and Characterization of Based Polymeric Magnesium...

download and Characterization of Based Polymeric Magnesium ...digitool.library.mcgill.ca/thesisfile32287.pdf · Fabrication and Characterization of ... supraconductivité. Les résultats des

If you can't read please download the document

Transcript of and Characterization of Based Polymeric Magnesium...

  • FabricationandCharacterizationof

    EthylcelluloseBasedPolymericMagnesium

    DiborideSuperconductingTapes

    By

    YingLingLin

    DepartmentofMiningandMaterialsEngineering

    McGillUniversity,Montral,Qubec,Canada

    August2008

    AthesissubmittedtotheFacultyofGraduateStudiesandResearchinpartial

    fulfillmentoftherequirementforthedegreeofMasterofEngineering

    YingLingLin,2008

  • ABSTRACT

    i

    ABSTRACT

    Magnesiumdiboridewas found tobeasimple intermetallicsuperconductor in2001with

    the highest critical temperature to date at 39 K. Following this discovery thousands of

    studies have been conducted into the synthesis andmodification of this simple binary

    compound.Additionally,magnesiumdiboridehasbeenstudied inordertounderstandthe

    fundamental physics of superconductivity. However, implementation of commercial

    applicationshasbeenlimitedduetotheassociateddifficultyofproduction.Thecompound

    itself is relatively cheap toproducehowever, standardpowderintubemethods forwire

    production require multiple steps and could prove to be difficult to incorporate into

    automatedproduction.

    In this thesis project, twophase superconductor tapeswere produced by blending high

    puritymagnesiumdiboridepowderwithaliquidethylcellulosebasedpolymericbinderand

    simply leaving them to dry. Shaping the tapes required a simple cutting tool and some

    peeling from the flexible aluminium substrate. The objective was to produce robust,

    superconductive coatings which can potentially be shaped into any geometry including

    wiresandtapeswithoutnecessitatingsinteringandpressingstepsforeventualcommercial

    applications.Thetransitiontemperatureaswellasthecriticalfieldsweredeterminedusing

    electrical transport and magnetization measurements. Fouriertransform infrared

    spectroscopyusingaphotoacousticcellwasusedtodeterminethenormalstatevibration

    modes of the two main components,MgB2 and ethylcellulose, in the superconducting

    tapes.

    All samples producedwith this newmethodwere found to be superconductive. Results

    from transport measurements in normal atmosphere (1000 mbar) and magnetization

    measurementsrevealedatransitiontemperatureof37.5K0.7K.Thecriticalcurrentand

  • ABSTRACT

    ii

    criticalcurrentdensitywerevery lowforallsamples,measuredatmosttobe4.21x103A

    and1.85x101A/cm2.Theuppercriticalmagneticfieldat4.2Kwasashighas6.38Tforthe

    besttapesandthe lowercriticalmagneticfieldwas0.27T.Thetransportpropertieswere

    foundtobestronglydependentonthepressureoftheheliumatmospheresurroundingthe

    samples.Thenormalresistanceimprovedatlowpressure.

    Thesetapes,producedusingawetanddrymixingmethod,weresuperconductiveandeasy

    to produce and demonstrate that superconductivity persists in a composite twophase

    material. However, the low critical current density points to the presence of many

    Josephson junctions. No vortexmotionwas observed and implies strong pinning forces

    probablyduetothepolymercomponentwhichrestrictsvortexmotion.

  • RSUM

    iii

    RSUM

    Le diboride de magnsium a t dcouvert comme tant un simple supraconducteur

    intermtalliqueen2001avec laplushaute tempraturede transitiondatede39K.En

    raisondesahautetempraturedetransition,denombreusesrecherchesonttfaitessur

    la synthse et la modification de ce compos binaire et pour mieux comprendre les

    principes fondamentauxde lasupraconductivit. Lecomposnestpascher;parcontre,

    lesapplicationscommercialestant limites ladifficultde la facilitdeproduction, les

    mthodes de production courantes, dont la poudre en tube, ncessitent des tapes

    multiplesetpourraienttredifficilesintroduiredanslaproductionautomatise.

    Dansceprojetdethse,desrubanssupraconducteursdedeuxphasesonttproduitsen

    mlangeant la poudre de diboride de magnsium de haute puret avec un liant

    polymriqueenformeliquidebasedthylcelluloseetpuisenlaissantscher.Lamiseen

    formedesrubanssefaitsimplementencoupantavecunustensileetunetapedcaillage

    du substrat daluminium. Lobjectif a t de produire des couchages supraconducteurs

    robustesavecunpotentieldemiseenformedansnimportequellegomtriencessaire,

    incluant fil ou ruban, sans les tapes de frittage et compression traditionnels pour des

    applicationscommercialesventuelles.Latempraturedetransitionatdtermine lors

    dexpriencesde transportlectriqueetdaimantation.Laspectroscopie linfrarougede

    transforme de Fourier avec accessoire photo acoustique a t utilise pour la

    dterminationdesmodesdevibrationdesdeuxcomposants,soitlediboridedemagnsium

    etlthylcellulosedanslesrubanssupraconducteurs.

    Tous les chantillons produits par cette nouvelle mthode ont montr de la

    supraconductivit. Les rsultats des expriences de transport lectrique en atmosphre

    normal (1000mbar) et des expriences daimantation ont dtermin la temprature de

  • RSUM

    iv

    transition tant de 37.5 K 0.7 K. Le courant critique et la densit de courant critique

    dterminssontcependanttrsbas,4.21x103Aand1.85x101A/cm2,respectivement.Des

    champs critiques infrieurs et suprieurs, 4.2 K, de 0.27 T et jusqu 6.38 T,

    respectivement,onttobservs.Lespropritsde transportlectriquessontcependant

    trs dpendantes sur leffet de pression de lhlium atmosphrique qui entoure les

    chantillons.Larsistancenormalesestamliorebassepression.

    Ces rubans, produits par une mthode de mlange de composs humides et secs,

    supraconducteursetfacilesfabriquerdmontrequelasupraconductivitpersistedansun

    matrieldeuxphases.Cependant,ladensitdecourantcritiquebassesuggrelaprsence

    de plusieurs jonctions de Josephson. Lemouvement de vortex na pas t observ et

    impliquequedepuissantspointsdancrageprobablementdusaucomposantpolymrique

    quirestreignentlemouvementdevortextprsents.

  • ACKNOWLEDGEMENTS

    v

    ACKNOWLEDGEMENTS

    Id liketothankmywiseand imaginativesupervisors,ProfessorMihribanPekguleryuzand

    ProfessorMichaelHilke.IthankMihribanformentoringmeforthesecondtimeandnever

    ceasing toencouragemeandmake time formewhen Ineededguidanceandadviceand

    historylessonsofthefareast,whennecessary;shehasbeenbothasupervisorandagood

    friend.IthankMichaelforhisunendingsearchtomakesenseoftheseeminglynonsensical,

    patienceandhishighqualitylowtemperaturelabandequipment.

    I thank the lightmetals researchgroup includingMr.PierreVermette,whoseknowledge

    andexperiencehavehelpedtheprojectrunsmoothly,Erol,Xin,Mert,ElviandAna.Aswell,

    Id liketothankDr.MirelaBarsanandPetrFiurasek intheChemistrydepartmentfortheir

    help and access to theirATR FTIR spectroscope.A completepictureof the FTIR aspect

    couldnotbepossiblewithoutthehelpofDr.SamirElouatikatlUniversitdeMontralfor

    hishelpandpatiencewithRamanspectroscopyandPAFTIR.

    Iwould also like to thankMichaels research group including Sophie andAlistairBrown

    Armstrongandforwelcomingintotheirgroup.IdalsoliketothankProfessorDominicRyan

    and Ph.D. candidate Chris Voyer for access to their essential lab, help, patience and

    guidancewithmagnetizationexperiments.

    MydeepestgratitudegoestoPh.D.candidate,JosianneLefebvre,forshowingmeintheins

    andouts,valveopeningsandclosings,analogiesofthelowtemperaturecondensedphysics

    labandforherunendingpatience,helpandsupervision,herhelpacceleratedmyprogress

    throughthisvery interdisciplinaryprojectand itwouldnothavebeenpossibleto learnso

    muchsofastandconductexperimentsofsuchqualitywithouther.

  • ACKNOWLEDGEMENTS

    vi

    IndustrialhelpwasgivenbyDowChemicaland theNationalResearchCouncilAerospace

    Manufacturing Technology Centre and I thank them as they helped explore different

    production routes.Aswell,DoctorGeorgeVanderVoortatBuehler Inc.helpedmegeta

    clearpictureofthedifficulttoprepareMgB2particlesthroughhismetallographyexpertise

    atBuehler.

    Iwouldalsoliketothankmygoodfriends,ErolOzbakir,GenellTongeandAnnaLabarias,for

    theirsupportandwhohaveenduredmyrantingandravingsduringcrunchtimes.Lastlyand

    hardly leastof all, Id like to thankmyparents for their support, readymademeals and

    laundryservicewhenthingsgottoobusy.

  • TABLEOFCONTENTS

    vii

    Table of Contents

    Chapter1INTRODUCTION........................................................................................................1

    1.1Superconductors.............................................................................................................1

    1.2MagnesiumDiboride.......................................................................................................3

    Chapter2THEORETICALBACKGROUND...................................................................................6

    2.1SuperconductorMaterials...............................................................................................6

    2.2MagnesiumDiboride.......................................................................................................8

    2.3BackgroundTheory.......................................................................................................12

    2.3.1SuperconductivityHistoryofDiscoveries............................................................12

    2.3.2MeissnerOchsenfeldEffect...................................................................................14

    2.3.3ElectrodynamicsofSuperconductivityandtheLondonEquation.........................15

    2.3.4ThermodynamicsofSuperconductivity,GinzburgLandauTheory........................16

    2.3.5BardeenCooperSchrieffer(BCS)Theory...............................................................17

    2.3.6Shubnikov(Mixed)StateinTypeIIsuperconductors............................................20

    2.3.7VortexPinning........................................................................................................22

    2.3.8SingleandDoubleEnergyGaps..............................................................................24

    2.3.9JosephsonJunctionEffectandJosephsonJunctionArrays....................................26

  • TABLEOFCONTENTS

    viii

    2.3.10DirtySuperconductors..........................................................................................30

    2.4BackgroundonPolymers...............................................................................................31

    2.4.1BackgroundonConductivePolymers.....................................................................31

    2.4.2BackgroundonEthylcelluloseBasedBinder..........................................................32

    2.5Summary.......................................................................................................................35

    Chapter3ExperimentalMethod............................................................................................37

    3.1Materials........................................................................................................................37

    3.2SampleFabrication........................................................................................................38

    3.2.1PreliminarySampleProductionRoute...................................................................38

    3.2.2Polymer/MgB2Tapes..............................................................................................41

    3.3MaterialsCharacterizationofCoatings.........................................................................43

    3.3.1Stereoscopy............................................................................................................43

    3.3.2FieldEmissionGunScanningElectronMicroscope(FEGSEM)...............................43

