Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea...

30
Andrea Bizzarri 1 , Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Bologna 2 Università degli Studi di Bologna – Dipartimento di Fisica April 18 2007 EGU 2007 GENERAL ASSEMBLY EGU2007-A-03465

Transcript of Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea...

Page 1: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

Andrea Bizzarri 1, Maria Elina Belardinelli 2

1 Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Bologna2 Università degli Studi di Bologna – Dipartimento di Fisica

April 18 2007

EGU 2007 GENERAL ASSEMBLY EGU2007-A-03465

Page 2: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

- Remote triggering is a case of dynamic triggering occurring at distances larger than the dimension of the causative fault;

- Since the Mw 7.7 1992 Landers EQ only a few examples of remote triggering have been observed; we consider the earlyevents in Reykjanes Peninsula on June 17, 2000;

- We study the instantaneous remote triggering of a fault of finite extension, considering a realistic 3–D fault model, including heterogeneities in the crustal profile and in the fault rheology;

- We generalize the conclusions obtained in a previous paper on the basis of a simple 1–D spring–slider analog system;

- We study the response of the triggered fault as depending on the assumed constitutive relation: rate– and state–dependent governing laws and slip–dependent law.

Page 3: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

��

������

����

����

The sequence started on June 17, at 15:40:41 UTC, with an event of magnitude MS = 6.6 (Pedersen et al., 2001), with hypocenter located at (63.973 °N, 20.367 °W, 6.3 Km) (Stefansson et al., 2003; Arnadottir et al.,et al., 2003; Arnadottir et al., 2006). The largest events (M~5)

occurring in the first five minutes are:

8s, 26s, 30 s, 130s, 226s

In intermediate−far field:

8s, 26s, 30 s, 130s, 226s

Reasonably are notsecondary aftershocks:

8s, 26s, 30 s.

O The 30 s event is affected by the mainshock and also

by the 26 s aftershock.

Page 4: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

For the June 17 2000 mainshock we assume:

1) The slip distribution retrieved by a joint inversion of GPS and InSAR data (Arnadottir et al., 2003) →

2) A bilateral Haskell model, with a rupture velocityvr = 2500 m/s

3) A Bouchon ramp source time function (Bouchon, 1981) with a rise time t0equal to 1.6 s

4) 7°, 88° and 180° for the strike, the dip and the rake angles, respectively (i. e. right–lateral strike slip mechanism), on the basis of the aftershock distribution (Stefansson et al., 2003)

Using the discrete wavenumber and reflectivity code developed by Cotton and Coutant (1997) we compute the resulting stress field variations ∆σij(x,t)

Page 5: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

The values of the tensor ∆σij are calculated on the 26 s fault plane up to 2.78 Hz, in a total of 12 × 8 “receivers”, located in nodes uniformly spaced 1650 m in the strike direction and at depths of 0 m, 1650 m, 3300 m, 4950 m, 6550 m, 8100 m, 9900 m and 11550 m.

The spatial sampling of the receiver grid is not sufficient to correctly resolve the dynamic processes occurring during the rupture nucleation and propagation (Bizzarri and Cocco, 2003; 2005), as well as the temporal discretization.

We develop an algorithm that employs a C 2 cubic spline to interpolate ∆σij in space and in time.

Page 6: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

In the numerical code presented by Bizzarri and Cocco (2005) at time t and in each fault node, the dynamic load is: Li = fri + Τ0i + ∆σ2i (i = 1 and 3).

Τ0i are the components of the initial traction ( ) ( ) ( ) ( ) ( )( )0031031 sin 0, ,cos , , ϕϕτ xxxx =0Τ

fri are the components of the load (namely the contribution of the restoring forces, fr) exerted by the neighbouring points:

fri = (M−fi+ − M+fi−)/(M+ + M−),

where M+ and M− are the masses of the “+” and “−” half split–node of the fault plane Σ and f+ is the force acting on partial node “+” caused by deformation of neighbouring elements located in the “−” side of S (and viceversa for f−).

{∆σ2i} are coupled to the components of the fault friction Τi via

where α ≡ A ((1/M+) + (1/M−)), A = ∆x1∆x3. Τi express on the governing law.

