the source of all -morphisms with domain X and eodomain in Ob( If:

Page 4: ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: … · 2016. 12. 16. · ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: MB30,54D18, s4D45, !WX% Multittaactivc

To prove that ‘;mi : X’ + Ai)l is an A-saultire,Sect~on, suppose thtit f :X’+A is 8

K-morphism l w:e!~ A E Oh(A). Then there exists a uniqw i E I such that f a e can be factorized Trough ri and an A-morphism. bl:

be this factorization. Hence f 0 e = g 0 ri = g 0 rni 0 e. Therefore f = g Q mi and g is the unique A-morphism with this property.

L‘odi~ 1.6. If K is a cateqsry which possesses a factorizuti~~ struc&re for~murces (E, M), where M is a candbmerate of nzonusources, and A is a full &@&flectiw subcategory of K, then rhers exists a fuii subcategury * of K such &tat the fullowiftg hold :

(a) ;WBcCli; (b) 3 is ei- ’ @~xtive in K. (c) A is t aukkpire~lective in B. (d) Each A-mrultirefZection in K is the composition of an epireflection of K in B

folh wed by a multiepCireflectiors of B ire A.

Proof, FC~OWS directly from Proposition 1.3 and Theorem 1.5.

2. Characterizations of multi-E-reflective subcate

) is a facto&&on strwture for SOMXCS in K, is E- is a locally full subcategory of 1 , &en the foliawing are

equivaien t : (a) is multi- -reflective in (b) FOP each .4 E Ol>( (c) If the following diagram :

ma category f

Page 5: ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: … · 2016. 12. 16. · ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: MB30,54D18, s4D45, !WX% Multittaactivc

Pm&. @) =3 (b) ig f ; Xp 3. A is a (& +& A) Qbject, let (et :X 3) &)I be an Acmultireflec- tion of X, Tkmfcwe there edsts a unique &I such that f,can befactorized through ei and an A-morp?Gsm g : Ar -) A, and t fispctorization is unique, We that er:(f:Y-,A)+(g:Aj-,A) ,i9 ati reflection of f:X+A inr\ ( q:(f:X+A)+(g’:A’I+A) is a ( & A)-morphism such that g’ : A’+ A belongs to Ob(A 1 A), then ‘ihere e&s lk f ind 8 unique factorization

where k is an A-morphism. Therefore one has g’ 0 k 0 eil = g’ 0 4 = f = g 0 ei, but g’ 0 k : Aie I+ A is an A-morphism, therefore i’ = i and the foilowing diagram:

commutes. Then k : (g : Ai + A) + (g’ : A ‘-) A) is the unique (A 4 A)-morphism which makes the diagram commutative.

(b) + (a) If X E Oh(E), le (ej :X + Ai)J be the source such that j E J if and only if there exist A E Oh(A), f r X -+ A E Ob(K i A) and g : Al -) A E Ob(A 4 A) such that e,:(f:X+A)+(g:,4pA) is an (A&A)-reflection of f:X+A. Define in J the equivalence relation j -j’ if and only if there exists an isomorphism h : Aj + Aja such that h Q ej = et, and let I c .I be a system of representatives for -. Then (ei : X + A&l is an A-multireflectio

b) c9 (c) For each A G 0 s a factorization structure for sour-ces in ). Therefore, since is a full isomorphism closed subcategory of ), the result follows from [U, 1.2.9].

Page 6: ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: … · 2016. 12. 16. · ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: MB30,54D18, s4D45, !WX% Multittaactivc

be an (E, lM)-factorization of mg. §iim & isi #%4oweQ~wered4$me exi9t: a set

J’ c ?, a function Q : I + J and, for each 5 E I a factorimtio~a: *

such that k,(i) is a IGis0morphism. Therefore:

Corollary 2.3, (R. Biirger, see [XI, 2.4 41). If (E, M) is a fuc&Mation structure for .w~~s in a category K that is E-cowa@~weted and has mrtl@le pull-bucks, then for each locally full subcategory A of K. the followiflg are quivdmt:

(a) A is multi-E-rejiectiue in K. (b) A is closed under multiple pull-backs and, if 1+1: X + A. b&mgs to M and

A, E Oh(A), then X E Qb(A).

PRWD~* (a) + (b) if (X drn’ Ai J A)1 is a multiple pull-back, then (mi :X + A~)J is an extremal monosource and therefore belongs to M (see [lS]) tMefore the result follows from Theorc,n 2.1.

(b>*(a). If fo r each i E I the diagrz.m:

X W

-- Ai

fi is an A-morphism for each i G X and (ml :X * &)I E Lemma 2.2, without loss of generality we can assume that J ( y --*et A, --J AJj is a multipie pull-back, then there exists 8 unique 01 : ’ such that, for each i E 1 the diagram:

Page 7: ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: … · 2016. 12. 16. · ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: MB30,54D18, s4D45, !WX% Multittaactivc

(t$ Ifm:X+Abdbngsti MandAisin A, theftXisirt A,

Rd. (a) -r*r (b). If m :X -, A belangs to a3d (ei : X + &)I is a multi-E-reflection of X in AM, then there exists i E I such that a g:Al+A exists with goer = m. Therefore ei is a isomorphism and

(b)+(a). If X is a K-object, let (fi :X +Ai)l e the source of al with domain X and codomain in A, For each i E I, let

(X f’_A~)=(X-&+ ZAi)

be an (E, M)-facto?ation of fi. Clearly, if (ej :X -*AI)* is a set of representatives of (ei :X *A&, then (ei :X + A~)J k a niulti-E-reflection of X in AM.