    3.3.3XrayDiffraction......................................................................................................44

    3.4ElectricalContacts.........................................................................................................44

    3.4.1FourProbeTransportMeasurements....................................................................45

    3.4.2MagnetizationExperiments...................................................................................55

  • TABLEOFCONTENTS

    ix

    3.5FourierTransformInfraredandRamanSpectroscopy.................................................56

    Chapter4RESULTSANDDISCUSSION.....................................................................................57

    4.1StereoMicroscopyandFieldEmissionGunScanningElectronMicroscopy................57

    4.1.1EnergyDispersiveSpectrometry............................................................................59

    4.2XRayPowderDiffraction..............................................................................................61

    4.2.1XRDofMgB2powder..............................................................................................61

    4.2.2XRDofMgB2/PolymerFilm.....................................................................................63

    4.3SuperconductorCharacterization.................................................................................64

    4.3.1PressureDependence.............................................................................................65

    4.4SuperconductiveTransportProperties.........................................................................67

    4.4.1CriticalTemperature,Tc..........................................................................................67

    4.4.2MagnetizationMeasurements...............................................................................87

    4.5RamanandFourierTransformInfraredSpectroscopy.................................................91

    4.6Synopsis.........................................................................................................................98

    Chapter5CONCLUSIONS......................................................................................................100

    Chapter6RECOMMENDATIONSFORFUTUREWORK..........................................................103

    6.1Mechanicaltesting......................................................................................................103

  • TABLEOFCONTENTS

    x

    6.2SuperconductiveCharacterization..............................................................................103

    6.3XRD,FTIRandRamanSpectroscopy..........................................................................104

    6.4Conductivepolymer,polyacetylene,variation...........................................................105

    6.5Dopants.......................................................................................................................105

    REFERENCES.....................................................................................................................118

  • LISTOFFIGURES

    xi

    List of Figures

    Figure 1.1. Superconductor commercial applications showing (a) Philips 3T Achieva, high

    fieldclinicalMRIscannerand(b)JRMaglevhighspeedtraininJapan...................................1

    Figure1.2.Publishedpicturesshowing(a)MgB2wiresastheyappearafterremovalfromthe

    tantalum tube and (b) SEMmicrograph of theMgB2wire compared to boron precursor

    filamentintheuppercorner....................................................................................................4

    Figure2.1.StructureofBSCCO.................................................................................................7

    Figure2.2.Representationofa)thecrystalstructureofMgB2andb)opticalmicrographof

    MgB2powderunderpolarizedlight..........................................................................................9

    Figure2.3.Publishedphasediagrams:a)CalculatedPhaseDiagramforBMgSystem(2004)

    andb)MgBphasediagramat4.5GPa(2003).......................................................................10

    Figure2.4.Criticalsurfaceofasuperconductorwithcriticaltemperature,carryingcapacity

    andmagneticfieldindicatedintheaxes................................................................................13

    Figure2.5.RepresentationofavortexcoregeneratedbyappliedmagneticfieldandtheBCS

    characteristiclength...............................................................................................................16

    Figure2.6.MagnetizationCurvefora)TypeIandb)TypeIISuperconductors....................20

    Figure2.7.Crosssectionofatype IIsuperconductorandthechangeasexternalmagnetic

    fieldisincreased.....................................................................................................................21

    Figure2.8.BTphasediagramsfortypeI(a)andtypeII(b)superconductors......................22

    Figure2.9.DoublebandgapsofMgB2...................................................................................26

  • LISTOFFIGURES

    xii

    Figure2.10.SchematicofaCooperpaircrossingaJosephsonjunctionfromlefttoright....28

    Figure2.11.Chemicalbondstructureofpolyacetylene.........................................................31

    Figure2.12.Chemicalbondstructureofcellulose.................................................................32

    Figure2.13.Chemicalbondstructureofethylcellulose.........................................................33

    Figure2.14.Chemicalbondstructureofbutylcellosolveacetate.........................................33

    Figure2.15.LoadElongationCurvesforEthocelpolymers....................................................35

    Figure3.1ColdpressedMgB2/MgpelletimmersedinMg....................................................39

    Figure3.2.Pelletof90wt.%Mgto10wt.%MgB2ratioa)beforeandb)afterhotpressing.

    .................................................................................................................................................39

    Figure3.3LasermeltedBpasteonMgsubstrateshowingdifferentpasses.........................40

    Figure3.4.Wetpolymerbinderbeforeadditionofmetallicpowder....................................42

    Figure3.5.FourProbetransportmeasurementconfiguration..............................................45

    Figure3.6.Threetypesofcontactsused:a)layeredAgpaintandAgwiressolderedtoInb)

    AgpaintconnectedtoAgwiresandc)AgwiresconnectedtosemisolidpolymerMgB2tape.

    .................................................................................................................................................46

    Figure3.7.StereoscopicImageofSample102withfivecontactsattachedtopins14,12,4,

    10and9andaPtRTDwithtwobridgedpins(11and13)and(1and2)...............................46

    Figure3.8.Locationschosenwithrespecttotheendcontactsdepositedonthesampleand

    usedtominimizeerrorwhenmeasuringlength,widthandthickness..................................47

  • LISTOFFIGURES

    xiii

    Figure3.9.14pinspecimenholdershowing fourcontactsat10,4,2and13withbridged

    pins8and9and7and6forPtRTDconnections...................................................................48

    Figure3.10.Schematicinternalcomponentsoftheclosed3Hesystem................................49

    Figure3.11.Lowtemperaturephysics laboratorysetupshowingthedewardippingprobe

    (I),the3Hesystemdippingprobe(II),aLHedewar(III),magnet(IV),andresistancebridges

    (V)............................................................................................................................................50

    Figure 3.12. Schematic of the sourcemeter, sample and data acquisition system

    configurationfortemperaturesweeps..................................................................................51

    Figure3.13.Schematicof thesourcemeter,sample,dataacquisitionsystemconfiguration

    andmagnetic field source showingdirectionofvectorsas theypenetrate the sample for

    magneticfieldsweeps............................................................................................................53

    Figure3.14.Schematicofsourcemeters,sampleanddataacquisitionsystemconfiguration

    forcurrentsweeps..................................................................................................................54

    Figure 3.15. Dried coatings formagnetizationmeasurements a) pieces ofMgB2 polymer

    coatingsandb)piecesplaced intogelcapsandc)WetmixtureofMgB2andethycellulose

    polymerformagnetizationmeasurements............................................................................55

    Figure4.1.Au/PdSputterCoatedPolymerCoating...............................................................57

    Figure4.2.FEGSEMImageofthetopofanMgB2coating.....................................................58

    Figure4.3.FEGSEMImageofthebottomofanMgB2coating...............................................59

  • LISTOFFIGURES

    xiv

    Figure4.4.EnergydispersivespectrumofasquarerasterofMgB2polymercoatingsupto5

    keVwiththeKpeakslabelled..............................................................................................60

    Figure4.5.EnergydispersivespectrumofalargeareaofMgB2polymercoatingsupto5keV

    withtheKpeakslabelled.....................................................................................................61

    Figure4.6.XraydiffractionpatternofMgB2powdershowingthephasespresent.............62

    Figure4.7.XraydiffractionpatternofMgB2polymercoating..............................................63

    Figure4.8.Stereographsofsamplesa)64b)67andc)84.....................................................65

    Figure 4.9. Pressure effect on resistance of selected samples 64, 67 and 84 at room

    temperaturewithoutcooling.................................................................................................66

    Figure4.10.Stereographsofa)sample19andb)sample102..............................................68

    Figure4.11.Temperaturetracesofsample19inopenatmosphere.....................................69

    Figure4.12.Stereographsofsamplesa)26andb)111.........................................................71

    Figure4.13.Temperaturetraceforsample26duringthefirstcoolingcycle........................71

    Figure4.14.Magneticfieldsweepcurveforselectedsamples..............................................73

    Figure4.15.Magneticfieldsweepcurveofsample19undervacuum..................................74

    Figure4.16.Magneticfieldsweepforsample26...................................................................76

    Figure4.17.Magneticfieldsweepsforsample38usingdrivingcurrentsof0.3,1,3and10

    A............................................................................................................................................77

  • LISTOFFIGURES

    xv

    Figure 4.18. VI characteristic curve of sample 102 in liquid helium at 4.2 Kwith a 10x

    zoomed insection located inthe lowerrightcorner illustratingtheconstruction linesused

    todetermineIc........................................................................................................................80

    Figure4.19.VIcharacteristiccurvesofsample19ina)liquidheliumandb)undervacuum

    at4.2K....................................................................................................................................80

    Figure 4.20. VI curves for all samples tested under vacuum with the approximate

    temperaturemeasuredbythecryostatsCernoxRTD.Allcurvesrananticlockwise...........82

    Figure4.21.ZoomedinviewofthepreviousVIcurvesshowingmoreclearlysamples19,23,

    26and111undervacuumwith theapproximate temperaturemeasuredby thecryostats

    CernoxRTD.Allcurvesrananticlockwise,includingthetwolowestcurves........................82

    Figure4.22.VIcharacteristiccurveofsample26undervacuumat4.2Katzerofieldand2T

    magneticfieldwithallfourcurvesrunninganticlockwise....................................................84

    Figure4.23.MagneticfieldsweepofMgB2powderinethylcellulosepolymer.....................88

    Figure4.24.Magnetizationcurveshowingtheupperandlowercriticalmagneticfields.....89

    Figure4.25.TemperaturesweepofwetanddryMgB2/polymersamples............................90

    Figure 4.26. Raman spectra for ethylcellulose binder showing characteristic peaks under

    different operating conditions (dwell time, laser wavelength,magnification and percent

    power).....................................................................................................................................91

    Figure4.27.ATRFTIRspectrumforMgB2powder................................................................92

    Figure4.28.PAFTIRspectrumofethylcellulosebindershowingcharacteristicpeaks........93

  • LISTOFFIGURES

    xvi

    Figure4.29.PAFTIRspectrumofMgB2powdershowingcharacteristicpeaksfortherange

    of2000to450cm1.................................................................................................................94

    Figure4.30.PAFTIRspectrumofethylcellulosepolymerbinder,MgB2powderandcrushed

    MgB2polymercoating............................................................................................................96

    FigureA.1.Fitfor0to0.01662Z..........................................................................................106

    FigureA.2.Fitfor0.01662to0.08237Z...............................................................................106

    FigureA.3Fitfor0.08237to0.15605Z................................................................................107

    FigureA.4Fitfor0.15605to10Z.........................................................................................107

    FigureC.1.Magneticfieldtraceofsample15......................................................................113

    FigureC.2.Magneticfieldtraceofsample23......................................................................113

    FigureC.3.Magneticfieldtraceofsample38......................................................................114

    FigureC.4.Magneticfieldtraceofsample53......................................................................114

    FigureC.5.VIcurveofsample38atzerofield,1Tand2Tmagneticfields.......................115

    FigureC.6.VICurveofsample44atzerofield,1Tand2Tmagneticfields.......................115