[ ]

[ ]3332

2

1112

2

dd

dd

Τα

Τα

−=

−=

L

L

ut

ut

Page 7: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

3) From the aftershocks distribution shown in Hjaltadottir and Vogfjord (2005) we consider the seismic part of the fault (A) limited in latitudebetween 63.890 °N and 63.951 °N (in the case of Nord–South fault this corresponds to [9700, 16500] m in strike direction) and limited in depth between 5400 m and 7400 m

ObservationalObservational constraintsconstraints

3’) From the aftershocks distribution shown in Hjaltadottir and Vogfjord (2005) we consider the seismic part of the fault (A) limited in latitudebetween 63.890 °N and 63.947 °N (in the case of North–South fault this corresponds to [9700, 16050] m in strike direction) and limited in depth between 5400 m and 8100 m

Upper bound estimates:M0 = 1.23 × 1015 A 3/2 = 6.15 × 1016 Nm;Av. fault slip: <u>A = M0/(ρ vS

2A ) = 0.12 m;Av. stress drop: <∆τ>A = 2M0/(πWA LA) = 1.44 MPa

4) Mw ≥ 5 (Arnadottir et al., 2006; Vogfjord, 2003) ⇒ M0 ≅ 3.2 × 1016 Nm

2) Hypocenter (63.951 ± 0.004 °N, 21.689 ± 0.008 °W, 8.9 ± 1.3 Km) ↔ on fault coordinates of (16500 ± 450, 8900 ± 1300) m (Antonioli et al., 2006)

1) Perturbed rupture time tr = 25.9 ± 0.1 s

A

Upper bound estimates’:M0 = 1.23 × 1015 A 3/2 = 8.73 × 1016 Nm;Av. fault slip: <u>A = M0/(ρ vS

2A ) = 0.14 m;Av. stress drop: <∆τ>A = 2M0/(πWA LA) = 1.62 MPa

A

Page 8: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

ResultsResults withwith DR DR lawlaw −− homogeneoushomogeneous

( )

effneff

n

LD

effn

effn

tbLv

t

L

vb

vv

av,

σσΨαΨΨ

σΨ

µσΨµτ

dd

1dd

lnln

*

**

−−=

+

+==

Dieterich – Ruina governing law Perturbed rupture timesv(x1,x3,t) ≥ vl ⇒ tp(x1,x3) = t

vl = 0.1 m/s, in agreement withBelardinelli at al. (2003); Antonioliet al. (2005); Rubin and Ampuero(2005); Ziv and Cochard (2006)

From Bizzarri and Belardinelli(Nov. 2006; subm. to JGR)

tpmin = 23.47 s @ (20700,2900) m

M0 = 2.37 x 1019 Nm

Whole fault

Can be neglected (seeAntonioli et al., 2006)

7000 14000 21000 28000 35000

10000

7500

5000

2500

0

Along strike direction ( m )

Alon

g di

p di

rect

ion

( m )

23.9 24.4 24.8 25.3

Perturbed failure time ( s )

t_p = 23.47 s @ (20700,2900) m

σneff = 2.5 MPa everywhere; acting only ∆σ21

Page 9: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

ResultsResults withwith DR DR lawlaw −− homogeneoushomogeneous

( )

effneff

n

LD

effn

effn

tbLv

t

L

vb

vv

av,

σσΨαΨΨ

σΨ

µσΨµτ

dd

1dd

lnln

*

**

−−=

+

+==

Dieterich – Ruina governing law Perturbed rupture timesv(x1,x3,t) ≥ vl ⇒ tp(x1,x3) = t

vl = 0.1 m/s, in agreement withBelardinelli at al. (2003); Antonioliet al. (2006); Rubin and Ampuero(2005); Ziv and Cochard (2006)

From Bizzarri and Belardinelli(Nov. 2006; subm. to JGR)

tpmin = 23.47 s @ (20700,2900) m

M0 = 2.37 x 1019 Nm

Whole fault

Can be neglected (seeAntonioli et al., 2006)

7000 14000 21000 28000 35000

10000

7500

5000

2500

0

Along strike direction ( m )

Alon

g di

p di

rect

ion

( m )

