and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New...

34
Strings 2011@Uppsala, July 1 Holographic Entanglement Entropy Holographic Entanglement Entropy and its New Developments Tadashi Taka yanagi (IPMU, the University of Tokyo)

Transcript of and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New...

Page 1: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

Strings 2011@Uppsala, July 1

Holographic Entanglement EntropyHolographic Entanglement Entropy and its New Developments

Tadashi Takayanagi y g(IPMU, the University of Tokyo)

Page 2: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

Thanks to my collaborators: 

Tatsuo Azeyanagi (Riken)Mitsutoshi Fujita (IPMU)j ( )Yasuyuki Hatsuda(YITP)Matt Headrick (Brandeis)

hi iTomoyoshi HirataVeronica Hubeny (Durham)Andreas Karch (Washington U )Andreas Karch (Washington U.)Wei Li (IPMU)    Tatsuma Nishioka  (Princeton)Noriaki Ogawa (IPMU)Mukund Rangamani (Durham)Shi i R (UC B k l )Shinsei Ryu (UC Berkeley)Ethan Thompson (Washington U.)Erik Tonni (MIT)Erik Tonni (MIT)Tomonori Ugajin (IPMU)

Page 3: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

ContentsContents

①① Introduction② Holographic Entanglement Entropy (HEE)③ HEE of Confining Gauge Theories and Higher Derivatives

④ AdS/BCFT and Quantum Entanglement④ AdS/BCFT and Quantum Entanglement

⑤ Towards Holographic Dual of Lattices

⑥ C l i⑥ Conclusions

Page 4: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

① Introduction① Introduction

Holography (e.g. AdS/CFT [Maldacena 97] )Holography (e.g. AdS/CFT  [Maldacena 97] ) 

⇒ Non‐perturbative Definition of Quantum Gravity

d+2 dimd+1 dim

M∂ Md+2 dim.d+1 dim.

Boundary Bulk

)()( MZMZ GQM =∂ )()( MZMZ GravityQM ∂

Page 5: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

l h h l h l d blTo explore the holography in general setups, we need suitable 

physical quantities.                  [not only AdS, but flat spaces, de Sitter, etc.]

Stationary BH ⇒Mass M, Charge Q, Spin J.                 (Thermodynamics)

Generic  spacetime ⇒ We need much more quantities !(Non‐equilibrium)  

We would like to argue that  the entanglement entropy (EE)

will be an appropriate quantity. 

Page 6: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

Definition of Entanglement Entropy

Divide a quantum system into two subsystems A and B.

. BAtot HHH ⊗=A BExample: Spin Chain

W d fi h d d d i i f A bρWe define the reduced density matrix         for A byAρ

taking trace over the Hilbert space of Btaking trace over the Hilbert space of B .

Page 7: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

N h l i d fi d b hSNow the entanglement entropy        is defined by the 

von‐Neumann entropyAS

In QFTs,  it is defined geometrically:

slice time:N

A BA ∂=∂B A

Page 8: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

Various Applications in other subjects

• Quantum Information and Quantum Computing

EE = the amount of quantum information[see e.g. Nielsen‐Chuang’s text book 00]

• Condensed Matter Physics

EE = Efficiency of a computer simulation (DMRG)  [Gaite 03,…]

Divergent at phase transition points ![G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, 02,…][ , , , , , ]

i.e. Quantum Critical Points [Sachdev’s talk]

A new quantum order parameter ![Topological entanglement entropy:  Kitaev‐Preskill 06,  Levin‐Wen 06]

Page 9: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

Basic property: Area law p p y

EE in d+1 dim. QFTs (in the ground states) includes UV div. [Bombelli‐Koul‐Lee‐Sorkin 86,  Srednicki 93]

A)Area(∂ terms),subleading(A)Area(~ 1 +∂−dAS

ε

where       is a UV cutoff (i.e. lattice spacing).ε

Similar to the Bekenstein‐Hawking formula of black hole entropy   [ EE = loop corrections to BH entropy[ EE = loop corrections to BH entropy,

Susskind‐Uglum 94,…] .