    Figure D.1. ATR FTIT spectra ofwet (ethocelmixwet) and dry (dried ethocel) polymer

    binderandcomponents(cellosolve,terpineolandethocelstd45)..116

    FigureD.2. ATR FTIR spectra ofwet (ethocelmixwet) and dry (dried ethocel) polymer

    binder, MgB2 powder (MgB2 pwd) and dried MgB2/polymer coating (dried MgB2

    coating)...117

  • LISTOFTABLES

    xvii

    List of Tables

    Table1.1.CURRENTANDEMERGINGAPPLICATIONSOFSUPERCONDUCTORS......................2

    Table2.1.BASICPROPERTIESOFMAGNESIUMANDBORON..................................................9

    Table2.2.MATERIALPROPERTIESOFMgB2...........................................................................10

    Table2.3.LISTOFSUPERCONDUCTORPROPERTIESOFMgB2...............................................11

    Table2.4.GENERALPROPERTIESOFETHOCELSTANDARD45...............................................34

    Table3.1SUMMARYOFTHEMATERIALSUSEDTOPRODUCECOATINGS.............................38

    Table3.2.WEIGHTLOSSOFETHYLCELLULOSEPOLYMER(UPTO12DAYS)..........................42

    Table3.3.WEIGHTLOSSOFMgB2POLYMERCOATINGRECORDEDUPTO3DAYS...............43

    Table4.1. SUMMARYOFRESISTANCEANDRESISTIVITYOF SAMPLESBEFOREANDAFTER

    HIGHVACUUMPUMPING.......................................................................................................67

    Table4.2. SUMMARYOF TRANSITION TEMPERATUREANDWIDTHSOF SAMPLES19AND

    102..........................................................................................................................................69

    Table 4.3. GEOMETRIC INFORMATION ON SAMPLES 19 AND 102 USED IN OPEN

    ATMOSPHERETEMPERATURETRACES...................................................................................70

    Table 4.4. SUMMARYOF THE PROPERTIESOF SAMPLES 26 AND 111 ALL TAKENUNDER

    VACUUM.................................................................................................................................72

    Table4.5.UPPERCRITICALMAGNETICFIELD,Bc2,VALUESFORSELECTEDSAMPLESAT4.2K

    .................................................................................................................................................78

  • LISTOFTABLES

    xviii

    Table4.6.EXTRACTEDGINZBURGLANDAUCOHERENCELENGTHSFORSELECTEDSAMPLES

    .................................................................................................................................................78

    Table4.7DIMENSIONSOFSAMPLE19FORTWOCONTACTCONFIGURATIONS...................81

    Table 4.8. SUMMARY OF Ic AND Jc VALUES FOR SELECTED SAMPLES, * DENOTES LHE

    WHEREASIFNOTLABELLEDCORRESPONDTOVACUUMCONDITIONS.................................84

    Table4.9.IcRnPRODUCTFORSELECTEDSAMPLES,*DENOTESOPENATMOSPHERE(IFNOT

    LABELLEDCORRESPONDTOVACUUMCONDITIONS)............................................................85

    Table4.10.DIMENSIONSOFSAMPLE102FORTWOCONTACTCONFIGURATIONS..............86

    Table 4.11. WAVENUMBERS FOR ETHYLCELLULOSE AND MgB2 WITH EXPERIMENTAL

    WAVENUMBERSDETERMINEDINTHECRUSHEDMgB2/POLYMERTAPESPECTRUM...........95

    Table 4.12 PUBLISHED AND EXPERIMENTALWAVENUMBERSOF ETHYCELLULOSE BINDER

    AND CRUSHED MgB2/POLYMER TAPE DETERMINED FROM FTIR AND RAMAN

    SPECTROSCOPY.......................................................................................................................97

    Table4.13.SUMMARYOFTHESUPERCONDUCTORPROPERTIESOFMgB2POLYMERICTAPES

    .................................................................................................................................................98

    TableB.1MgB2POWDERPEAKLIST.....................................................................................108

    TableB.2IDENTIFIEDPATTERNSLISTOFMgB2POWDER....................................................108

    TableB.3MgB2POWDERANDPOLYMERBINDERPEAKLIST...............................................109

    TableB.4.IDENTIFIEDPATTERNSLISTOFMgB2POWDERANDPOLYMERBINDER.............109

  • LISTOFTABLES

    xix

    TableB.5.MgB2PEAKLIST,REFERENCECODE000381369................................................110

    TableB.6.MgOPEAKLIST,REFERENCECODE000040829.................................................110

    TABLEB.7.MGPEAKLIST,REFERENCECODE000350821.................................................111

    TABLEB.8.CPEAKLIST,REFERENCECODE000261081.....................................................112

  • CHAPTER1INTRODUCTION

    1

    Chapter 1 INTRODUCTION

    1.1 Superconductors

    Superconductors are fascinating materials not yet fully understood but gaining ever

    increasing use (Table 1.1). Superconductors find theirmain uses inmagnetic resonance

    imaging devices and highspeed trains. Magnetic resonance imaging (MRI) devices in

    medicineproducethehighmagneticfieldsneededtogeneratedetailedthreedimensional

    imagesofthehumanbodyandmakeuseofsuperconductors(Figure1.1a)[1].Currently,a

    prototypemagneticlevitatingtrainutilizingsuperconductorshasbeenconstructedinJapan

    (Figure1.1b)[1]).Thecurrentrecordforfastesttrain,heldbyamagneticlevitatingtrain,is

    581km/hour.

    (a) (b)

    Figure1.1.Superconductorcommercialapplicationsshowing(a)Philips3TAchieva,highfieldclinicalMRIscannerand(b)JRMaglevhighspeedtraininJapan.

    The largehadroncollider located inCERN,Switzerland, isa largescaleparticleaccelerator

    whichhasbeenscheduledtocomeonlineinAugustof2008andmeasures27kilometresin

    diameterandutilizesthemostnumberofsuperconductorsintheworldandcanaccelerate

    particlesuptoenergiesof1,150TeV(1.15x1015eV).Superconductorscanalsobeusedfor

  • CHAPTER1INTRODUCTION

    2

    applications includingkineticenergystoragedevices (flywheels)andconductors inenergy

    powergrids.Theabilityofsuperconductorstoconductelectricitywithzeroresistancecan

    beexploited in theuseofelectrical transmission lines.The JosephsonEffectwhich is the

    tunnelling of a pair of electrons between superconductors separated by an insulating

    barrieristhebasisoftheJosephsonjunctionwhichcanbeusedasswitchingdevices(e.g.in

    computermicrowavedetectors,magnetometersandSQUIDS).Table1.1 listspossibleand

    currentapplicationsofsuperconductorsforvariousscientificfields.

    Table1.1.CURRENTANDEMERGINGAPPLICATIONSOFSUPERCONDUCTORS

    Field Application Current Emerging

    Medical magneticresonanceimaging x biotechnicalengineering X

    Electronics

    SQUIDs x transistors x JosephsonJunctiondevices x circuitryconnections x particleaccelerators x sensors x

    PowerGeneration

    Motors XGenerators XEnergyStorage XTransmission XTransformersandInductors x Fusion X

    Transportation Magneticallylevitatedvehicles XMarinepropulsion X

    Industrial

    separation x magnets x sensorsandtransducers Xmagneticshielding X

    The limiting factor for the widespread use of conventional lowtemperature

    superconductors(LTS),suchasniobiumtinandniobiumtitanium intermetallics isthecost

    ofcoolingthemtoaround4.2Kwith liquidheliumtechnology.Thekey factor thatwould

  • CHAPTER1INTRODUCTION

    3

    increaseapplicationsof superconductors is increasing the critical temperature. With the

    adventofhightemperaturesuperconductors (HTS)andthediscoveryofmaterialssuchas

    mercurybariumcalciumcopper oxide (HgBa2Ca2Cu3O8), which are superconducting at

    temperaturesashighas134K,applicationscouldbemorefeasible.Liquidnitrogen(77K)

    cooled superconductors have provided industry with more flexibility to utilize

    superconductivityascomparedtoliquidheliumsuperconductors.

    1.2 Magnesium Diboride

    Thousands of elements and compounds have been found to exhibit superconductive

    behaviour.Amongthese,isthesimple intermetalliccompound,magnesiumdiboride,from

    hereonreferredtoasMgB2.TheadvantageofMgB2 isanoptimalcombinationofsimple

    crystal structure and a medium transition temperature. It is also a surprising

    superconductormaterialsinceitismetallic.

    Japanesescientistsdiscoveredin2001thatMgB2issuperconductiveatupto39K[2],hence

    MgB2 joins a small group ofmaterials known as lowtemperature superconductors (LTS)

    includingniobiumtin(Nb3Sn)discoveredinthe1960s.Butwhileniobiumtinisexpensiveto

    produceandmustbekeptcooledusingcostly liquidhelium,whichhasatemperature just

    aboveabsolutezero4.2K,magnesiumdiborideoperatesatamuchhighertemperature

    (39Kvs.18K)thanmanyothermagnetmaterials.Althoughthetransitiontemperatureis

    notashighasliquidnitrogentemperature,advancesincryogenictechnologies,forexample

    cryocoolers operating at 20 K, sufficiently cool and promote the future use of MgB2

    superconductors.Recently,acryogenfree,MgB2basedopenatmospheremagnethasbeen

    developed foruse inMRIandoperatesat20Kwithcryocoolerswhosecoolingpower is

    derivedfromelectricalpower[3].TheMgB2MRIdevice iscapableofgeneratingmagnetic

    fieldsupto0.5Teslaandutilizes18kmofMgB2superconductingwires.

  • CHAPTER1INTRODUCTION

    4

    The poormechanical properties of bulk and brittleMgB2mean that currently, themost

    practical and widely studied form of thematerial is in a powderintube configuration.

    StudieshavebeendoneonsingletubesofMgB2containedinashellofsomesheathmetal

    orseveraltubesspacedequallyapartandsetinanarray.Ametal/polymercoatedwirehas

    not been studied yet however polymers have been used inmelt suspension spinning of

    MgB2wiresasafirststepinthetechniqueofsingletubes.

    (a)(b)

    Figure1.2.Publishedpicturesshowing(a)MgB2wiresastheyappearafterremovalfromthetantalumtubeand(b)SEMmicrographoftheMgB2wirecomparedtoboronprecursorfilamentintheuppercorner.

    MgB2 iscurrentlyonlyavailable inapurepowderform.MgB2powdercanbesynthesized

    bysinteringstoichiometricamountsofMg(99.9%)andfinecrystallineBpowder(99.5%

    100m) inTatubesandsealedattheendsunderapartialpressureofArandexcessMg

    [4].MgB2wireshavebeen synthesized fromboron fibres (TextronSystems)withexcess

    magnesium powder placed in tantalum tubes, under partial pressure of Ar, and then

    sealing the tubes at both ends, Figure 1.2. The Ta tubes are then placed in quartz

    ampoules,areagainsealed,with~175mbarofAr,andheated inabox furnaceat950C

    [5]. After reaction, the quartz tubes are quenched in cold running water. S. Jin and

    coworkersofBellLabshavefabricatedironcladMgB2byswagingthepowderinFetubes

  • CHAPTER1INTRODUCTION

    5

    andthensintering.Fromdirectmeasurementsafterremovalofthecladding,ahighcritical

    currentdensity,Jc,wasconfirmedat85,000A/cm2withatransitiontemperature,Tc,of39

    K and the formability of Fewas an advantage over Ta in these studies [6]. There are

    ongoing efforts (Hyper Tech Research Inc.) to develop lowcost long length (50100m)

    MgB2superconductorwireformedical(MRI)andpowerutilityapplications.

