Anisotropy of Shale Properties - NTNU

33
10 6 10 0 10 4 10 8 10 12 10 16 10 18 10 20 Frequency (Hz) Wavelength Observation Scale Anisotropy of Shale Properties: A Multi-Scale and Multi-Physics Characterization Elastic, Mechanical, Petrophysical and Micro-Structural Properties at in situ conditions Joel Sarout Lionel Esteban, Claudio Delle Piane, Bruce Maney, Dave Dewhurst and Ben Clennell CSIRO Earth Science and Resource Engineering Shale Research Consortium

Transcript of Anisotropy of Shale Properties - NTNU

Page 1: Anisotropy of Shale Properties - NTNU

106100 104 108 1012 1016 1018 1020

Frequency ( Hz)

Wavelength

Observation Scale

Anisotropy of Shale Properties:A Multi-Scale and Multi-Physics Characterization

Elastic, Mechanical, Petrophysical and Micro-Structural Properties at in situ conditions

Joel Sarout

Lionel Esteban, Claudio Delle Piane, Bruce Maney, D ave Dewhurst and Ben Clennell

CSIRO Earth Science and Resource EngineeringShale Research Consortium

Page 2: Anisotropy of Shale Properties - NTNU

Motivation:Anisotropy of Fluid Transport

A

B

• A. Side-Burden: Permeability k along shale bedding• B. Over-Burden: Permeability k perpendicular to shale bedding

⇒ Calculate k for any angle (k second-rank tensor + shale T.I.)

Faulted reservoir Anticline reservoir

Need to assess:• Permeability anisotropy

Page 3: Anisotropy of Shale Properties - NTNU

Affects seismic data processing, inversion and interpretation (cross-well, VSP, AVO, time-lapse, ray tracing, tomography…)

Source: NORSAR

Vertical Transverse Isotropy

Isotropy Tilted Transverse Isotropy

Motivation:Seismic/Ultrasonic Anisotropy

Source: Moore et al. (2007)

Nankai accretionary wedge offshore Japan’s southeas t margin

Need to assess:• Elastic anisotropy• Stress-dependence• Emphasis on Thomsen’s δ

Page 4: Anisotropy of Shale Properties - NTNU

Need for Laboratory Characterizationof Rock Anisotropy for Field Applications

PhysicalProperties

CharacterizationScales

LaboratoryProbing Techniques

▪ Micro-Structure- 2-D (SEM)- 3-D (X-Ray CT)

▪ Water Content / Distribution▪ Fluid Transport

- Permeability- Diffusivity

▪ Mechanical Strength- Cohesion- Internal Friction Angle

▪ Elasticity-Static-Dynamic

▪ SEM 2-D Imaging

▪ X-Ray 3-D Tomography

▪ Water Circulation

▪ Nuclear Magnetic Resonance

▪ Triaxial Deformation

▪ Stress Anisotropy

▪ Scratching

▪ Wave Propagation

nm – 10-9m

����m – 10-

6m

mm – 10-

3m

cm – 10-2m↓ ↓ ↓ ↓ ↓ ↓ ↓km - 103m

Page 5: Anisotropy of Shale Properties - NTNU

Anisotropy & Heterogeneity:

Scale-Dependent Concepts…?

Page 6: Anisotropy of Shale Properties - NTNU

Evidence of Structural Anisotropy:High-Resolution Characterization (µm scale)

Page 7: Anisotropy of Shale Properties - NTNU

Evidence of Structural Anisotropy:High-Resolution Characterization (µm scale)

Page 8: Anisotropy of Shale Properties - NTNU

Low-Resolution Structural Characterization(mm to cm scale)

A-A B-B

80 m

m

Medical CT Scanner: Sample heterogeneity at mm scale

3D - High CT Contrast

3D - Low CT Contrast

80 m

m

Page 9: Anisotropy of Shale Properties - NTNU

Anisotropyof

Fluid Transport

Page 10: Anisotropy of Shale Properties - NTNU

Anisotropy of Water Permeability (cm)

Pressure Cell

Page 11: Anisotropy of Shale Properties - NTNU

Testing Protocol:Constant Pressure Drop Method

PROTOCOL:1. Saturate: Pc = 20MPa – Pp = 10MPa2. Impose: PpU = 15MPa – PpD = 10MPa3. Monitor Injection Rate: Q

Permeability in flow direction (cm scale)

Q

Page 12: Anisotropy of Shale Properties - NTNU

NMR Method: Field Gradient Method

Magnetic field gradient along Y-axis

Page 13: Anisotropy of Shale Properties - NTNU

Perpendicular to BeddingS

cale

d A

mpl

itude

of N

MR

Sig

nal

T2 Relaxation Time [ µµµµs]

102103 104 105 106

Scaled Gradient Intensity

0

500

1000

1500

2000

3000

4000

Page 14: Anisotropy of Shale Properties - NTNU

Parallel to Bedding 1S

cale

d A

mpl

itude

of N

MR

Sig

nal

T2 Relaxation Time [ µµµµs]

