Andrea Can Giani

download Andrea Can Giani

of 21

Transcript of Andrea Can Giani

  • 8/10/2019 Andrea Can Giani

    1/21

    VIRTUAL ELEMENT METHODS

    Andrea Cangiani

    UNIVERSITY OF LEICESTER

    EFEF 2012

    BCAM, Bilbao, 8-9 June 2012

    A. Cangiani (University of Leicester) Virtual Element Method (VEM) EFEF 2012 1 / 21

  • 8/10/2019 Andrea Can Giani

    2/21

    FEM on general meshesAugmented FE are mentioned as early as Strang & Fix (1973)!

    GFEM [Babuska & Osborn (1983)]Partition of Unity Method [Babuska & Melenk (1997)]XFEM [eg. Fries & Belytschko (2010)]PolygonalFEM [Tabarraei & Sukumar (2004 & 2007)]BEM-based FEM [Copeland, Langer, & Pusch (2009)]Various dG approaches, eg.

    Polymorphic Nodal dG [Gassner, Lorcher, Munz, & Hesthaven (2009)]Agglomeration dG [Bassi, Botti, Colombo, & Rebay (2011)]

    ...

    Driving idea: generalize FE to polygons considering/adding particularshape functions that may help capturing the solution

    The VEM approach: Generalize FE to polygons maintaining the ease of

    implementation of (polynomial) FE.A. Cangiani (University of Leicester) Virtual Element Method (VEM) EFEF 2012 2 / 21

  • 8/10/2019 Andrea Can Giani

    3/21

    The Virtual Element Methods (VEM) principlefor the generalization of FEM on polygons

    The VEM trial space contains, on each element, a space of polynomials, plus other functions.

    The degrees of freedom (dof) are carefully chosen in order to allow

    accurate dof-based computation when the polynomials are involved.

    It is shown that for the remaining part a result with the right order of magnitude and stability properties suffices.

    A. Cangiani (University of Leicester) Virtual Element Method (VEM) EFEF 2012 3 / 21

  • 8/10/2019 Andrea Can Giani

    4/21

    Model problem and mesh partitionModel problem: On R2, consider the symmetric variational problem

    nd u V := H 10 () such that

    a(u , v ) = ( f , v ) v V ,

    with f L2() and

    a(u , v ) M |u |1|v |1, a(v , v ) |v |21 u , v V .

    Polygonal decompositions: {T h }h decompositions of intonon-overlapping polygons K

    Broken H 1-seminorm: On H 1(T h ) :=K T h

    H 1(K ) dene

    |v |h ,1 :=K T h

    | v |20,K 1/ 2

    .

    A. Cangiani (University of Leicester) Virtual Element Method (VEM) EFEF 2012 4 / 21

  • 8/10/2019 Andrea Can Giani

    5/21

    Abtract discrete problemGiven:

    A space V h V ;A symmetric bilinear form ah : V h V h R such that

    ah (u h , v h ) =K T h

    aK h (u h , v h ) u h , v h V h ,

    where aK h (, ) is a bilinear form on V h |K V h |K ;An element f h V h .

    We dene the discrete problem

    nd u h V h such thatah (u h , v h ) = f h , v h v h V h

    A. Cangiani (University of Leicester) Virtual Element Method (VEM) EFEF 2012 5 / 21

  • 8/10/2019 Andrea Can Giani

    6/21

    Assumptions on the discrete bilinear form

    There exists an integer k 1 such that for all K T h

    P k (K ) V h .k -consistency: for all p Pk (K ) and for all v h V h |K ,

    aK h (p , v h ) = aK (p , v h ).

    Stability: there exist two positive constants and , independentof h and of K , such that

    v h V h |K aK (v h , v h ) aK h (v h , v h ) aK (v h , v h ).

    A. Cangiani (University of Leicester) Virtual Element Method (VEM) EFEF 2012 6 / 21

  • 8/10/2019 Andrea Can Giani

    7/21

    Abstract convergence theorem

    Theorem

    Under all the above assumptions the discrete problem has a uniquesolution u h and

    |u u h |1 inf u I V h

    |u u I |1 + inf u K P k (K )

    |u u |h ,1 + supv V h \{ 0}

    |(f , v ) f h , v ||v |1

    | h |21 f h , h K aK h (u I , h ) ( h := u h u I )

    = f h , h K aK h (u I u , h ) + a

    K h (u , h )

    = f h , h K aK h (u I u , h ) + aK (u , h )= f h , h (f , h ) K a

    K h (u I u , h ) + a

    K (u u , h ) .

    A. Cangiani (University of Leicester) Virtual Element Method (VEM) EFEF 2012 7 / 21

  • 8/10/2019 Andrea Can Giani

    8/21

    A Virtual Element MethodConsider the case a(u , v ) = ( u , v ).

    Fix K T h with n edges, x

    K barycenter of K , hK diameter of K , k 1,Bk ( K ) := {v C 0( K ) : v |e Pk (e ) e K };

    note that dim( Bk ( K )) = n + n(k 1) = nk . Then, dene

    V K ,k = {v H 1(K ) : v | K Bk ( K ), v |K Pk 2(K )},

    with P 1(K ) := {0}. Note that

    P k (K ) V K ,k ;NK := dim V K ,k = nk + k (k 1)/ 2.