4on)Area(horiz

NBH G

S =4 NG

Page 10: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

② Holographic Entanglement Entropy  

(2‐1) Holographic Entanglement Entropy Formula   [Ryu‐TT 06][ y ]

)A ( CFT

N

AA 4G

)Area(S γ=

1dCFT +

N

AdS

A

is the minimal area surface (codim.=2)  such that            

2dAdS +

zBAγ

. ~ and AA AA γγ∂=∂ )direction. timeomit the (We

Page 11: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

CommentsCo e ts• In the presence of a black hole horizon, the minimal surfaces 

typically wraps the horizon.  yp y p

⇒ Reduced to the Bekenstein‐Hawking entropy, consistently.

• We need to replace minimal surfaces with extremal surfaces in the time‐dependent spacetime.     [Hubeny‐Rangamani‐TT 07]

• The area formula assumes the supergravity approximation.

The holographic formula is modified by higher derivatives.[Lovelock: Hung‐Myers‐Smolkin 11, de Boer‐Kulaxizi‐Parnachev 11, 

AdS5×S5 in IIB String:  Ogawa‐TT to appear]           

Page 12: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

• In spite of a heuristic argument [Fursaev, 06] , there has been no 

l t f H th h b id dcomplete proof.  However,  there have been many evidences and 

no counter examples so far.

[A Partial List of Evidences]

Area law follows straightforwardly [Ryu‐TT 06]

Agreements with analytical 2d CFT results for AdS3 [Ryu‐TT 06]

Holographic proof of strong subadditivity [Headrick‐TT 07]

Consistency of 2d CFT results for disconnected subsystems               

[Calabrese‐Cardy‐Tonni 09]   with our holographic formula  [Headrick 10] 

Agreement on the coefficient of log term in 4d CFT  (~a+c)[Ryu‐TT 06, Solodukhin 08,10,  Lohmayer‐Neuberger‐Schwimmer‐Theisen 09,  

Dowker 10, Casini‐Huerta, 10,  Myers‐Sinha 10, Casini‐Hueta‐Myers 11] 

Page 13: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

(2‐2) Holographic Proof of Strong Subadditivity[Headrick‐TT 07]

We can easily derive the strong subadditivity, which is known asWe can easily derive the strong subadditivity, which is known as the most important inequality satisfied by EE. [Lieb‐Ruskai 73]

B ACA A A

BCBACBBA SSSS +≥+⇒ ++++

ABC

=ABC

≥A

BC BCBACBBA ++++

A CACBBA SSSS +≥+⇒ ++

ABC

=ABC

≥AB

C C C

Page 14: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

(2‐3) Calculations of HEE

Two analytical examples of the subsystem A:Two analytical examples of the subsystem A:

(a) Infinite strip (b) Circular disk(a) Infinite strip (b) Circular disk 

l

B          A       B                                     B A        l1−dL l

xi>1(a) (b) xi>1

z

x1x1

L

i>1

l

(a) (b) i>1

l

zl

Page 15: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

Entanglement Entropy for (a) Infinite Strip from AdS

divergence law Area dependnot doesandfinite is termThis cutoff. UVon the

p

d=1 (i.e. AdS3) case:                                               ( )Agrees with 2d CFT results [Holzhey‐Larsen‐Wilczek 94 ; Calabrese Cardy 04]Calabrese‐Cardy 04]

Page 16: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

Basic Example of AdS5/CFT4Basic Example of AdS5/CFT4

SYM SU(N) 4SAdS 55 =⇔× N

L( )5

l

The order one deviation is expected since the AdS result corresponds to the strongly coupled Yang‐Mills. 