    Thisthesisprojectwillfocusonanewcompositeformofthesuperconductivematerial:that

    ofmagnesiumdiboridepolymercoatings.Thesepolymersuperconductivecompositesare

    not limited to coatingsbut canbe shaped intowireand tape (thick coatings) forms.The

    majorfocuswillbetodetermineifMgB2powdersconsolidatedinapolymerbinder(which

    doesnotexhibitsuperconductivity)canmaintainsuperconductivebehaviour.

  • CHAPTER2THEORETICALBACKGROUND

    6

    Chapter 2 THEORETICAL BACKGROUND

    BACKGROUND ON SUPERCONDUCTOR MATERIALS, MAGNESIUM DIBORIDE AND THEIR

    APPLICATIONS

    2.1 Superconductor Materials

    Thefirstsuperconductormaterialdiscoveredwaspurifiedmercuryandwasdiscoveredby

    HeikeKamerlinghOnnesandhisdoctoral student,GillesHolst, in1911 followingOnnes's

    successful liquefactionofhighpurityheliumgasobtainedfrommonazitesand in1908[1].

    The experiment showed that for certainmetals in very narrow temperature ranges the

    value of the resistance becomes zero. The transition to superconductivity occurs very

    sharplyascontrastedtoagradualdecreasetoa limitingresidualvalue,asseen innormal

    metals.

    Presently, several superconductive materials exist and they can be classified into the

    following general categories: pure metals (Hg), intermetallics (Nb3Sn), high critical

    temperatureceramics(YBa2Cu3O(7x))and,organicmolecules.Certainorganicmoleculesthat

    exhibitsuperconductivityincludesinglewalledcarbonnanotubes,aswellasfullerene,with

    a complex spherical structuremade up of 60 carbon atoms arranged in hexagons and

    pentagons[7,8].Surprisingly,themostefficientnormalconductorsincludingCu,AgandAu

    havenotbeen foundtobesuperconductive.Electronsmoving ingoodconductorsdonot

    interactmuchwith the lattice, this ispreciselywhy theyaregoodconductors,so there is

    notenoughinteractionbetweentheelectronsinagoodconductorandthelatticevibrations

    (phonons) to induce strongelectronphonon interactionsnecessary to create theCooper

    pairs, which are responsible for the superconducting behaviour in conventional

    superconductors.

  • CHAPTER2THEORETICALBACKGROUND

    7

    The impediment to thewide use of superconductors is the requirement for low (liquid

    helium) temperature conditions.With the advent of hightemperature superconductors

    (HTS) and the discovery of materials including mercurybariumcalciumcopper oxides

    (HgBa2Ca2Cu3O8),which are superconducting at temperatures as high as 134 K, practical

    applications became more feasible. Liquid nitrogen cooled copper oxide based

    superconductors havemade possible wider use of superconductors compared to liquid

    heliumcooledsimplersuperconductors.

    High temperature superconductors have their own

    technical challenges.HTS are brittle ceramicmaterials

    withcomplexcrystalstructuresinwhichelementssuch

    asyttriumandbarium,orlanthanumandstrontium,are

    sandwiched between layers of copper and oxygen

    atoms. This layered atomic structure causes the

    materials to have highly anisotropic physical and

    superconductingproperties.Itispossibletoformsingle

    crystals, thin films or polycrystalline structures from

    these materials but their properties generally

    deterioratewiththelengthofthewireorsufferbreaks

    duetothebrittlenatureoftheceramic;also,grains in

    HTSimpedesupercurrentflow.Inordertobeusefulfor

    largescaleapplications,longflexiblewiresarerequired

    buttheseareoftendifficulttoproduceand/oruse.

    Figure2.1.StructureofBSCCO.

    There are a number of manufacturing methods for HTS (i) thin epitaxial films of

    superconductormaterialgrownon long flexiblesubstrates,or (ii)polycrystalline filaments

    of superconductor supported in ametallic wirematrix, which need to ensure that the

    supercurrentswill flowadequately fromgraintograin.Bismuthstrontiumcalciumcopper

  • CHAPTER2THEORETICALBACKGROUND

    8

    oxides (BSCCO), Bi2Sr2Ca2Cu3O10, and Bi2Sr2CaCu2O8, Figure 2.1, have been successfully

    textured (grainaligned) as wires [9]. However, more work is required to develop

    superconductors with the combined optimum characteristics of LTS (simple crystal

    structures)andHTS(hightransitiontemperatures).

    The possible discovery of room temperature superconductorswould bring deviceswith

    superconductor components into everyday life as theywould start to replace even the

    mostefficientmetal conductors. InMarchof2008,amaterial superconductiveat185K

    withaproposedchemicalformulaof(Sn1.0Pb0.5In0.5)Ba4Tm5Cu7O20+hasbeendiscovered[8]

    butonly timewill tell if theseHTSmaterialswillbesufficientlyrobust to findcommercial

    applications.

    2.2 Magnesium Diboride

    As themolecular formula states,MgB2s HCP structure is composed of a ratio of one

    magnesiumatomtotwoboronatomsandthebondingbetweentheatomsisamixofionic,

    covalentandmetallicbonds[10].ThepropertiesoftheseparateelementsaregiveninTable

    2.1.Itsstructureissimplehexagonalclosepacked,AlB2typewithspacegroupP6/mmm.

    Structurally, magnesium diboride is a simple intermetallic compound. The three

    dimensionalstructureoftheunitcellisthatofahexagonalclosepackedsystemcomprising

    of alternating layersofMg andB. It is represented in Figure 2.2 a) [11].And an optical

    micrographofMgB2powder ispresented inFigure2.2b) [12].Thiscompoundwhichwas

    first synthesized in the 1950s was discovered to be superconductive by a team of

    researchersledbyJunAkimitsuin2001[11]andthus,initiatedaworldwideeffortintothe

    studyofthissimple intermetallicsuperconductorwithahighTcfor itsclass.Followingthis

    discovery,researchersaroundtheworldhavestudiedandpublishedkeyfindings.

  • CHAPTER2THEORETICALBACKGROUND

    9

    Table2.1.BASICPROPERTIESOFMAGNESIUMANDBORON

    Properties Boron MagnesiumAtomicnumber 5 12Valence 3+ 2+Atomicweight(amu) 10.81 24.31Densityat293K(g/cm3) 2.34 1.738Crystalstructure rhombohedral HCPAtomicRadius(nm) 0.085 0.160AtomicVolume(cm3/mol) 4.6 13.97MeltingPoint(K) 2300 1378HeatofFusion(Kj/mol) 50.20 8.954HeatofVaporization(kJ/mol) 489.70 127.40Hardness(mohs) 9.5 2ThermalConductivity(J/msecdeg) 27.4 156ElectricalResistivityat20C(m) 1.5104 43.9x109

    (a) (b)

    Figure2.2.Representationofa)thecrystalstructureofMgB2andb)opticalmicrographofMgB2powderunderpolarizedlight.

    Thecompoundformsabove800Cfromelementalpowders;thecalculatedMgandBbinary

    phase diagram, Figure 2.3 a) [13], is presented and is an improvement over the first

    proposedphasediagramfrom1988[14]byA.A.NayebHashemiandJ.B.Clark.Thephase

    diagramandtheformationoftheMgB2phaseisfurthereffectedbypressureanditsMgB

    phasediagramunder4.5GPaofpressureispresentedinFigure2.3b)[15].Thematerialhas

  • CHAPTER2THEORETICALBACKGROUND

    10

    been studied extensively andmost researchers have produced the compound bymixing

    stoichiometricamountsofBandMg (inslightexcess) ina reducingatmosphereorunder

    inertgas.The selectedmaterialpropertiesof thebulkMgB2 intermetallic compound are

    presentedinTable2.2.

    a) b)

    Figure2.3.Publishedphasediagrams:a)CalculatedPhaseDiagramforBMgSystem(2004)andb)MgBphasediagramat4.5GPa(2003).

    Table2.2.MATERIALPROPERTIESOFMgB2

    Property ValuesMeltingTemperature(C) Tm =1073MolecularWeight(g/cm3) Wm=45.93Density(g/cm3) 2.57Hardness(kg/cm2) 17002800Nanohardness(GPa) 35.60.9ElectricalResistivityat20C(m) 1.5x106

    PreviousworkwasconductedonpressedMgB2powdersinpelletformusinghighpressure

    sintering[16]orintubesusingthewellknownpowderintube(PIT)process,ineitherwire

    [17,18]ortape[19]geometries.MgB2powdershaveonlybeenusedthus far inwireand

    tapegeometriesmadeofeitherstainlesssteel[20,21],silver[17]orcopper[17,20,22].PIT

    tapes aregenerally rolled tubes containingMgB2 and are shapedduring compaction.Ni

    sheathed tapespropertieshavebeen studiedwith10%vol.of Inasaconductivebinder

  • CHAPTER2THEORETICALBACKGROUND

    11

    [23,24] to link the individualparticles togetherhoweverno researchhasbeen foundon

    MgB2powderswithpolymerorsolgel(glass)bindersandourworkwillfocusonthisaspect.

    Thinfilmshavealsobeenproducedbychemicalvapourdeposition[25].

    Table2.3.LISTOFSUPERCONDUCTORPROPERTIESOFMgB2

    Parameter ValuesCriticaltemperature Tc=3940K

    Hexagonallatticeparametersa=0.3086nmb=0.3524nm

    Theoreticaldensity =2.55g/cm3Pressurecoefficient dTc/dP=1.12K(GPa)

    1Carrierdensity nS=1.72.8x10

    23holescm3Isotopeeffect T=B+Mg=0.30+0.02

    ResistivitynearTc (40K)=0.416cmResistivityratio RR=(40K)/(300K)=127

    Uppercriticalfield*Hc2||ab(0)=1439THc2||c(0)=224T

    Lowercriticalfield* Hc1(0)=2748mTIrreversiblefield* Hirr(0)=635T

    BCSCoherencelengthsab(0)=3.712nmc(0)=1.63.6nm

    Penetrationdepths (0)=85180nmEnergygap (0)=1.87.5meV

    Debyetemperature D=750880K

    CriticalcurrentDensities

    Jc(4.2K,0T)>107Acm2

    Jc(4.2K,4T)=106Acm2

    Jc(4.2K,10T)>105Acm2

    Jc(25K,0T)>5x106Acm2

    Jc(25K,2T)>105Acm2

    Themostcloselyrelatedexampleofpolymerandsuperconductorpowderwirefabrication

    is that of suspension spinning. Suspension spinning is a wellknown polymer thread

    productionmethod.IntworecentstudiesonsuspensionspinningforMgB2wirefabrication,

    oxidizedwireswereproduced.Theprocedure involvedusing crushedMgB2powder finer

    than350meshwhichwassuspended inapolymericmixedpoly (vinylalcohol)solutionof

    dimethylsulfoxide and hexamethylphosphoric triamide [26]. The viscous solution was

    extrudedasafilamentintoaprecipitatingmediumofmethylalcoholandcoiledonadrum.