The implication (b) + (3) of the last theoreal is stated in [20, Propositiukl 5.11.

Corolhry 2.5. If K is an (E, M)-category and A is a multi-E-reflective slabcategory of K, then AM is crlso multi-E-reflective.

Proof. The same as in (a) =+ (b) in Theorem 2.4.

lb-k 2.6. If in Definition l.f( 1) the assumption that I is a set is dropybed, then one gets a characterization of the strongly iocally rklective subcategories c,f BGrger and Tholen 12,201. All the above resul are valid, when stated for strongly locally reflective subcategories and, in that case, the assumption that K is E-cowellpowered can be omitted in Theorems 2.1 and 2.4.

2 of ~~rn~)~ete~,~ regular g if whenever f:

Page 8: ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: … · 2016. 12. 16. · ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: MB30,54D18, s4D45, !WX% Multittaactivc

Since Y is B completely regular Hausdorff space, ry is an embedding and, six&e A is left-fitting and pf is perfect Bf-‘(ry( Y)) betongs to {A&. If .? “=; J is the set Of indexes such Rhat j E J if and only if Af c rsfl(ruf Y)), then fdr each i E J the map fi = pfli, : Aj + Y is the unique map such that the diagranx

commutes. But, If i E J, then the commutative square:

i ‘A,

* I=

3 I I irrf

Y -I ray PY

is a pull-back if and only if Aj = #‘l’fr~f Y)). Therefore [Pi :X * A& is a

’ is multireftective in

Page 9: ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: … · 2016. 12. 16. · ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: MB30,54D18, s4D45, !WX% Multittaactivc

Since Tops is an (epi@rphisms, ,closed embeddings)-category, it foilows from Corollary 2.5 that, if A is a subcategory of Tom whose objects are the spaces of

any of the subcategories ,mentioned above and whose morphisms are the closed embeddin@:, then A is multi-epi-r&ctive in Ttih and multireflective in ‘Top.

m 3.4. (Ii. Herrlich). Let (X, S) be a partially ordered set, 6 .k.kfred in the w,& way as a categor,f K, and let A be a full subcategory of K. “I’imen the following are equivalent :

(a) A is multireflective in K. (b) For each x E X and for each Q E A, x bu implies that (bEAlxQh?Su] has

a smallest element.

For more examples of multireflective, and multicoreflective, subcategories see r31, f43, rS],[201 and WI.

orst ~~~~ich fsr provid~g Theorem 2.4 and Ex~ple 3.4.

Page 10: ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: … · 2016. 12. 16. · ANs(Hos) Subj. Class.: Primary NAOS, 18A20,18A40; Saonkuy: MB30,54D18, s4D45, !WX% Multittaactivc

PI PI

131 HI

w’j

ml

El21 1131 f!4]

WI

U61

[I71

WI u91 PO1

WI

P, Bacon, The compactness of rpowWbQ CQm~Ct $pWXS, P&i& f. MMtL 32 41969) 587492. R. B&ger and W. Tholen, Abchwkhungen des Adjunktionsbegrifts, Manuscripta Math. 19 (1976) 19-45, Y. Diers, CatCgories localisables, Thesis, Universit6 de Paris VI (1977). Y. Diers, Spectws et locatisaticmns relatifs ;B un foncteur, C.R. Acad Sk Paris 287” (1978) A985A’988. Y. Dien, Familles universelles de morphismes, Ann. &c. sci. Bru&elle~ Set. 1. 93(3) (1979) 175-195. N. Dykes, Mappings and realcompact space6, P&k J. Math; 31(1~%~) 347-338. N. Dykes, Generalization of realampact S- WC&C& Wth. 33 (1970) 571-581. S.P Franklin, On epi-reflective hulls, Ckt~ Topology Appl. 1(19?1) 29-31. I 2,. Frollk, On the topologbl product of paracompact apaces, Bull. ‘Acad. Polon. SC& SW. Sci. lvfath. Astronom. Whys. 8 (l%O) 359-378. 2. Frolik, Gener~m&ations of the G~-property of c6mplete metric spaces, Cz&, Math. J. 10 (1960) 359-378. Z. Fro& On approximation and uniform approximation’ of spaces, Proc. Japan ‘Acad. 37 (1961) 530-332. Z. Frolik, A genrzalization of realcompact spaces, Czech. Math. J. 13 (1%3) 127-138. M. Henriksen antrl J. Isbell, Some properties of compactiftcations, Qu+e MS&. J* $5 (1958) 83-106. H. He~!kh, Peikt ~seategorie~ ad factorizations, C01l~q. A&tit.. &PC. J+~cH Miya( 8 (1372) 387-403. H. Herrlich, G. !blicrup and R. VBzquez, Dispersed factorization structures, Can. .I+ Math. X.ZUU (5) (1979) 1059-1071. H. Herrlich and J. ‘Van der Slot, Properties which are do&y related to compactness, Indag. Math. 29 (1967) 524-529. H. Herrlich and G.E. Strecker, Semiuniversal maps and &vet& initiai mmpbtiona, pacific J. Math. 82(2) (1979) 407-428. H. Herrlich and G.E:. Strecher, Category Thvc y (Heldermann Verlag, Berlin, 1979) 2nd ed. K. Morita, Products of normal spaces with met& spaces, Math,. Ann. 154 (1964) 36!5-382. W. Tholen, Mac Neille completion of concrete I n;tegories with local properties, ment. Math. Univ. St. Pauls Xr,‘IJI-2 (1979) 179-202. G. Salicrup, Local nlonocoreflectivity in topologxal categories, to appear in the -dings of the 1980 Ottawa Conference in Categorical Topology.