Andrew Poje (1) , Anne Molcard (2,3), Tamay Ö zg Ö kmen (4)

16
Andrew Poje (1), Anne Molcard (2,3), Tamay ÖzgÖkmen (4) 1 Dept of Mathematics, CSI-CUNY,USA 2 LSEET - Universite de Toulon et du Var, France 3 ISAC-CNR Torino, Italy 4 RSMAS/MPO, Univ. of MIAMI, USA Direct drifter launch strategies for Lagrangian data assimilation using hyperbolic trajectories

description

Direct drifter launch strategies for Lagrangian data assimilation using hyperbolic trajectories. Andrew Poje (1) , Anne Molcard (2,3), Tamay Ö zg Ö kmen (4). 1 Dept of Mathematics, CSI-CUNY,USA 2 LSEET - Universite de Toulon et du Var, France 3 ISAC-CNR Torino, Italy - PowerPoint PPT Presentation

Transcript of Andrew Poje (1) , Anne Molcard (2,3), Tamay Ö zg Ö kmen (4)

Page 1: Andrew Poje  (1) , Anne Molcard  (2,3),  Tamay  Ö zg Ö kmen  (4)

Andrew Poje (1), Anne Molcard (2,3), Tamay ÖzgÖkmen (4)

1 Dept of Mathematics, CSI-CUNY,USA2 LSEET - Universite de Toulon et du Var, France3 ISAC-CNR Torino, Italy4 RSMAS/MPO, Univ. of MIAMI, USA

Direct drifter launch strategies for Lagrangian data assimilation using hyperbolic trajectories

Page 2: Andrew Poje  (1) , Anne Molcard  (2,3),  Tamay  Ö zg Ö kmen  (4)

Problem

• Given a model assimilating Lagrangian data, determine initial launch locations which accelerate convergence of model to ‘truth’.

• Well defined optimization problem?

Xo -> Nonlinear ODE’s -> +Assimilation + Nonlinear PDE -> Model Output

• High dimensionality• Unique solutions?• ‘Simple Case’ - perfect model

•How long?• What domain?

QuickTime™ and aMicrosoft Video 1 decompressorare needed to see this picture.

Page 3: Andrew Poje  (1) , Anne Molcard  (2,3),  Tamay  Ö zg Ö kmen  (4)

Properties of “Good” Lagrangian Data

• Span velocity space• Span physical space• Independent measurements

• Provide continuous velocity corrections• Capture phase and position of energetic structures in field

Approach

• Molcard et al. Lagrangian Assimilation + Lagrangian C.S. Launch

Strategy

•Target hyperbolic trajectories -

• maximize relative dispersion

• track coherent feature boundaries

Page 4: Andrew Poje  (1) , Anne Molcard  (2,3),  Tamay  Ö zg Ö kmen  (4)

The assimilation scheme (OI)

Ua=Ub+K (Yo-H(Ub))

K=BGT(GBGT+E)-1

Uaij=Ub

ij+-1 ijm(Vom-Vb

m)

=1 + o2/b

2

Oth order reduction:assimilation frequency which resolve the gradients;Observed and simulated variables non correlated in space and time; Gaussian distribution of the correction;Only 1 t or 2 successive positions.

Ua analysis variable Ub model calculated variableYo observed variableH(Ub) observation matrix that transforms the forecast data in the observed variable at the observed pointG=dH(Ub)/dUb sensitivity matrixB, E model and observation covariance matrices

Page 5: Andrew Poje  (1) , Anne Molcard  (2,3),  Tamay  Ö zg Ö kmen  (4)

A1 :Observation (t0)A2: Observation (t0+t)C1: First guess (t0+t)C2: Corrected forecast (t0+t)

A1

C1

C2

A2

Page 6: Andrew Poje  (1) , Anne Molcard  (2,3),  Tamay  Ö zg Ö kmen  (4)

Assimilation results for double-gyre, 1.5 layer MICOM

Page 7: Andrew Poje  (1) , Anne Molcard  (2,3),  Tamay  Ö zg Ö kmen  (4)

inflow

outflow

A direct launch strategy, based on tracking the Lagrangian manifolds emanating from strong hyperbolic regions in the flow

field is developed by computing the eigen-structure of the Eulerian fied at ti and tf and use it to initialize the manifold

calculation.

Optimal deployment strategy

Page 8: Andrew Poje  (1) , Anne Molcard  (2,3),  Tamay  Ö zg Ö kmen  (4)

Manifolds

Ws inflowing: attracted toward the hyperbolic trajectoryin forward time

Wu outflowing: repelled away from hyperbolic point

Page 9: Andrew Poje  (1) , Anne Molcard  (2,3),  Tamay  Ö zg Ö kmen  (4)

FSLE Finite Scale Lyapunov Exponents(measure of time required for a pair of particle trajectories to separate)

Page 10: Andrew Poje  (1) , Anne Molcard  (2,3),  Tamay  Ö zg Ö kmen  (4)

Deployments: Each 3 lines of 4 drifters:

•1 ‘Optimal’ (Directed) on Wu

•50 Randomly Choice

Page 11: Andrew Poje  (1) , Anne Molcard  (2,3),  Tamay  Ö zg Ö kmen  (4)

Analysis: 50 random deployments vs 1 optimal in terms of:overall coverage (or spreading), integrated Kinetic energy,

integrated distance between drifter observations and simulated trajectories.

Spreading KE

YO-YB Correction

The product of the overall coverage and the integrated distance difference provides a good proxy for both terms in the correction term in the assimilation scheme

ijm(Vom-Vb

m)

Page 12: Andrew Poje  (1) , Anne Molcard  (2,3),  Tamay  Ö zg Ö kmen  (4)

E=100% E=60% E=40%

Control

Assimilation

Free

DAY 0 DAY 30 DAY 0 DAY 30

Page 13: Andrew Poje  (1) , Anne Molcard  (2,3),  Tamay  Ö zg Ö kmen  (4)
Page 14: Andrew Poje  (1) , Anne Molcard  (2,3),  Tamay  Ö zg Ö kmen  (4)

Dependance on the length of the segment and on the “exact point” error

Page 15: Andrew Poje  (1) , Anne Molcard  (2,3),  Tamay  Ö zg Ö kmen  (4)

Dependance on the length of the segment and on the “exact point” error

Page 16: Andrew Poje  (1) , Anne Molcard  (2,3),  Tamay  Ö zg Ö kmen  (4)

Conclusion

Alignment of initial drifter positions along the out-flowing branch of identifiable Lagrangian boundaries is shown to

optimize both the relative dispersion of the drifters and the sampling of high kinetic energy features in the flow.

The convergence of the assimilation scheme is consistent and considerably improved by this optimal launch strategy.

•‘Real’ ocean? • Identifiable structures• Appropriate time/space scales? (Dart05?)

•Something slightly deeper here?• Fast convergence to attractor (Wu)• Knowing location of attractor => more information

Questions

Preprint available: Ocean Modeling, 2006