[cf 4/3 in thermal entropy Gubser Klebanov Peet 96][cf.  4/3  in thermal entropy,  Gubser‐Klebanov‐Peet 96]

Page 17: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

Entanglement Entropy for (b) Circular Disk from AdS[R TT 06][Ryu‐TT 06]

lawAreadivergence

lawArea

f l lConformal Anomaly(~central charge)2d CFT c/3・log(l/ε)

A universal quantity inodd dimensional CFT

f ‘ h ’ 2d CFT     c/3 log(l/ε)4d CFT     ‐4a・log(l/ε)

⇒ Satisfy ‘C‐theorem’ [Myers‐Sinha 10]  

Page 18: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

(2‐4) HEE and AdS BH

BγA BCi iAdS

Aγ BH . purenot isCFTtemp.Finite BH AdS

BAtot SS ≠⇔⇔

ρ p BAtotρ

Time tion Thermaliza formation BH ⇔

BHBHofSizebut

,0 .. pure is

=finite

tottot

S

Seiρ

AdS entropy grained-CoarseEE BH.ofSize but

=→∝f

AS

[Arrastia‐Aparicio‐Lopez 10, Ugajin‐TT 10]

Page 19: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

③ HEE of Confining Gauge Theories and Higher Derivatives(3‐1) Supergravity Result  [Nishioka‐TT 06, Klebanov‐Kutasov‐Murugan 07]

4D N=4 SU(N) SYM on a Scherk‐Schwarz circle

⇔ AdS5 Soliton× S5                      [Witten 98]AdS5 Soliton S [Witten 98]

( ) ( ) ./1 2440

222222

22 −+⋅+++−= drrrdrLdydxdtrds θ( ) ( )

.,2~

./1/1

2

02440

22

⎟⎟⎞

⎜⎜⎛

=+

+−

+++

LRR

drrLrrr

dydxdtL

ds

πθθ

θ

We consider the EE when the subsystem A is just a half space:

.2

,2 0⎟⎟⎠

⎜⎜⎝

+r

RRπθθ

yVy

A B

x

Page 20: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

Calculation of HEECa cu at o o

2Area)5()5(

rRVS ySUGRA

A == ∫∞π

di )l(

442

)5()5(0

VN

LGG

y

rNN

A ∫

.8

-div.)law(area R

y= ∞=λ

Free Field Calculation

After summing over KK modesAfter summing over KK modes 

. 12

-div.)law(area2

FreeYM VNS y

A = 0=λ

⇒ The dependence on λ is non‐trivial.

12)(

RA

p

Page 21: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

(3‐2) Higher Derivative Corrections  [Ogawa‐TT to appear]

We take into account the R4 correction in IIB string theory:

. ...8)3(

161 4

3'10

)10( ⎥⎦

⎤⎢⎣

⎡++−= ∫ WRgdx

GS

NIIB

αζπ

The correction to HEE can be calculated by using the replica trick:

816 ⎦⎣GNπ

[Cf. thermal entropy:  Gubser‐Klebanov‐Tseytlin 98]

)3(1 32 ⎞⎛ ζVN.

264)3(

81div.) law (area 2

32

⎟⎟⎠

⎞⎜⎜⎝

⎛+−⋅+=

−λζ

RVN

S yA

Indeed, HEE increases as the coupling gets  smaller !

Page 22: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

N=4 SYM on A Twisted Circle

Twist

Supersymmetric PointMaximall SUSY Breaking(⇔ AdS Soliton)

0.2 0.4 0.6 0.8 1

-0.05

Twist parameter

0 15

-0.1 Free Yang‐Mills

-0.2

-0.15

AdS side (Strongly coupled YM)Higher derivative-0.25

EE

AdS side (Strongly coupled YM)Higher derivative corrections

EE

Page 23: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

(3‐3) Confinement/deconfinement phase transition

EE can be an order parameter.p

HEE of pure SU(N) YM Lattice Result for pure YM

l

HEE of pure SU(N) YM Lattice Result  for  pure YM

Sfinite10

]

123× 24, β=5.70

163× 32, β=5.70

0.05

0.150

0.1 0.350.30.250.2l 5

A| )

∂S

/ ∂l

[fm

-3]

16 × 32, β=5.70

163× 32, β=5.75

163× 32, β=5.80

163× 32, β=5.85

-0.05

IR:Confinement(disconnected)

0

( 1

/ |∂A

|

-0.1

-0.15

(disconnected) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

l [fm]

-5

[4D SU(3), Nakagawa‐Nakamura‐

[Nishioka‐TT 06, Klebanov‐Kutasov‐Murugan 07]

Motoki‐Zakharov 09]

Page 24: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

④AdS/BCFT and Quantum Entanglement

(4‐1) AdS/BCFT 

h i h l hi d l f if ld i hWhat is a holographic dual of CFT on a manifold with 

Boundary (BCFT) ?         