102103 104 105 106

Scaled Gradient Intensity

0

500

1000

1500

2000

3000

4000

Page 15: Anisotropy of Shale Properties - NTNU

Parallel to Bedding 2S

cale

d A

mpl

itude

of N

MR

Sig

nal

T2 Relaxation Time [ µµµµs]

102103 104 105 106

Scaled Gradient Intensity

0

500

1000

1500

2000

3000

4000

Page 16: Anisotropy of Shale Properties - NTNU

Peak NMR AmplitudesS

cale

d A

mpl

itude

of N

MR

Sig

nal

T2 Relaxation Time [ µµµµs]

102103 104 105 106

Scaled Gradient Intensity

0

500

1000

1500

2000

3000

4000

Page 17: Anisotropy of Shale Properties - NTNU

Anisotropy of Water Diffusivity (nm to µm)

16

Squared Gradient Intensity (x10 6)

12840

Dh // / Dh ⊥⊥⊥⊥

Fast Diffusivity(Free water ) 1.5

Slow Diffusivity(Clay-Bound Water ) ~ 1

Pea

k A

mpl

itude

of N

MR

Sig

nal

160

115

Slow Diffusion

Fast Diffusion

Fit Double Exponential Function to NMR Signal Peaks

Water diffusivity proportional to slope of the tangent

Page 18: Anisotropy of Shale Properties - NTNU

Permeability and Diffusivity Anisotropies over Different Scales

Parameter // / ���� Scale Effective Pressure

Permeability k 9.1 cm 7.5

Diffusivity Dh 1.5 nm-µm 0 S

kDh =

Pressure vessel withinmagnetic field currently tested

Page 19: Anisotropy of Shale Properties - NTNU

Anisotropyof

Seismic Properties

Page 20: Anisotropy of Shale Properties - NTNU

Specimen Instrumentation:Strain and P-wave (Group/Ray) Velocities

Viton Sleeve

∅∅∅∅transducers = 5 mm

fcentral ~ 0.5 MHz

80 m

m

Page 21: Anisotropy of Shale Properties - NTNU

Over-Consolidated Triaxial Loading

Page 22: Anisotropy of Shale Properties - NTNU

Seismic Data Processing

25 different Azimuth angles

17 different Dip angles

� ~ 90 different ray paths

Assumption:

Bedding/T.I. symmetry plane is horizontal

( ) ( ) ( ) ( )( )

( )°==

++≅

90

Angle Dip

coscossin1 422

P

P

V

V

αθ

θεθθδαθFit Thomsen’s weak anisotropy model to VP(dip)

Page 23: Anisotropy of Shale Properties - NTNU

Group Velocities Function of Dip Angle:A Snapshot…

Average of n experimental points with identical dip angle

Fitted Thomsen’s model

95% Confidence interval

Page 24: Anisotropy of Shale Properties - NTNU

Effect of Water Saturation

Page 25: Anisotropy of Shale Properties - NTNU

Effect of Isotropic Stress

Page 26: Anisotropy of Shale Properties - NTNU

Anisotropyof

Mechanical Properties

Page 27: Anisotropy of Shale Properties - NTNU

Mechanical Anisotropy

No apparent difference between axial and radial strains

Differentiation between axial and radial strains

M// / M�= 0.54

Page 28: Anisotropy of Shale Properties - NTNU

Effect ofStress Anisotropy

Page 29: Anisotropy of Shale Properties - NTNU

Effect of Stress Anisotropy

Page 30: Anisotropy of Shale Properties - NTNU

Effect of Stress Anisotropy (Triaxial):Low-Resolution Characterization (mm to cm scale)

A-A B-B

Axial Loading

A-A B-B

Page 31: Anisotropy of Shale Properties - NTNU

(Preliminary) Conclusion

• Fluid transport anisotropy → strongly scale-dependent• Seismic anisotropy → strongly stress-sensitive• Mechanical anisotropy → poorly related to seismic anisotropy• Stress anisotropy → crucial factor controlling rock anisotropy…

• Anisotropy is a scale-dependent (theoretical) concept……not to be confused with the heterogeneity (practical) concept

• Anisotropy is also a property-dependent concept

⇒ Need to state scale and property when reporting anisotropy⇒ Given rock (nano-/micro-/meso-/macro-) structure gives rise to

different anisotropy magnitudes for various physical properties

Page 32: Anisotropy of Shale Properties - NTNU

Questions…?

Acknowledgement of support from:

• BG Group• Chevron• ConocoPhillips• ExxonMobil

• Sinopec• Statoil• Total

Page 33: Anisotropy of Shale Properties - NTNU

Effect of Stress Anisotropy (Triaxial):Low-Resolution Characterization (mm to cm scale)

A-A B-B

Shear Failure

Tensile Failure

Stress Unloading

Axial Loading