    Then, the global conforming VEM space is given by

    V h := {v V : v |K V K ,k K T h }

    A. Cangiani (University of Leicester) Virtual Element Method (VEM) EFEF 2012 8 / 21

  • 8/10/2019 Andrea Can Giani

    9/21

    VEM degrees of freedomFor instance, we may choose as dof for any v h V K ,k ,

    V K ,k - The values of v h

    at the vertices .

    E K ,k - For k > 1, e the values of v h at k 1 distinct points

    P K ,k - For k > 1, the moments1

    |K | K

    m(x )v h (x )d x m x x K

    hK

    s

    , |s | k 2 .

    A. Cangiani (University of Leicester) Virtual Element Method (VEM) EFEF 2012 9 / 21

  • 8/10/2019 Andrea Can Giani

    10/21

  • 8/10/2019 Andrea Can Giani

    11/21

    VEM vs FEM (recall that NK = nk + k (k 1)/ 2)VEM k = 1 k = 2 k = 3

    FEM k = 1 k = 2 k = 3

    Q.: What is VEM for k = 1?

    A. Cangiani (University of Leicester) Virtual Element Method (VEM) EFEF 2012 11 / 21

  • 8/10/2019 Andrea Can Giani

    12/21

    VEM vs ??? (recall that NK = nk + k (k 1)/ 2)

    VEM k = 1 k = 2 k = 3

    A. Cangiani (University of Leicester) Virtual Element Method (VEM) EFEF 2012 12 / 21

  • 8/10/2019 Andrea Can Giani

    13/21

    Construction of admissible bilinear forms

    Observe that, as for any v V K ,k and for any p Pk (K ),

    aK (v , p ) = K v p dx = K v p dx + K v p n ds ,is exacly computable just using the local degrees of freedom.Example. Take k = 2. Then,

    K v p dx = |K | p 1|K | K v dx .Now, it is convenient to dene the projection K

    k : V K ,k P

    k (K ) as

    aK (K k v , q ) = aK (v , q ) q Pk (K )

    K k v = v := 1n

    n

    i =1

    v (V i ) V i = vertices of K

    A. Cangiani (University of Leicester) Virtual Element Method (VEM) EFEF 2012 13 / 21

  • 8/10/2019 Andrea Can Giani

    14/21

    Then,

    aK h (u , v ) := aK (K k u ,

    K k v ) + S

    K (u K k u , v K k v ) u , v V

    K ,k ,

    satises k -consistency and stability for every S K (u , v ) such that

    c 0aK (v , v ) S K (v , v ) c 1aK (v , v ) v V K ,k with K k v = 0 .

    Computing the RHS

    Similarly, dene f h := P K k 2f as the L2(K ) projection of f onto Pk 2(K )

    Then, the associated right-hand side

    f h , v h K = K f h v h dx = K (P K k 2f ) v h dx = K f (P K k 2v h ) dx is exactly computable using the internal moments.

    A. Cangiani (University of Leicester) Virtual Element Method (VEM) EFEF 2012 14 / 21

  • 8/10/2019 Andrea Can Giani

    15/21

    VEM on quadrilaterals: the case k = 1Recall that if v V K ,1 then

    v = 0 in K , v P1(e ) e K , v | K C 0( K )

    On parallelograms, V K ,1 = Q1(K ).

    And

    aK h (u , v ) := a

    K

    (K 1 u ,

    K 1 v ) + S

    K

    (u K 1 u , v

    K 1 v )

    Thus, on parallelograms, VEM Bilinear FEM plus quadrature

    A. Cangiani (University of Leicester) Virtual Element Method (VEM) EFEF 2012 15 / 21

  • 8/10/2019 Andrea Can Giani

    16/21

    An alternative point of view

    Actually, we may as well dene: V K ,1 := span { 1, 2, 3, 4} with

    i |e P1(e ) e K ; i (x j ) = ij ;P 1(K ) span{ 1, 2, 3, 4}.

    A. Cangiani (University of Leicester) Virtual Element Method (VEM) EFEF 2012 16 / 21

  • 8/10/2019 Andrea Can Giani

    17/21

    An alternative point of view

    Actually, we may as well dene: V K ,1 := span { 1, 2, 3, 4} with

    i |e P1(e ) e K ; i (x j ) = ij ;P 1(K ) span{ 1, 2, 3, 4}.

    And, with respect to this basis, aK h

    is given by

    aK h ( i , j ) = K i j dx = 1K d i d j + ( 1)i + j T i T j K 2 K where

    K = K | ( 1 + 3)|2 dx A. Cangiani (University of Leicester) Virtual Element Method (VEM) EFEF 2012 17 / 21

  • 8/10/2019 Andrea Can Giani

    18/21

  • 8/10/2019 Andrea Can Giani

    19/21

    Method robustness

    10-4

    10-2

    100

    102

    104

    10-2

    10 -1

    100

    L2 error

    H1 error

    The values = 2 / 3 (dashed line) and = 2 (dotted line) are shown.

    A. Cangiani (University of Leicester) Virtual Element Method (VEM) EFEF 2012 19 / 21

    l

  • 8/10/2019 Andrea Can Giani

    20/21

    Examples

    5-points 9-points

    Laplace Laplace

    Exact Q1 Hourglass

    All these result from applying quadrature to the Q1FE and from the VEM

    bilinear form using different spaces.A. Cangiani (University of Leicester) Virtual Element Method (VEM) EFEF 2012 20 / 21

  • 8/10/2019 Andrea Can Giani

    21/21