23.9 24.4 24.8 25.3

Perturbed failure time ( s )

t_p = 23.47 s @ (20700,2900) m

σneff = 2.5 MPa everywhere; acting only ∆σ21 tpmin = 23.47 s @ (16500,2900) m

M0 = 2.23 x 1019 Nm

Whole fault

σneff = 2.5 MPa everywhere; acting also ∆σ22

7000 14000 21000 28000 35000

10000

7500

5000

2500

0

Along strike direction ( m )

Alon

g di

p di

rect

ion

( m )

23.9 24.4 24.8 25.3

Perturbed failure time ( s )

t_p = 23.47 s @ (16500,2900) m

Page 10: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

ResultsResults withwith DR DR lawlaw −− heterogeneousheterogeneous

tpmin = 24.94 s @ (13200,7500) m

M0 = 2.27 x 1016 Nm

[9700,16500] m in strike direction

[6400,7500] m in dip direction

From Bizzarri and Belardinelli (Nov. 2006; subm. toJGR)

Velocitystrengtheningbehavior(a > b) forx1 < 9700 m, x1 > 16500 m, x3 > 8800 m

Effective normal stress profile

Page 11: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

2.40E+06

2.45E+06

2.50E+06

2.55E+06

2.60E+06

2.65E+06

0 5 10 15 20 25

Time ( s )

Shea

r loa

d ( P

a )

SS3 - D3 - D without r. f.

2.40E+06

2.50E+06

2.60E+06

18 20 22 24 26Time ( s )

Shea

r loa

d ( P

a )

From Bizzarri and Belardinelli (Nov. 2006; subm. to JGR)

tpmin

vl

Triggering delayPeak in shear perturbing stress

NO instabilityInstability at t = tpmin = 24.94 s

Page 12: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

1.E-13

1.E-10

1.E-07

1.E-04

1.E-01

0 5 10 15 20 25

Time ( s )

Slip

vel

ocity

( m

/s )

3 - DSS

ResultsResults withwith RD RD lawlaw −− heterogeneousheterogeneousRuina – Dieterich governing law

effneff

n

LD

effn

tbLv

Lv

t

Lv

bvv

a

σσΨαΨΨΨ

σΨµτ

dd

lndd

lnln

−=

+

+= ∗

∗∗

Can be neglected

7000 14000 21000

10000

7500

5000

2500

0

Along strike direction ( m )

Alon

g di

p di

rect

ion

( m )

23.44 23.64 23.84

Perturbed failure time ( s )

tpmin = 23.44 s @ (15700,7900) m

M0 = 2.02 x 1016 Nm

[9000,17300] m in strike direction

[6300,8000] m in dip direction

From Bizzarri and Belardinelli (Nov. 2006; subm. to JGR)

Page 13: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

DifferentDifferent valuesvalues of of LL in the RD in the RD lawlaw

tpmin = 23.99 s @ (14600,7600) mM0 = 1.27 x 1016 Nm[9500,16800] m in strike direction[6500,7700] m in dip direction

tpmin = 24.72 s @ (13300,7300) mM0 = 2.17 x 1016 Nm[9500,16700] m in strike direction[6000,7400] m in dip direction

7000 14000 21000

10000

7500

5000

2500

0

Along strike direction ( m )

Alon

g di

p di

rect

ion

( m )

23.99 24.19 24.39

Perturbed failure time ( s )

7000 14000 21000

10000

7500

5000

2500

0

Along strike direction ( m )

Alon

g di

p di

rect

ion

( m )

24.72 24.92 25.12 25.32

Perturbed failure time ( s )From Bizzarri and Belardinelli (Nov.2006; subm. to JGR)

L = 5 mm L = 10 mm

Page 14: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

Alternative Alternative sourcesource time time functionsfunctions #1#1

Time ( s )

Modified Bouchon source time function:

corrected from Cotton and Campillo, 1995; t0 = 3.2 s. Only a temporal shift.

( )

−+=

2

2

tanh 1 21

0

0

t

tt

tf

Bouchon source time function:

Bouchon, 1981; t0 = 1.6 s

( )

+=

tanh 1

21

0tt

tf

Modified Bouchon source time function:

corrected from Cotton and Campillo, 1995; t0 = 1.6 s. Increased amplitudes in ∆σ21 peaks.