CFTd:  SO(d,2)   ⇔ AdSd+1

BCFTd: SO(d‐1 2) ⇔ AdSdBCFTd:  SO(d 1,2)  ⇔ AdSd

B

?

Bounda

BCFT?

[cf Defect CFT Karch‐Randall 00 DeWolfe‐Freedman‐Ooguri 01

ary

[cf.  Defect CFT  Karch‐Randall 00, DeWolfe‐Freedman‐Ooguri 01,

Janus CFT  Bak‐Gutperle‐Hirano 03, Clark‐Freedman‐Karch‐Schnabl 04]

Page 25: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

AdS/BCFT Proposal [TT 11 + work in progress with Fujita and Tonni] 

In addition to the standard AdS boundary M, we include an extra boundary Q, such that ∂Q=∂M.

11∫∫ .)(

81)2(

161

∫∫ −−−Λ−−=Q

Qmatter

NN matter

NE LKh

GLRg

GI

ππ

EOM at boundary leads to the Neumann b c on Q :

Qthe Neumann b.c. on Q :

. 8 QabNabab TGKhK π=−

NM

Conformal inv ⇒

abNabab

bQb ThT −=Conformal inv. ⇒ .abab ThT

Page 26: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

(4‐2) Simplest Example 

Consider the AdS slice metric:

. )/(cosh 2)(

222)1( dAdSdAdS dsRdds ρρ +=+

Restricting the values of ρ to                              solves the

boundary condition with*ρρ <<∞−

boundary condition with. tanh1 *

RRdT ρ−

=

*ρρ =N (AdS) Q

−∞=ρ ∞=ρMρ ρAdS bdy

Page 27: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

(4‐3) Holographic Boundary Entropy

The entanglement entropy in 2D CFT 

( ) g p y py

with a boundary looks like [Holzhey‐Larsen‐Wilczek 94 ; Calabrese‐Cardy 04, 

R t i C l b C d 09 C i i H t 09]

l

B ARecent review: Calabrese‐Cardy  09, Casini‐Huerta 09]

ll lc⎟⎞

⎜⎛

B A

, log log6

glcSA +⎟⎠⎞

⎜⎝⎛=ε

where log g is the boundary entropy [Affleck‐Ludwig 91].[Earlier holographic calculations: Yamaguchi 02 (Defect CFT),[Earlier holographic calculations:   Yamaguchi 02 (Defect CFT),

Azeyanagi‐Karch‐Thompson‐TT 07  (Non‐SUSY Janus),

Chiodaroli‐Gutperle‐Hung, 10   (SUSY Janus) ]

Page 28: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

In our setup,  HEE can be found as follows

. 4

log64

14

Length **

NNNA G

lcdGG

S ρε

ρρ

+=== ∫ ∞−NNN

Boundary Entropy

Comment 1. can be confirmed from the disk 

cylinder partition function.  Nbdy GS 4/*ρ=

.21log)/sinh(

24**

2

2

⎟⎟⎠

⎞⎜⎜⎝

⎛−−++=

RrRrr

GRI

NDisk

ρεερ

ε ⎠⎝

.23

*

NBHCylinder G

TlcI ρπ+⋅⋅=

Comment 2. The null energy condition for TQ leads to a 

3 NG

holographic g‐theorem.