  • CHAPTER2THEORETICALBACKGROUND

    12

    Theresultingfilamentwascutandheatedat500Cfor30minutestoevaporatethevolatile

    compounds. The sampleswere thenuniaxially pressedunder a forceof 200 kg/cm2 and

    thenrolledintoanironsheetcontainingapelletofMgandBpowder.Varioussampleswere

    sealedinquartztubesandheatedatvarioustemperatures.

    Thismethodwas used to carbon dopeMgB2 aswell [27]. These same researchers have

    foundthatthepolymericsuspensionspunsamplesshowednodeteriorationoftheTcand

    an increased critical current Jc. However this method requires several steps and the

    suspensionspinningrequirescompleteevaporationofthepolymerandseveralheatingand

    pressingstepsinmetaltubingresultinginafinalproductsimilartothoseproducedbythe

    PIT method. Many studies have been undertaken to determine the superconductivity

    propertiesofMgB2.Table2.3isasummaryofthemostimportantproperties[28]however

    these stated propertiesmay not taken into account the double band gap nature of the

    materialdiscussedlater.

    2.3 Background Theory

    2.3.1 Superconductivity History of Discoveries

    Followingthediscoveryofperfectelectricalconductivitybelowacriticaltemperature,Tc,in

    1911, in 1933,WaltherMeissner and RobertOchsenfeld discovered the second defining

    characteristic of a superconductor, that they exhibit perfect diamagnetism behaviour by

    beingabletocompletelyexcludeandexpelmagneticfieldfromitsinterior.Followingthese

    two surprisingdiscoveries, several important theorieshavebeenproposed toexplain the

    puzzlingphenomenabothmicroscopicallyandmacroscopically.Macroscopically, the topic

    was investigatedandexplained fromanelectrodynamicspointofviewbyFritzandHeinz

    Londonin1935andfromathermodynamicspointofviewbyVitalyLazarevichGinzburgand

    LevDavidovichLandau in1950.Microscopically,JohnBardeen,LeonNeilCooperandJohn

    RobertSchrieffertogether in1957developedthemostcomplete,unifyingtheorytodate.

  • CHAPTER2THEORETICALBACKGROUND

    13

    Furtherdiscoveriescamein1957withthevortexstateintypeIIsuperconductors,inwhich

    magneticfluxisallowedintothesuperconductorbutonlyinaquantizedform.Lastbutnot

    least, tunnelling currents between two superconductors separated by a non

    superconductingbarrierpredictedin1962byBrianD.JosephsonandtermedtheJosephson

    effect conclude some of themost notable aspects of the phenomenon first discovered

    nearlyacenturyago.

    Figure2.4.Criticalsurfaceofasuperconductorwithcriticaltemperature,carryingcapacityandmagneticfieldindicatedintheaxes.

    Three importantparametersneed tobedefined, the critical temperature,Tc, the critical

    magnetic field,Bc, and the critical current, Ic. These threeparametersmakeup a critical

    surface shown inFigure2.4.The transition temperature isdefinedas the temperatureat

    whichthematerialceasestoresistcurrentflowinzeromagneticfield.Perfectcurrentflow

    up toa limit termed the critical current, Ic,oroveranuniform crosssection, termed the

    criticalcurrentdensity,Jc,andcompleteexpulsionofmagneticfielduptoacriticalfield,Bc,

    are often quoted at a constant temperature below the transition temperature. Studying

    theseparameters as a functionof theother two yields the critical surface, fora specific

    superconductor,belowwhichsuperconductivityexists.

    Bc

    Jc

    Tc

  • CHAPTER2THEORETICALBACKGROUND

    14

    2.3.2 Meissner-Ochsenfeld Effect

    TheMeissnerOchsenfeld effect is defined as the complete expulsion of any externally

    imposed magnetic field from the interior of a superconductor resulting in perfect

    diamagnetism. The imposed external magnetic field generates permanent currents by

    inductionwhich screensmagnetic field from the interior of thematerial. TheMeissner

    Ochsenfeldeffectisaconsequenceoftheminimizationoftheelectromagneticfreeenergy

    carriedbythesupercurrent[1].Innormalconductors,assoonastheexternalmagneticfield

    isstablethecurrentsdecayaccordingtothefollowingequation:

    tLR

    eItI

    = 0)( Equation2.1

    whereIisthepermanentcurrentattimet,I0istheinitialpermanentcurrentvalue,Risthe

    finiteresistanceandListheselfinductioncoefficient.Eventually,themagneticfieldwithin

    andoutsideequalize.However,insuperconductors,regardlessofhowmuchmagneticfield

    is trapped in thesuperconductoras itcools, it remains trappedbelowTc.Experimentally,

    the content of the superconductive phase can be measured through magnetization

    experiments.Bymeasuringhowmuchof the applied external field ispushedoutof the

    interior of the sample, one canmeasure the volume fraction of superconductivity. This

    volumefractionofsuperconductivityisthesusceptibility, ,andcanbenormalizedonthe

    basisofmassandrenamed,masssusceptibility,,andforaperfectsuperconductorwould

    haveavalueof1.

    HM

    =

    Equation2.2

    ]/[ 3 kgmdensityH

    ==

    Equation2.3

  • CHAPTER2THEORETICALBACKGROUND

    15

    2.3.3 Electrodynamics of Superconductivity and the London Equation

    In1935, following thediscoveryof theMeissnerOchsenfeldeffect, the Londonbrothers

    contributed to the understanding of superconductivity by their treatment of the

    phenomenonfromanelectrodynamicspointofviewbychangingthetraditionaltheoryof

    normal conductivity,Ohm's Law,where I=V/R, to suit superconductivity.Theyassumeda

    twofluid system for the entire superconductor as having charge carriers from a

    superconductingphaseandfromanormalconductingphase[29].Theirfindingsintroduced

    theconceptoftheLondonpenetrationdepth,L,whichisthelengthoverwhichanexternal

    magneticfieldpenetratesthesuperconductor.ItisgivenbythefollowingEquation2.4.

    sL nq

    m2

    0 = Equation2.4

    wheremisthemassofthechargecarriers,eisthechargeofanelectron,nsisthenumber

    ofchargecarriers,q=2e,isthechargeofaCooperpair,and0isthemagneticpermeability

    [29,30]. Inaddition, the initialapplied field,Ba,decaysover the length,L,exponentially.

    Thefield,B,atanypoint,x,alongthepenetrationdepthcanbeexpressedbythefollowing

    relationship:

    =

    La

    xBB

    exp Equation2.5

    Ingeneral, todescribe thesuperconductivityofamaterialboth thepenetrationdepth,L

    and the size of theCooper pairor the coherence length, 0, are used. First, the London

    penetrationdepth,L,isthedepthwithinwhichtheinternalmagneticfieldis1/etimesthe

    external appliedmagnetic field, Ba. Second, the Cooper pair correlation is active for an

    average distance called the coherence length 0, calculated from the BCS theory. As

    mentionedpreviously,theGinzburgLandaucoherencelength,GL,isthelengthscalewithin

  • CHAPTER2THEORETICALBACKGROUND

    16

    whichthetotalsystemofCooperpairscanchangeand isanalogoustotheBCScoherence

    length,asshowninFigure2.5.

    BILF = ;LorentzForcerequiredtomovethevortexwhenafinitecurrentIisreachedforawireoflengthLundermagneticfieldBa(Equation2.6)

    Figure2.5.RepresentationofavortexcoregeneratedbyappliedmagneticfieldandtheBCScharacteristiclength.

    2.3.4 Thermodynamics of Superconductivity, Ginzburg-Landau Theory

    The GinzburgLandau theory introduced two concepts when treating superconductivity.

    First, the spatial variations of the superconductive state and, second, its state as a

    macroscopicwavefunction.GinzburgandLandauintroducedthefirstaspect,nonlocalityof

    thesuperconductorpropertiesbyintroducingasuperconductingorderingparameter,(r),

    where r is thevectorpositionof thechargecarrierbelowTc.The theoryassumes that

    increases from01astemperaturegoesfromTc0.|(r)|2canbe interpretedasthe

    densityofthesuperconductingchargecarriers.Byconsideringthefreeenergyofthesystem

    anewmethod fordetermining the coherence lengthwasdevelopedanda characteristic

    lengthoverwhich the superconductororderparameter varieswas introduced. From this

    theory, the GinzburgLandau relation, Equation 2.7, can be used to determine the

    coherencelengthofthesample.

    0

    vortexcore(nosupercurrent,normalconducting)

    L1/e*Ba

    Externalfield,Ba

    superconductor

    F

    GL

  • CHAPTER2THEORETICALBACKGROUND

    17

    ( )2

    1

    2

    0

    02

    =

    cGL B

    Equation2.7

    Where0isequalto2.0678x105Tm2andBc2istheuppercriticalmagneticfield.

    TheGinzburgLandaucriterion,,isanimportantparameterstemmingfromthistheoryand

    isdefinedby Equation2.8. The approximation fromGorkov andGoodmanwas found to

    agreewellwiththeGinzburgLandauequation[30].

    2/130 105.7

    +=

    GL

    L Equation2.8

    where0istheGLparameterofthepuresuperconductorinwhichtheelectronmeanfree

    path,l*,isnotreducedbyimpuritiesandl*.Experimentally,GLisdeterminedfromthe

    uppercriticalfield,Bc2oftypeIIsuperconductors(Equation2.7).

    2.3.5 Bardeen-Cooper-Schrieffer (BCS) Theory

    Themicroscopic theoryof superconductivitydeveloped in 1957byBardeen,Cooper and

    Schrieffer, termed the BCS theory, unified all the previous theories and described the

    natureof thechargecarriers in superconductors.The theoryexplained the resistanceless

    current flow, observed in certainmaterials and below a characteristic temperature, by

    postulatingthatatomiclatticevibrations(phonons)causetheelectrons,whichmakeupthe

    electric current to pair up. The BCS theory showed that ordering in conventional

    superconductorsismediatedbyphononsleadingtotheformationofthesesocalledCooper

    pairs leadingtoacondensedandcoherentstate.ACooperpair isformallydefinedastwo

    electrons with opposite momentum of equal magnitude and with opposite spins. The

    angularmomentumofthepairaswellas thatofthetotalsuperconductingcondensate is

    zero[30].

  • CHAPTER2THEORETICALBACKGROUND

    18

    FromtheBCStheory,thechargecarriers,Cooperpairs,possessadoubleelectronchargeof

    q=2e and ns is proportional to the square of thewave function and transforms to the

    Ginzburg Landau result forpenetrationdepth into the Londonpenetrationdepth [29]. In

    BCStheory,thesizeoftheCooperpairistermedthecoherencelength,0.

    Also, inthesuperconductingstatetheCooperpairshavetranslationalsymmetry,meaning

    they transfer their charge exactly and repeatedly as theymove through the solid. Two

    electrons form a Cooper pair over a given distance; past the coherence length the two

    electronsare incoherentandcease tobeapair.Thispairingcauses theelectrons topass

    withoutresistancethroughthesuperconductorslattice.

    InadditiontheBCStheory introducedtheconceptofanenergygap,0,betweentheBCS

    groundstateandthefirstexcitedstate.Thisdeterminestheminimumenergyrequiredto

    forma singleelectron (hole)excitation from the superconductingground state [29].And

    fromthis,thebindingenergyof,ortheenergyrequiredtobreak,theCooperpair,whichis

    twotimestheenergygap(energygapEg=20).Thisorderingoftheelectronsputsthemina

    lowerenergystatebyanamountequivalenttothebindingenergyoftheelectrons inthe

    Cooperpair. Inexperimental terms, this couldbe theenergy suppliedbyaddingheat to

    increase temperature, increasingthecurrentrunningthroughthesuperconductorcausing

    scattering and Joule heating or imposing an externalmagnetic field causing circulating

    currentsofthevorticestospinfasterandexpelenergy.Inallcases,energyissuppliedand

    thechargecarriershave sufficientenergy toescape the superconductingground state to

    become free single electrons. The BCS theory relates this energy gap between the

    superconducting state and the free electron state at zerotemperature, 0, and the

    transitiontemperature,Tc,bythefollowingrelationships(Equation2.9andEquation2.10)

    [30]:

    cBTk5.3)0(2 = (Equation2.9)and cc

    TTTTT

    =

    ,174.1

    )0()( 2

    1

    (Equation2.10).

  • CHAPTER2THEORETICALBACKGROUND

    19

    where kB is the Boltzman constant (8.62x105eV/K). The concept of the energy gap in a

    superconductorwascorrectlypredictedbytheBCStheory.

    Inalloys,themean freepathandhencethecoherence lengthoftheCooperpair ismuch

    smaller than inpuremetals. In the caseofpuremetals thepenetrationdepth is smaller

    thanthecoherencelengthwhereasinalloystheoppositeistrue.

    Inparticular, theeffectof isotopesor theeffectofvarying theatomicmasswasused to

    confirmthephononmediatedsuperconductivitybehaviourasdictatedbytheBCStheory.

    The effect of slower Cooper pair formation is seen through a decrease in the transition

    temperature.Withlighteratomicmasses,morephononsareproducedandstrongerCooper

    pairsformbecausethebindingenergy issmaller.Aparticularlysuccessfulexperimentwas

    withSnsinceawiderangeofSnisotopescanbefound,rangingfromatomicmassesof113

    to 123 [30]. Frhlich and Bardeen suggested that the transition temperature should be

    inverselyproportionaltotheatomicmass,M.

    2/1 MTc

    Thisagreedwellwith theexperimentof theSn isotopesandmanynontransitionmetals.

    However transitionmetal isotopes deviated from the coefficient , of 1/2, and amore

    accuraterelationshipwasdeveloped[30]:

    ( )

    ++

    D

    DcT

    /*1**1*exp Equation2.11

    where*istheelectronphononinteraction,*istheCoulombinteractionisaveragevaluetakenoverallfrequenciesofthecrystallatticeDistheDebyefrequency

    For theMgB2 superconductor consisting ofmetal (Mg) and nonmetal (B), experiments

    wereconductedtoseetheeffectsofnontransitionelementisotopesanditwasfoundthat

    (10B11B)isotopesyieldedacoefficientBof0.3and(26Mg27Mg)isotopesyielded

  • CHAPTER2THEORETICALBACKGROUND

    20

    acoefficientMgof0.02[28,30].Thus,indicatingthatthevibrationoftheBionsplayan

    importantrolefortheCooperpairing inMgB2[30].Thetotal isotopeeffectforMgB2T=

    Mg + B 0.3 differs from the BCS of 0.5 and illustrates deviations from BCS, but

    suggeststhatMgB2ssuperconductivityisphononmediated[31]

    TheBCStheory isoftenusedtopredictmanypropertiesofconventionalsuperconductors.

    ThetheorywasalsousedtopredictthesuperconductivityofhigherTc incompoundswith

    lighterelementsandthiswasconfirmedbystudyingLis,BesandMgB2ssuperconductive

    behaviour[28].

    2.3.6 Shubnikov (Mixed) State in Type-II superconductors

    Generally, thematerial ceases to be superconductive if it is subjected to a temperature

    abovethetransitiontemperature,Tc,oramagneticfieldabovethecriticalmagneticfield,

    Hc(typeI)orHc2(typeII),oriftheappliedcurrentsurpassesthecriticallycurrentcapacity,

    Jc.These limitingvariablescanbevisualizedasacritical surface in theFigure2.4.Typical

    magnetizationcurvesfortypeIandtypeIIsuperconductorsareshowninFigure2.6.

    Figure2.6.MagnetizationCurvefora)TypeIandb)TypeIISuperconductors

    TheGinzburgLandauparameter,,determineswhetherasuperconductor isa typeIora

    typeIIsuperconductor.For 2/1

  • CHAPTER2THEORETICALBACKGROUND

    21

    2/1> , it isnegativeand is typeII [7,32]. In the lattercase, itbecomesenergetically

    morefavourableformagneticfluxtopenetratethesuperconductorandproduceamaterial

    withamixofnormalandsuperconductingregions.FortypeIIsuperconductorswhereatthe

    lowercriticalfield,Bc1,amixedstateisobserved.Vorticesappearwithinthematerialwith

    supercurrent flowingaround thevorticesandnosupercurrent in thecore.As theapplied

    field is increased to theupper critical field,Bc2,morevorticesappearuntilall thevortex

    cores start to touchandoverlapeventuallymakingall thematerialnonsuperconducting.

    Withdecreasingtemperature,theelectroniccontributiontothermalconductivitydecreases

    becausefewerfreeelectronsareavailabletoconductsincetheyarelockedinCooperpairs

    andaredecoupledfromthethermalbehaviour[30].Inthissamerespect,superconductivity

    isnotobservedinthecentreofavortexaxiswhereitisnormalconducting.

    Figure2.7.CrosssectionofatypeIIsuperconductorandthechangeasexternalmagneticfieldisincreased.

    Figure2.7servestoillustratethecurrentflowinacrosssectionofatypeIIsuperconductor

    starting from theMeissner state to thebreakdownof superconductivityatapplied fields

    abovetheuppercriticalfield,Bc2.Fromthediagramshown inFigure2.7,thebehaviourof

    vorticesaswellasthedestructionofsuperconductivityaboveBc2canbevisualized.Above

    Bc1, the lower criticalmagnetic field,magnetic fields begin to penetrate in the form of

    vortices.There isamagneticflux inthecoreofthevorticesandeachvortex isamagnetic

    singlefluxquantum.Foranymaterial,atagivenimposedmagneticfieldthevortexdensity

    isthesame.Thesizeofthevortices isdictatedbythematerialand isapproximatelygiven

    Supercurrent,Is

    MeissnereffectatB

  • CHAPTER2THEORETICALBACKGROUND

    22

    bytheLondonpenetrationdepth.Foragivennumberofvortices,ifthesizeofthevortexis

    largetheyoverlapanddestroysuperconductivity.ThemagneticfieldBatwhichthevortices

    overlapisthecriticalmagneticfieldBc2.

    Tc Temperature Tc

    Bc

    Bc1

    Bc2

    Temperature

    Superconductor Superconductor

    Normal Normal

    Vortex State

    Type II Type I

    Figure2.8.BTphasediagramsfortypeI(a)andtypeII(b)superconductors.

    Generally, type I and type II superconductors can be differentiated by the BT phase

    diagram (Figure2.8)and themagnetizationcurves (Figure2.6).Whether thematerial isa

    typeIoratypeIIsuperconductorcanbedeterminedfromtheshapeofthecurve.Aswell,

    thecriticalfieldBcortheloweranduppercriticalfields,Bc1andBc2,canbeobtained.

    2.3.7 Vortex Pinning

    Forpracticalapplications,ahighcriticalcurrent,Ic,andconsequentlyahighcriticalcurrent

    density,Jc,isdesired.Inordertoachievethis,latticedefectsareintroducedbytheaddition

    of foreign atomsorof foreignparticles to theperfect lattice and these serve topin the

    vortices present in amagnetic field.Generally, [i]n superconductors the ability to carry

    currentwithout dissipation is enhanced if thematerial contains impurities or defects of

    suitablecharacteristicsinorderto"pin"themagneticflux[8].

    (a) (b)

  • CHAPTER2THEORETICALBACKGROUND

    23

    Vorticesaremesoscopicswirlingtubesofelectricalcurrentinducedbyanexternalmagnetic

    field.Vorticesarepresent in themixedstate in typeII superconductors; theirmovement

    producesresistanceandshouldbepreventedforstabilityintechnologicalapplications.One

    way isthroughvortexpinningthroughthe introductionofdefects inthecrystalstructure.

    HighpurityMgB2 requires impurities (or substitutions) forvortexpinningand to increase

    the critical current density. Magnetic properties of the material can be improved by

    introducingdisorder in the systemwhichpromotesvortexpinning [33].As thesevortices

    remain pinned, themagnetic fields can penetrate while stillmaintaining zero electrical

    resistivity paths through thematerial. The size of the cores ismaterial dependent and

    varies. In these superconductors, the vortices of the Shubnikov phase are energetically

    strongly bound to favourable locations through the introduction of enough defects by

    impurityaddition.

    IntheShubnikovphaseormixedstate,pinningpreventsthedissipationofenergywhena

    superconductingcurrentflowsbypreventingthemovementofthefluxesundertheLorentz

    force [34]. This is due to the spatial variation of themagnetic field in the vortex. The

    mechanism canbe explainedby the appearanceof localelectric fields generatedby the

    moving vortices, these fields accelerate theunpairedelectrons and theenergy from this

    accelerationisthentransferredtothelatticeandhenceheatisgenerated.

    IntypeIIsuperconductorsatmagneticfieldsaboveBc1,vorticesappearsincethemagnetic

    field penetrates the superconductor and it enters the Shubnikov/mixed phase. When

    precipitatesareintroduced,thevortexpassingthroughtheprecipitatewillloweritsenergy.

    Forasamplevolumecontainingmanyprecipitates,thevorticeswillbendinordertooccupy

    the energetically most favourable locations, a minimum value of total energy. For a

    continuous flux line, with length increment caused by the bending must be

    overcompensatedbytheeffectiveshorteningwithinthenormalconductingregionsofthe

    precipitates[30].Inaddition,therepulsiveforceofthefluxlinesrelativetoeachothermust

  • CHAPTER2THEORETICALBACKGROUND

    24

    alsobe taken intoaccount in the totalenergybalance. Ingeneral,anydefect lowers the

    order parameter, , within the defect and effectively favours the path of the current

    throughthedefect.Inthiswaythevortexfollowsonepinnedpathwhichisenergetically

    morefavourable.

    Analogous todislocationpinningatphaseboundaries,vortexpinning is the restrictionof

    vortices ofmagnetic flux by some trace atomic element (Al[35], Ti [25], C[36], Cu[37],

    Au[38])orcompound(Al2O3[39],MgO[40],WSi2[41]andSiC[42]).

    2.3.8 Single and Double Energy Gaps

    Transitionsbetweenthenormalandsuperconductivestatesarecausedbythecompetition

    between two energies, the energy gain from the condensation of Cooper pairs and the

    energy lossdue to themagnetic fieldexpulsion from the interiorof the superconductor.

    From a thermodynamic standpoint, the GinzburgLandau theory was developed in the

    1950stomodelthebehaviourofsuperconductivity.ForMgB2,thevalueofthecoherence

    length, GL, for a noncubic structure, specifically hexagonal closepacked structures, is

    differentdependingontheaxisalongwhichthemagneticfieldisappliedrelativetotheaxis

    oforientation.Forthemagneticfieldappliedalongthecaxistherelationshipbetweenthe

    upper critical field and the coherence length is given by the following anisotropic GL

    relationship[28]:

    20||

    2 2 abc

    cH

    = Equation2.12

    similarlyforthemagneticfieldappliedalongtheabaxistherelationshipbecomes

    cab

    abcH

    2

    0||2 = Equation2.13

    where0=2.07x1015Tm2isasinglefluxquantum.

  • CHAPTER2THEORETICALBACKGROUND

    25

    Howeverthisrelationship isvalidonlyforsuperconductorswithasingleenergygap.Since

    theBCStheoryassumesasphericalFermisurface,themagnitudeofthegapisassumedto

    bethesameatallpointsoftheFermisurfaceandassumesaperfectlysymmetricalcrystal.

    MgB2possessesatwobandgapanddeviatesinsomewaysfromclassicBCStheorybecause

    ofthis.

    BeforeMgB2,theexistenceofanenergygap,20,oraforbiddenenergyrange,wasusedto

    explainwhybelowacriticalkineticexcitationenergy,Cooperpairscannotinteractwiththe

    crystal lattice [30]. The energy gap is also known as the binding energy that induces

    electronstoformpairsandisdirectlyrelatedtothematerialstransitiontemperature[43].

    Adoublebandgaptheorywasproposedinordertoexplainthesuperconductivebehaviour

    ofthecompound[43].Usingbasicatomicdataandphysicallaws,Choietal,havefoundthat

    MgB2isofatwobandstructure[44]andisrepresentedinFigure2.9,recreatedfrom[44].

    MgB2hasa twobandenergygapwitheachband corresponding toadifferent transition

    temperature. Also using computational techniques they have correctly determined the

    valueforthetransitiontemperatureofMgB2.Thisdoubleenergygapconsistsofalarge

    (sometimes referred as s) gapdue to strongelectronphonon coupling and a smaller

    (sometimesreferredasp)gapduetoweakcoupling[22].

    Thetwoenergygapscorrespondtotwotransitiontemperatures,oneat15Kandtheother

    at 45 K, together they lead to an observed transition temperature of 39 K [44]. The

    subsequent investigation in 2003 was conducted using angleresolved photoemission

    spectroscopy(ARPES)betweenthetemperatures15Kand45K[43].Itwasindicatedthata

    superconductinggapopensatthe lowertemperatureof17K[6].Thesigmabandshavea

    largegapmeasuring67meVand thepibandhasa smallerbandof12meV [6]. Itwas

    concludedthatthelargeenergygapat45K,sigma,wasduetostrongcouplingofphonons

    andwasdominant.Thesmallerpigapopensat17Kandissmallerandlessimportantdue

    toweakercoupling.

  • CHAPTER2THEORETICALBACKGROUND

    26

    MgB2 is of an HCP structure and shows anisotropic behaviour and a confirmed double

    energy gap. For energy gapmeasurements, a steep increase in the current when two

    superconductorsareplacedsidebyside for tunnellingexperimentsmakedensityofstate

    measurementspossible.Inordertomeasuretheenergygap,otherdeterminationmethods

    canbeused inadditiontotunnel junctions, includingultrasound, lightabsorption,nuclear

    spinresonance,andspecificheat.

    Figure2.9.DoublebandgapsofMgB2.

    2.3.9 Josephson Junction Effect and Josephson Junction Arrays

    2.3.9.1 Josephson Junction Effect

    Themicroscopictheoryofsuperconductivitydepictsapictureofthecurrentacrossabarrier

    asthebreakingupofaCooperpairinthefirstsuperconductor.Thetwoelectronscrossing

    thebarrier independentlyofeachotherarephasecoherent,and,uponreaching thenext

    superconductor, finally recombine to form a pair, Figure 2.10. Due to the interactions

    EnergygapwithTc=15K,12meV

    Singleparticleenergy

    EnergygapwithTc =45K,67meV

    Den

    sityofstates

    0

  • CHAPTER2THEORETICALBACKGROUND

    27

    betweentheCooperpairs,thedoubleprocessofbreakingupandrecombininghasabout

    thesameprobabilityasthetunnellingofindividualparticlesthroughtheinsulatingbarrier.

    Thebarriermaybeaninsulator,I,ornormalconductor,N.Ifthetwosuperconductorsare

    identical and the pairwave function shows swave symmetry, in the case of direct

    tunnelling at the superconductorinsulator interface, the following AmbegaokarBaratoff

    relation,Equation2.14, [30] isvalidand is independentofthetransmissioncoefficient.N.

    Equation 2.15 is the case of a thin layer of normal conductor placed between two

    superconductors.

    ( ) ( )

    =

    TkT

    Te

    RIB

    nc 2tanh

    20

    0

    Equation2.14

    ( ))/sinh(

    /023 20

    N

    N

    cBnc d

    dTkx

    eRI

    =

    = Equation2.15

    whereIcisthecriticalcurrentormaximumsupercurrentRn is the resistance in the normal state, tunnelling resistance in the absence of pairinteractioneistheelementarychargeoftheelectron0istheenergygapinthesuperconductorTisthetemperatureTcisthecriticaltemperaturekBistheBoltzmannsconstantdisthethicknessofthenormalconductor0(x=0)isthevalueoftheenergygapinthesuperconductorneartheinterfaceNisthecharacteristiclengthscaleawayfromthenormalconductorinterface.

    However, a limiting factor is that this layer must be sufficiently thin, usually a few

    nanometers. Quantum mechanical tunnelling is responsible for this effect. It has been

    shown thatplatinumpowdersat the submicron levelare superconductingat20mK [45]

    with smallbarriersof spacebetweenPtparticles.The additionof In, a low temperature

    materialsuperconductivebelow3.4K,wasaddedtoimprovethelinkagecharacteristicsof

    theoverallmaterialcompositeofregularconductive InandsuperconductiveMgB2[23].A

    minimum particle size is required to ensure a sufficiently thin barrier in order for the

  • CHAPTER2THEORETICALBACKGROUND

    28

    Josephsoneffect to takeplace.From thisMgB2producedby thepowder in tubemethod

    whereinpowdersarearrangedinclosecontactwitheachotherandstillbesuperconducting

    isthoughttobeaviableproductionroute.Variationsarealsopossibleandbulk,continuous,

    solidsamplesneednotbeproduced toachievesuperconductivity.The Josephsoncurrent

    canhelptoexplainthepassingofasuperconductingcurrentthroughparticles.

    Figure2.10.SchematicofaCooperpaircrossingaJosephsonjunctionfromlefttoright.

    2.3.9.2 Josephson Junction Arrays

    Josephson junction arrays or networks are systems of layered superconductors, S,

    alternating with normal, N, or insulator, I, in S(IS)n or S(NS)n configurations or any

    combination of these. These systems are useful in understanding bulk discontinuous

    superconductors or even inhomogeneous superconductors in which regions of a

    superconductive phase existwithin nonsuperconductive phases. Theoretically, arrays in

    zeromagneticfieldwithasquaregeometryoffourjunctionswillpossessatotalenergy,E,

    andcanbeestimatedusingthefollowingequation,Equation2.16

    =

    aREE J ln Equation2.16

    whereEJisthecouplingenergyofaJosephsonlink,Risroughlytheradiusofthearrayanda

    isthelatticespacing[32].

    In a highly disordered system in whichmany vortices are present, pairs of vortices of

    opposite sign exhibit an attractive forcewith each other [32]. At T=0, the system at its

    S:superconductorI:insulatorornormalconductor

    S I S

    Cooperpair

    Separateparticles

  • CHAPTER2THEORETICALBACKGROUND

    29

    lowestenergystatewillpossessnovortices;withincreasingtemperatureandtherefore,an

    increaseinthermalenergy,vorticesaregeneratedandconsequentlypairsoftightlybound

    antiparallelvorticesaregenerated.As temperature increases, thenumberofvortexpairs

    increasesandsodoes theenergyofeachofthevortexpairs.Assumingaminimizationof

    the freeenergyofthesystem,a transition fromboundpairsofvorticestounboundpairs

    leads to thedeterminationofaspecific transition temperature termedTKT, theKosterlitz

    Thoulesstransition,atwhichthepairsofvorticesstarttounbind.Thistemperaturecanbe

    estimatedby JTK EkT [32]wherekisBoltzmannsconstant.

    The concept ofmany Josephson junctions in sequence has beenmodelled for granular

    superconductorsandisalsotermedJosephsonJunctionArraysorJJAs[46,47]orJosephson

    junctionnetworks.Becausemodellingof JJAscan result incomplexsystems,baremodels

    are often used and they reduce the grains to points.However, twodimensional square

    arrayshavealsobeenused.IncontrastbyusingdressedJJA's,thedetailsofthesystem,say

    forgrainsassumed tobeperfectspheresandarranged inacubic formationpossessing8

    grains, would result in 12 Josephson junctions to be studied [46]. One can foresee an

    increaseddegreeofcomplexityasthenumberofgrainsmodelledincreases.

    Experimentally, JJ networks have been studied by producing a network using niobium

    spheresmelted fromasaucepanwithanelectronbeamandarrange into triangularand

    squarelatticeconfigurationsusingAuelectrodesinasampleholderandsupplyingpressure

    bymeansofaneternalscrew[48].Currently,upto7.7x105Tl2212intrinsicJJinserieshave

    been synthesized and studied and the inductance, L, of the series was found to stem

    primarilyfromtheJosephsoneffect[49]leadingtoareductioninthecriticalmagneticfield

    andabroadeningofthetransitiontosuperconductivity.

  • CHAPTER2THEORETICALBACKGROUND

    30

    2.3.10 Dirty Superconductors

    TheBCS theorybrieflypresentedearlier isvalid forcleansuperconductors; in thissection

    theeffectsofdisorderleadingtodeviationsfromBCStheoryarepresented.Thecleanand

    dirty limits of superconductors correspond to the overall purity of the superconductive

    region, the scale of which is arbitrary.Within the theory of the effect of disorder on

    superconductivity,twobranchesexist,namelythosehavingtodowithstrongcoupling[50,

    51]orintheweaklylocalizedregimecoupling[52].Experimentalevidencepointstothefact

    thatahighHc2isfoundatlowtemperaturesinhighlydisorderedsystems[53].Intheweakly

    couplinglocalizedregime,effectsofdisorderleadtoadegradationofTcandHc2according

    tocalculationsfromFukuyama,EbisawaandMaekawa[52].

    Thecleananddirty limitsofasuperconductoraredescribedbytheratioofthemeanfree

    path, l,of thenormal state, to the coherence lengthof the superconductor, 0 [29].This

    ratio characterizes thepurityof thematerial.Amaterial is cleanwhen l/0>>1 anddirty

    when l/00)as

    2/1

    74.0)(

    =TT

    TT

    c

    c Equation2.17and2/1

    71.0)(

    =TT

    TT

    c

    cL Equation2.18

    and dirty limit (l

  • CHAPTER2THEORETICALBACKGROUND

    31

    C C C CC*

    H

    H

    H

    H

    H

    H

    H*

    H

    n

    )40(2 Knemvl F

    = Equation2.21

    WhereforMgB2,vFistheFermivelocity~4.8x107cms1[55],nisthechargecarrierdensity~

    6.7x1022cm3[55],m isthefreeelectronmassforquasiparticles(2electronswhichmake

    uptheCooperpair),1.822x1030kg,and(40K)isthenormalstateresistivity.

    2.4 Background on Polymers

    Polymersareunits,mers,ofcarbonbasedsegmentslinkedtogethercovalentlyandforming

    long molecules generally held together by hydrogen bonding. They possess a large

    molecularmassandcanbenaturalorsynthetic.

    2.4.1 Background on Conductive Polymers

    Recently discovered conductive polymers are doped with impurities and these are

    responsible for theconductionofelectrons ina traditionally insulatingmaterial.Theyare

    often referred to as organic semiconductors and possess the same forbidden band gap

    located between the insulating and conduction bands similar to other silicon or gallium

    based semiconductors. They are electrical insulators but when charge carriers are

    introduced they behave like normal conductors and conduction increases substantially.

    Some organic semiconductors are of the zero band gap type and behave likemetallic

    conductors.Thepolymersused in these types are separated into two categories: charge

    transfer complexes and conductive polyacetylenes, polypyrrole, polyaniline and their

    derivatives [1].Polyacetylenemayachievehigherconductivityperunitmass thancopper

    [56].

    Figure2.11.Chemicalbondstructureofpolyacetylene.

  • CHAPTER2THEORETICALBACKGROUND

    32

    Inpolyacetylene,shown inFigure2.11,thealternatingsingleanddoublebondscontribute

    to an unequal distribution of the bond length and leads to localization of the electrons

    aroundthedoublebondandlowerstheoverallenergyofthesystem.Anenergygapopens

    in thedensityof statesof theelectronsand this turns thepolymer intoa semiconductor

    [56].

    2.4.2 Background on Ethylcellulose-Based Binder

    Asmentionedpreviously,ourstudyofMgB2inpowderformboundinapolymermatrixhas

    notbeenstudiedbefore.However,aproductionrouteforwiremadeofpoly(vinylchloride)

    andMgB2bythesuspensionspinningroutewas investigatedyieldingcomparablePITwire

    results[26].Theinitialmeltspinningstepisusedtoestablishawiregeometrywhichwillbe

    inserted inmetal sheathing and subjected to subsequent heating, pressing and drawing

    stepstocompletelyeliminatethepolymerfromtheresultingwire.Thus,throughthemelt

    spinning technique the advantageousmechanical properties of thePVCpolymer arenot

    conferredtothefinalwire.

    Figure2.12.Chemicalbondstructureofcellulose.

    Inthiswork,theadvantageofusingapolymermatrixistheinheritedmechanicalproperties

    resultinginflexibility,improvedductilityandpossiblyahigherelasticmoduluswhenbound

    inapolymermatrixcomparedtothePITwiresofcompactedorsinteredpowdergenerally

    relyingonametalsheathforitsstructuralpropertiesandtomaintainthecontactbetween

  • CHAPTER2THEORETICALBACKGROUND

    33

    theparticlesduring current transport.AnMgB2polymer compositemaybemore robust

    thanthecupratebasedceramicsuperconductors.

    Inthisstudy, looseMgB2powderwasboundtogetherwithathermoplasticpolymer,ethyl

    cellulose.Celluloseisanaturalcompoundfoundinmanyplantsanditsmolecularstructure

    is represented in Figure 2.12 [57]. Its simple structure means that at relatively low

    temperatures, itbreaksdowneasily.Thebondingbetweenthepolymerchainsaremostly

    hydrogenandifmanychainsarepresenttheseleadtostrongenoughinteractionssuchthat

    thebulkpolymerismechanicallyverystrong.

    Figure2.13.Chemicalbondstructureofethylcellulose.

    Ethylcellulose,Figure2.13 [57],differs fromcellulosebythesubstitutionoftwohydrogen

    atomsfromthetwohydroxyl(OH)groupsinthecellulosechainwithtwoethylgroups,C2H5.

    The substitution of the free hydroxyl groups of each glucose unit alters the physical

    properties of the material by making it, for example, soluble in organic solvents and

    allowingthematerialtobemadeintofibresandfilms[58].

    CH3CO

    OCH2

    CH3

    CH2CH2

    CH2

    O CH2

    Figure2.14.Chemicalbondstructureofbutylcellosolveacetate.

  • CHAPTER2THEORETICALBACKGROUND

    34

    The polymeric binder usedwas amixture of ethylcellulose dissolved in butyl cellosolve

    acetate.Thechemicalformulaforbutylcellosolveacetate isC4H9OCH2CH2OC(O)CH3and is

    representedinFigure2.14[57]andterpineol.Thespecificcompositionofthemixturewas

    suggested by the supplier and is a standardmixture formetallic inks used inmicrochip

    networks.Often,theinksaredeposited,driedandfiredofftoevaporatethebinderleaving

    only the active component. Generally, the paste can be formulated to be conductive,

    resistiveordialectricdependingontheactiveingredientanddependingonthepurityofthe

    ethylcellulose,theresultingcoatingwillbeconsequentlycleanersincehigherpurityethocel

    burnsoffmorecleanly.

    Table2.4.GENERALPROPERTIESOFETHOCELSTANDARD45

    Properties ValueDensity(g/cm3) 0.4GlassTransitionTemperature(C) 129133SofteningPoint(C) 133138MeltingPoint(C) 165173RefractiveIndexofFilm 1.47TensileStrengthofFilm SeeFigure2.15DielectricConstantat25C,1Mhz 2.83.9DielectricConstantat25C,1kHz 3.04.1DielectricConstantat25C,60Hz 2.54.0PowerFactorat25C,1kHz 0.0020.02PowerFactorat25C,60Hz 0.0050.02VolumeResistivity,ohmcm 10121014DielectricStrength,V/0.0254mm 1500Viscosity(MPas) 4149

    The generalmechanical properties of these binders vary depending on the blend with

    solvents, the grade standard and the final dried or firedmixture. The ethocel polymer

    binderitselfpossessesthegeneralphysicalandelectricalpropertieslistedinTable2.4.

    The tensile strength specifically for standard 45 can be extrapolated from the supplier's

    elongation versus load curves for different viscosity grades of ethocel, Figure 2.15 [57].

  • CHAPTER2THEORETICALBACKGROUND

    35

    Generally,thepropertiesofthepolymerwiththesolventblenddependonthefinalsolvent

    tobeevaporated.

    Figure2.15.LoadElongationCurvesforEthocelpolymers.

    2.5 Summary

    Inconclusion,superconductors,MgB2,polymersandethylcellulosewerebrieflyintroduced

    inthissection.Inaddition,several importantaspectsofsuperconductivitywerepresented

    in their standard framework in order to guide the reader through the analysis of the

    experimentalresults.Manyoftheconceptsintroducedwillbeusedinordertoanalyzethe

    experimental findings.Due to thenatureof the coatingsproduced in this thesisproject,

    deviationsfromthese idealandwellknowncasesareduetothefollowingtwoaspectsof

    superconductivity: the twoband gapofMgB2 and thepresenceof innumerablepolymer

    barriers, between MgB2 superconductive particles, which act as Josephson junctions.

  • CHAPTER2THEORETICALBACKGROUND

    36

    Deviations from ideal cases exist and this section was presented to highlight how our

    material'sbehaviourmaynot fitperfectly thestandard framework.Beforepresenting the

    experimentalfindingswithinthisframework,wefirstdescribetheexperimentalmethodsin

    thefollowingsection.

  • CHAPTER3EXPERIMENTALMETHOD

    37

    Chapter 3 Experimental Method

    The experimental technique section consists of one fabrication stage which can be

    subdividedintovariousproductionroutesfollowedbythreecharacterizationsteps.Thefirst

    ofthethreestages isnamedthematerialscharacterizationsectionand involvedprimarily

    visual assessments using various imaging techniques including surface microscopy and

    electronmicroscopy, inaddition, the crystalline componentsof the sampleare identified

    using xray diffraction and elemental analysis is carried out using energy dispersive

    spectroscopy.Thesecondstageisthecharacterizationofthesuperconductivepropertiesof

    thesamples.Thissecondstageinvolvedtwomaintypesofsuperconductorevaluation,the

    first isthroughtransportmeasurements involvingtheobservationoftheresistanceofthe

    samplewhilevaryingtemperatureorexternalmagneticfield;thesecondtypeofevaluation

    involved the observation of the Meissner effect and the mixed state of the typeII

    superconductorusingmagnetizationexperiments.Thethirdandfinalstageinvolvedtheuse

    of infrared spectroscopy tounderstand the chemicalbondnatureof thepolymericMgB2

    tapesasawhole.

    3.1 Materials

    The following, Table 3.1, is a list of thematerials used for the four fabrication routes

    investigated.TheboronpowderwasproducedfromBchunksandwasseparatedfromthe

    crushed powders into different size ranges using sieves, however these powders were

    producedbycrushingwithasteelmortarandpestle.Itisbelievedthatironcontamination

    was introducedthroughthispreparationmethodbutthatthepuritywassufficienttotest

    preliminaryfabricationroutes.Highpuritystartingmaterialswereusedtoproducethemain

    samplesofthisthesisproject.

  • CHAPTER3EXPERIMENTALMETHOD

    38

    Table3.1SUMMARYOFTHEMATERIALSUSEDTOPRODUCECOATINGS

    Material Purity (%) Supplier Boron chunks 99.5 Alfa Aeser

    Magnesium pellets 99.999 Alfa Aeser Magnesium ingot pieces 99.979 Timinco

    Commercial Al foil 99.