( )

−+=

2

2

tanh 1 21

0

0

t

tt

tf

Page 15: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

Alternative Alternative sourcesource time time functionsfunctions #2#2

tpmin = 26.49 s @ (13000,7500) m

M0 = 2.30 x 1016 Nm

[9700,16500] m in strike direction

[6400,7600] m in dip direction

tpmin = 25.36 s @ (13500,7600) m

M0 = 2.59 x 1016 Nm

[9500,16700] m in strike direction

[6200,8700] m in dip direction

7000 14000 21000

10000

7500

5000

2500

0

Along strike direction ( m )

Alon

g di

p di

rect

ion

( m )

26.49 26.69 26.89

Perturbed failure time ( s )

7000 14000 21000

10000

7500

5000

2500

0

Along strike direction ( m )

Alon

g di

p di

rect

ion

( m )

25.36 25.56 25.76 25.96

Perturbed failure time ( s )

Modified Bouchon, t0 = 3.2 s DR law

Modified Bouchon, t0 = 1.6 s; σneff* = 4.2 MPa – DR law

Page 16: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

We simulate the remote triggering in a truly 3–D fault model with different governing laws;We generalize the results of Antonioli et al. (2006), providing additional details of the 26 s event: the location of the hypocenter, its failure time, the rupture area and the seismic moment;

The spring–slider and the 3–D model are intrinsically different, but we observe an excellent agreement during the slow nucleation phase…… during the acceleration, in the 3–D model the dynamic load of the slipping points further decrease the perturbed failure time;

The effective normal stress and the pre–stress are heterogeneous;

Page 17: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

The agreement with observations increases considering a modified (and more causal) source time function;If detailed informations of the initial state of the fault, potentially highly heterogeneous, were available the agreement with observations will be even better.

Page 18: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

Thank you!

Page 19: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

This slide is empty intentionally.

Page 20: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

Support Slides: Parameters, Notes, etc.

To not be displayed directly. Referenced above.

Page 21: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

The spatial sampling of the receiver grid is not sufficient to correctly resolve the dynamic processes occurring during the rupture nucleation and propagation (Bizzarri and Cocco, 2003; 2005), as well as the temporal discretization.

We develop an algorithm that employs a C 2 cubic spline to interpolate ∆σij in space and in time.

Original values ( t = 26.37 s ) Interpolated values ( t = 26.37 s )In the hypocenter at t = 26.37 s

-1.00E+04

0.00E+00

1.00E+04

2.00E+04

3.00E+04

0 10 20 30 40

Time ( s )

Nor

mal

str

ess

pert

urba

tion

( Pa

)

OriginalInterpolated

In the hypocenter at t = 26.37 s

Page 22: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia
Page 23: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

Crustal profile (from Vogfjord et al., 2002; Antonioli etal., 2006)

Page 24: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

InitialInitial effectiveeffective normalnormal stressstress

Lithostatic

Fluid pressure

Effective

= 8800 m= 8800 m

= 5800 m= 5800 m

= 2.5 = 2.5 MPaMPa

Page 25: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

Support Slides 2: Parameters, Notes, etc.

To not be displayed directly. For discussion only.

Page 26: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

InitialInitial effectiveeffective normalnormal stressstress

= 5800 m

Page 27: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

InitialInitial effectiveeffective normalnormal stressstress

= 5800 m

= 8800 m

Page 28: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

InitialInitial effectiveeffective normalnormal stressstress

= 5800 m

= 8800 m

Page 29: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

InitialInitial effectiveeffective normalnormal stressstress

= 5800 m

= 8800 m

Page 30: Andrea Bizzarri Maria Elina Belardinellibizzarri/Download/Productions/EGU_2007_Pres.pdfAndrea Bizzarri 1, Maria Elina Belardinelli 2 1 Istituto Nazionale di Geofisica e Vulcanologia

From Bizzarri and Belardinelli (Nov. 2005; subm. to JGR )

Ruina – Dieterich governing law

EffectEffect of of differentdifferent vvllDieterich – Ruina governing law

vH = 0.01 m/s ( t = 24.56 s )

vH = 0.05 m/s ( t = 24.84 s )

vH = vl = 0.1 m/s ( t = tp = 24.94 s )

Failure occursbefore tractionreaches the residual level.