Page 29: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

Holographic Dual of Disk Holographic Dual of Cylinder

Qo og ap c ua o s o og ap c ua o Cy de

QQ Q

M N M N Black HoleM N M N Horizon

z z

Page 30: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

⑤ Towards Gravity Dual of Lattices [work in progress with Ryu]y(5‐1) Holographic Dual of Two Points (or 2 qubits)

Thermal AdS32

2222 )( dxzhdzdtRds ⎟⎟

⎞⎜⎜⎛

++−=

A B .020

2

222

2~ , /1)(

,)(

zxxzzzh

dxzzhzz

Rds

π+−=

⎟⎟⎠

⎜⎜⎝

++

N . 00

⎥⎥⎤

⎢⎢⎡

⋅≤ 0 arctan|)(| : RTzzzxN

HEE is calculated as follows:⎥⎥⎦⎢

⎢⎣ − 22

0

0)(

|)(|TRzhz

A and B aremaximally entangled

bdyN

z

zN

A SGzhz

dzGRS === ∫ 4

2)(4

2 *0

*

ρ

maximally entangled NN GzhzG 4)(4

Page 31: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

(5‐2) How does Holographic Dual of Lattices look like ?

Holographic dual of many pointsg p y p

A Minimal Surface        for ALL+1

AγAB

.log3

~4

|| LcG

S AA

γ=

L A

BN

34GN

The separation         does not have xΔ

1

2xΔ

pany direct physical meaning in CFT. But, it does in the AdS gravity. 

Emergent AdS space in the IR of a lattice theory

N

Emergent AdS space in the IR of a lattice theory(continuum limit)

Page 32: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

This argument looks a bit similar to the calculation framework g

called MERA (multiscale entanglement renormalization ansatz).

[MERA: Vidal 06; Relation to AdS/CFT:  Swingle 09’]; / g ]

�Space directionA

Curve Aγ

ing

A

B d ][#MiS

e‐grain

||

Bonds][#Min

⎤⎡

≈ASA

γγ

Coarse .

4||

Min~ A⎥⎦

⎤⎢⎣

NGA

γγ

���� �� ���� ���� ������� ������� ������� �� ��� ����� ����������� ��� ��������Disentangler Coarse‐graining [O h h h l hi l i

���� �� ������ ���

�� �� ��� �� ������ �� ����� �� ���� �� �� ������� �������� ���� �� �� ���� ��

������� ������ ��� �� �� ������ �� �� ���� ���� ��� ������ ���� ��� ���� ���� ����

�� ����� �� ���� �� �� �������� �� ������ � �� �� �� ����� ������������ �� ��� ����� �

Coarse graining

Fig taken from B. Swingle 0905.1317

[Other approaches to holographic lattices: e.g.  Kachru‐Karch‐Yaida 09,  Lee 10]

Page 33: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

⑥ Conclusions

• The entanglement entropy (EE) is a useful bridge between gravity and cond mat physics [ f S hd ’ t lk]between  gravity and cond‐mat physics. [cf. Sachdev’s talk]

Gravity                Entanglement Cond‐mat.

systemsμνg Area≈AS Ψy

• EE can be a universal quantity for holography in

μ A

• EE can be a universal quantity for holography in general spacetimes.  

[ h l h i fl Li TT 10[e.g.  holography in flat space: Li‐TT 10 

⇒highly entangled and non‐local gravity dualAdS Lorentzian wormholes: Fujita‐Hatsuda‐TT 11AdS Lorentzian wormholes:  Fujita Hatsuda TT 11

⇒The EE between two boundaries are actually vanishing.  ]

Page 34: and its New DevelopmentsStrings 2011@Uppsala, July 1 Holographic Entanglement Entropy and its New Developments Tadashi Taka yyganagi (IPMU, the University of Tokyo) Thanks to my collaborators:

• EE is non‐zero even for pure states (cf. thermal entropy).

⇒ A quantum order parameter at zero temp⇒ A quantum order parameter at zero temp.e.g.  Useful for BH formation = Thermalization (quantum quench)

• We proposed a holographic dual of BCFT. 

⇒ Here again HEE played an important role. 

⇒ This holography can also be useful in AdS/CMT⇒ This holography can also be useful in AdS/CMT.e.g.   Edge states of QHE, Topological Insulators  ?

A h l hi SC l li d b d i ?Any holographic SC localized on boundaries ?

Non‐equilibrium systems with boundaries ?

: