Anaya Trans Tutorial Talk

download Anaya Trans Tutorial Talk

of 49

Transcript of Anaya Trans Tutorial Talk

  • Modelling and Controlof Wind Generation Systems

    Dr Olimpo Anaya-Lara

    TUTORIAL:Transmission and Integration of Wind Power Systems:

    Issues and Solutions2nd International Conference on Integration of Renewable and

    Distributed Energy ResourcesDecember 4-8, 2006, Napa, CA, USA

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 2

    Programme1. Introduction2. Wind turbine technologies3. Optimum power extraction from wind4. Dynamic model of the Doubly-Fed Induction Generator

    (DFIG)5. Control of DFIG-based wind turbines

    5.1. Provision of synchronising torque characteristic5.2. Short-term frequency control5.3. Provision of Power System Stabiliser (PSS)

    6. Impact of wind farms on transient and dynamic stability7. PSS for a generic DFIG controller8. References

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 3

    1. Introduction

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 4

    Introduction Wind power is presently the most cost-effective renewable

    technology and provides a continuously growing contribution toclimate change goals, energy diversity and security.

    Integration of large amounts of wind power into electricity networksface however various strong challenges:

    Technical characteristics of wind turbine technologies aredifferent from conventional power plants.

    Wind intermittency Grid availability and reliability Grid Code compliance

    Accurate modelling and control of wind turbine systems for powersystem studies are required to help solving these challenges

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 5

    Wind turbine components

    Combination of mechanicaland electrical systems

    Mechanical:Aerodynamics and structural

    dynamics

    Electrical:Generator, power electronicconverters, control system,

    protection equipmentSource: www.nordex-online.com

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 6

    2. Wind turbine technologies

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 7

    FSIG-based wind turbine

    SCIG Soft-starter

    Capacitorbank

    NETWORK

    Fixed-Speed Induction Generator (FSIG)-based wind turbines employ a squirrel-cageinduction generator directly connected to the network.

    The slip (and hence the rotor speed) varies with the amount of power generated. In thisturbines the rotor speed variations are very small (1 or 2%).

    The induction generator consumes reactive power and hence capacitor banks are used toprovide the reactive power consumption and to improve the power factor.

    An anti-parallel thyristor soft-start unit is used to energise the generator once its operatingspeed is reached.

    Power control is typically exercised through pitch control.

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 8

    DFIG-based wind turbineWound-rotor

    Induction generator

    PWM converters

    Network

    Crowbarprotection

    Doubly-Fed Induction Generator (DFIG)-based wind turbines employ a wound rotorinduction generator with slip rings to take current into or out of the rotor.

    Variable-speed operation is obtained by injecting a controllable voltage into the rotor atslip frequency.

    The rotor winding is fed through a variable frequency power converter. The powerconverter decouples the network electrical frequency from the rotor mechanical frequencyenabling the variable-speed operation of the wind turbine.

    The generator and converters are protected by voltage limits and an over-currentcrowbar.

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 9

    Wide-range SG wind turbine (SGWT)

    GeneratorPower

    converter Network

    Gearbox

    GeneratorSide

    ConverterNetwork

    SideConverter

    This wind turbine uses a synchronous generator (it can either be an electrically excitedsynchronous generator or a permanent magnet machine.

    The aerodynamic rotor and generator shafts may be coupled directly, or they can becouple through a gear box.

    To enable variable-speed operation, the synchronous generator is connected to thenetwork through a variable frequency converter, which completely decouples thegenerator from the network.

    The electrical frequency of the generator may vary as the wind speed changes, while thenetwork frequency remains unchanged.

    The rating of the power converter in this wind turbine corresponds to the rated power ofthe generator plus losses.

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 10

    3. Optimum power extractionfrom wind

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 11

    Optimum power extraction from wind

    Power in the airflow:

    312airP AU=

    Power extracted by the wind turbine rotor:

    wt p airP C P= Where: : Air densityA : Area swept by the bladesU : Wind speedCp : Power coefficient

    max 0.593pC = (Betz limit)

    The turbine will never extractmore than 59% of the powerfrom the airflow

    WIND

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 12

    00.10.20.30.40.5

    0 5 10 15 20Tip-speed ratio

    C

    p r RU =

    r is the rotor speedand R is the radiusof the rotorPower coefficient/Tip speed ratio curve

    Tip speed ratio :

    Operating a wind turbine at variable rotational speed it is possibleto operate at maximum Cp over a wide range of wind speeds

    To extract maximum power r should vary with the wind speedsuch as to maintain at its opt

    Optimum power extraction from wind

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 13

    G

    e

    n

    e

    r

    a

    t

    o

    r

    p

    o

    w

    e

    r

    Generator speed

    Rated power

    Maximum Powercurve (Popt)

    Speed Limit

    U = 12 m/s

    U = 10 m/s

    U = 8 m/s

    U = 6 m/sU = 4 m/s

    U = 2 m/s

    Speed

    Rated power

    Cut-inspeed

    Speedlimit

    Shut-downspeed

    Powerset-point

    In practice the rotor torque (power) is used as set-point anda speed controller is designed to maintain the operation ofthe generator at the point of maximum power extraction

    Wind turbine power curve

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 14

    4. Dynamic model of the Doubly-FedInduction Generator (DFIG)

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 15

    Typical DFIG wind turbine

    CONTROL SYSTEM Networkoperator

    Gearbox

    Crowbar

    DFIG

    PWM Converters

    Windmill

    PowerNetworkC1 C2

    Wound rotorinduction generator

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 16

    DFIG power electronic converters

    Back-to-back voltage source converters (VSCs)Converter C1 Converter C2

    DC-linkMachine

    Side (rotor)Grid side(Machine

    stator)

    Graetz bridge (two-level VSC) IGBT-based Pulse Width Modulated (Sinusoidal, Space Vector PWM) Typical switching frequencies above 2 kHz Trade-off between switching frequency (losses) and harmonics

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 17

    DFIG power relationshipsA DFIG system can deliver power to the grid through thestator and rotor, while the rotor can also absorb power. Thisis dependent upon the rotational speed of the generator

    P

    r > s

    Super synchronousoperation

    P

    r < s

    Sub synchronousoperation

    s rs

    s

    =

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 18

    DFIG power relationshipsMechanical

    Input ElectricalOutput

    Power throughthe slip rings

    Rotorlosses

    Statorlosses

    mP _air gapP

    rP

    sP

    mP : Mechanical power delivered tothe generatorrP : Power delivered by the rotor_air gapP : Power at the generators air gapsP : Power delivered by the stator

    _air gap sP P=_air gap m r s

    s m r

    P P P PP P P

    = ==

    s r rT T P =

    r s sP Ts sP= =g s rP P P= +

    s rs

    s

    =Slip

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 19

    Dynamic model of the DFIG Derive voltage and

    flux equations for thestator and rotor inthe abc domain.

    Transform voltageand flux equations tothe dq referenceframe.

    Model the inductiongenerator as avoltage behind atransient reactance.

    r

    as-

    as

    arbs-

    bsbr

    br-cs-

    cr-cr

    cs

    br axisbs axis

    cr axiscs axis

    as axis

    ar axisar-

    Stator winding

    Rotor winding

    Air gap

    Schematic diagram of aninduction generator

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 20

    Stator and rotorcircuits of an induction generator

    : Stator resistance: Rotor resistance: Stator leakage inductance: Rotor leakage inductance: Magnetising inductance

    srsrm

    RRLLL

    ss s mrr r m

    L L LL L L

    = +

    = +

    , : Stator and rotorself-inductances

    ss rrL L

    rotation

    rasi

    bsi

    csi

    ari

    bri

    cri

    asvbsv

    csv

    arvbrv

    crv,r rR L,s sR LmL

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 21

    DFIG 3rd order model(voltage behind transient reactance)

    ( )emr TTJdtd =1

    Stator voltages: Rotor voltages:

    Voltage components:

    Rotor swing equation:

    '

    'ds s ds qs d

    qs s qs ds q

    v R i X i ev R i X i e = + +

    = +

    md qr

    rr

    Le L =m

    q drrr

    Le L = mrmr

    s XXXXXX

    +

    +='ms XXX +=

    r

    mr

    r

    rro R

    LLRLT +== ( )

    s

    qsqdsde

    ieieT +

    =

    Transient reactance's:

    Open circuit time constant:

    ( )

    ( )

    '

    '

    1

    1

    d md qs s q s qr

    s o rrq m

    q ds s d s drs o rr

    de Le X X i s e vdt T Lde Le X X i s e vdt T L

    = + = + +

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 22

    Vector diagram of DFIG operating conditions

    r$

    d

    q

    sv

    si

    sjX i

    rvi r

    ri

    e

    ( )[ ]1 ms s s rs o rr

    Ld j X X j s jdt T L = + e e i e v

    In steady state

    r dr qrv jv= +v

    0d dt =e

    m rrr

    Ls Le v

    r sv e

    e : internal voltage vectorvs: terminal voltage vectorBr : rotor flux vectorvr : rotor voltage vector

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 23

    5. Control of DFIG-basedwind turbines

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 24

    Decoupled active and reactive power control

    The dq transformation allows the two rotorinjection voltages vqr and vdr to be regulatedseparately

    Power control Voltage control

    qrv

    drv

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 25

    DFIG current-mode control

    + - + +77

    P

    I

    qrv_qr refi qrv

    qri

    s mm s

    L LL v

    +

    spTeT

    r

    +-

    + +77

    P

    I

    drv_dr refi drv

    dri

    7+ +

    1s mL

    vcK7+ -

    s refv

    sv

    Voltage control loop:

    Torque control loop:

    Compensationterm

    Compensationterm

    Source: Ref [4]

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 26

    DFIG rotor flux magnitude and angle control

    ControllerA

    angrefXCompensator

    AuxLoop 3

    3auxu2auxu

    1auxu

    Power SystemStabiliser

    capabilities

    AuxLoop 2

    AuxLoop 1

    Provision ofSynchronising Power

    characteristic

    NetworkFrequency

    support

    Speed(slip)

    sVsrefV -+

    ePerefP -+

    AVRCompensator

    magrefXrV Rotor

    voltage

    Flux and Magnitude Angle Controller (FMAC)Source: Ref [3]

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 27

    Synchronous Generatorand DFIG vector diagrams

    Round rotor synchronous generator Doubly fed induction generator

    fd =rotor field flux vectorfd fdE =

    Efd = dc field voltagetE =terminal voltage vectorgE =generator internal voltage

    (voltage behind synchronousreactance)

    sI =stator current vectorr = rotor angleXS = synchronous reactance

    r =rotor flux vectorsV =terminal voltage vectorigE =generator internal voltage

    vector (voltage behindtransient reactance)

    isI =stator current vectorrV =rotor voltage vector

    ig = generator load angleir = rotor voltage angleX = transient reactance

    r

    d

    q

    igE

    sV

    isI

    isjXI

    ig

    ig

    rVir

    d

    q

    ssjXI

    r

    gE

    tE

    sI fd

    Source: Ref [3]

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 28

    FMAC basic scheme

    -

    rv

    Polartodq

    Transf.

    ir

    drv

    qrv

    7++-sV

    refsV 7

    -7++

    -7 ippp

    kk s+

    impm

    kk s+ ( )mg s

    iapa

    kk s+ ( )ag s

    ivpv

    kk s+ ( )vg s

    AVR compensator

    refe

    FMAC Controller

    E

    ref

    Controller AeP

    erefP

    Power-speed function formax. power extraction

    11 fsT+

    Filter

    Source: Ref [3]

    ( ) 1 0.024 1 0.0351 0.004 1 0.05vs sg s s s

    + +=

    + +( ) ( ) 1 0.41 2m a

    sg s g s s+

    = = +

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 29

    Auxiliary loop 1:Synchronising power characteristic

    -

    magrV

    Polartodq

    Transf.

    angrV

    rdV

    rqV

    7++-sV

    refsV 7

    + + -7+7+

    -7

    _ig sync

    _ig Tippp

    kk s+

    impm

    kk s+ ( )mg s

    iapa

    kk s+ ( )ag s

    slip

    Auxiliary loop to provide power-angle characteristic

    ivpv

    kk s+ ( )vg s

    AVR compensator

    DfigrefE

    Dfig

    FMAC basic scheme

    DfigE

    Dfigref

    Controller AeP

    erefP

    Power-speedfunction formax. Powerextraction

    11 fsT+

    Filter

    slip

    WashoutfilterIntegrator

    12

    11

    sTsT

    ++

    PhaseCompensator

    2 ss 1

    sTsT+

    Source: Ref [3]

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 30

    Auxiliary loop 2:Power System Stabiliser

    -

    m a grV

    P o l a rt o

    d qT r a n s f .

    a n grV

    r dV

    r qV

    7++-

    sV

    r e fsV 7

    + + -7+7+

    -7

    _i g Ti pp p

    kk s+

    i mp m

    kk s+ ( )mg s

    i ap a

    kk s+ ( )ag s

    A u x i l i a r y l o o p t o p r o v i d e P o w e r S y s t e m S t a b i l i s e r

    i vp v

    kk s+ ( )vg s

    A V R c o m p e n s a t o r

    D f i g r e fE

    D f i g

    F M A C b a s i c s c h e m e

    D f i gE

    D f i g r e f

    C o n t r o l l e r AeP

    e r e fP

    P o w e r - s p e e df u n c t i o n f o r

    m a x . P o w e re x t r a c t i o n

    11 fs T+

    F i l t e r

    s l i p

    2a u xus l i p

    W a s h - o u t C o m p e n s a t o r

    1s T

    s T+ ( )2ag s

    L i m i t e r

    S o u r c e : R e f [ 3 ]

    ( )2

    21 0 . 0 42 0 0 1 0 . 2a

    sg s s+

    = +

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 31

    Auxiliary loop 3:Short-term frequency regulation

    -

    magrV

    Polartodq

    Transf.

    angrV

    rdV

    rqV

    7++-sV

    refsV 7

    + + -7+7+

    -7

    2ig

    1igippp

    kk s+

    impm

    kk s+ ( )mg s

    iapa

    kk s+ ( )ag s

    slipAuxiliary loop tofacilitate short-term frequency

    support

    ivpv

    kk s+ ( )vg s

    AVR compensator

    DfigrefE

    Dfig

    FMAC basic scheme

    DfigE

    Dfigref

    Controller A

    eP

    erefP

    Power-speedfunction formax. Powerextraction

    11 fsT+

    Filter

    Networkfrequency

    2ig

    1sT

    sT+sf ( )1ag s ( )2ag s

    - 7+

    ( )3ag s1sT

    sT+

    Shaping function

    trefslip

    tslip

    r

    Source: Ref [3]

    ( )1500

    1 5ag s s

    =+

    ( )23 4 . 5

    1 5asg s s

    +=

    +

    ( )30 . 8 1 . 2

    1 3asg s s

    +=

    +

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 32

    6. Impact of wind farms on transientand dynamic stability

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 33

    Generic network model

    SynchronousGenerator

    DFIGWind Farm

    orsynchronous

    generator

    MainSystem

    LoadZF

    Fault 1

    Generator 1 Generator 2

    Source: Ref [3]

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 34

    Conventional synchronous plant operation

    Generator 1 (G1): Synchronous generatorGenerator 2 (G2): Synchronous generator

    FAULT 1 applied at t=0.2 s. Clearance time 150 ms.

    (a) Synchronousgenerator (G1)

    (b) Synchronousgenerator (G2)

    G1 G2

    G3

    Source: Ref [3]

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 35

    DFIG with synchronising power characteristic

    Generator 1 (G1): Synchronous generatorGenerator 2 (G2): DFIG with FMAC basic control

    FAULT 1 applied at t=0.2 s. Clearance time 150 ms.

    (a) Synchronousgenerator (G1)

    (b) DFIGwind farm (G2)

    G1 G2

    G3

    Source: Ref [3]

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 36

    Generator 1 (G1): Synchronous generatorGenerator 2 (G2): DFIG with FMAC basic control

    scheme plus auxiliary loop 1.G1 G2

    G3

    FAULT 1 applied at t=0.2 s. Clearance time 150 ms.

    (a) Synchronousgenerator (G1)

    (b) DFIGwind farm (G2)

    DFIG with synchronising power characteristic

    Source: Ref [3]

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 37

    DFIG with PSS capability

    Generator 1 (G1): Synchronous generatorGenerator 2 (G2): DFIG with FMAC basic control

    scheme plus auxiliary loop 2G1 G2

    G3

    FAULT 1 applied at t=0.2 s. Clearance time 150 ms.

    (a) Synchronousgenerator (G1) (b) DFIGwind farm (G2)

    Source: Ref [3]

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 38

    DFIG contribution to frequency regulation

    Loss of generation applied at t=0.5 s.

    (a) Main System (G3) (b) Synchronousgenerator (G2)

    Generator 1 (G1): Synchronous generatorGenerator 2 (G2): Synchronous generator

    G1 G2

    G3

    Source: Ref [3]

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 39

    DFIG contribution to frequency regulation

    Generator 1 (G1): Synchronous generatorGenerator 2 (G2): DFIG with FMAC basic control

    scheme plus auxiliary loop 3G1 G2

    G3

    Loss of generation applied at t=0.5 s.

    (a) Main System (G3) (b) DFIGwind farm (G2)

    Source: Ref [3]

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 40

    Influence ofwind generation on dynamic stability

    installed capacity of generator G2 (MVA)Capacitor factor 2 maximum capacity of G2 MVA (2400 MVA)f =

    2242402,5202,8001/10

    7508002,5202,8001/3

    1,5001,6002,5202,8002/3

    2,2402,4002,5202,8001

    G2Rating(MW)

    G2Rating(MVA)

    G1Rating(MW)

    G1Rating(MVA)

    G2f2

    Operating situationsFixed power P1 of G1

    G1(SouthernScotland)

    G2(NorthernScotland)

    Main System(England-Wales)

    Load L1

    Bus1 Bus2

    Bus3

    Bus4X1 X2

    X3

    Load

    Eigenvalue analysis

    Source: Ref [2]

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 41

    Generator 2: Synchronous generator

    Variation of dominant eigenvalue loci with generation capacityAVR Control AVR + PSS Control

    Influence ofwind generation on dynamic stability

    Source: Ref [2]

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 42

    Generator 2: Wind generation

    Variation of dominant eigenvalue loci with generation capacity

    FSIG-wind farm DFIG wind farm withcurrent-mode control

    Influence ofwind generation on dynamic stability

    Source: Ref [2]

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 43

    Generator 2: DFIG wind farm with FMAC control

    Variation of dominant eigenvalue loci with generation capacityFMAC basic FMAC basic + PSS control

    Influence ofwind generation on dynamic stability

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 44

    PSS for a generic DFIG controller

    GenericDFIG

    Control

    srefV

    erefP

    drV

    qrV Rectan.to polartransf. rangV

    Polar torectan.transf.

    drV

    qrV

    rmagV

    PSSslip

    + +

    PSSu

    Source: Ref [5]

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 45

    DFIG Power System Stabiliser

    GenericDFIG

    Control

    srefV

    e r e fP

    d rV

    q rV R e c t a n .

    t o p o l a rt r a n s f . r a n gV

    P o l a r t or e c t a n .

    t r a n s f .

    d rV

    q rV

    r m a gV

    + +

    P S Sus l i p

    W a s h o u t C o m p e n s a t o r

    51 5

    ss+

    213 0 0 1 0 . 2 s +

    L i m i t e r0 . 8

    0 . 8

    S o u r c e : R e f [ 5 ]

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 46

    Control performance (transient stability)Generator 1 (G1): Synchronous generatorGenerator 2 (G2): DFIG

    Fault applied at t=0.2 s with a clearance time of 150ms. (Full line:DFIG with PSS; dotted line: DFIG without PSS)

    DFIG in super synchronousOperation (slip = -0.2)

    DFIG in sub synchronousOperation (slip = 0.2)

    G1 G2

    G3

    Source: Ref [5]

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 47

    Control performance (dynamic stability)Generator 1 (G1): Synchronous generatorGenerator 2 (G2): DFIG

    Operating situations

    G1 G2

    G3

    675-1828570.2

    2,3033751,928-0.2

    TotalpowerOutput MW

    ConverterpowerMW

    DFIG Statorpower MW

    Slip

    Influence of PSS loop on thedominant eigenvalue for subsynchronous (s=0.2) and supersynchronous operation (s=-0.2).(With PSS ; without PSS C)

    Source: Ref [5]

  • Dr Olimpo Anaya-Lara TUTORIAL: Control of Wind Generation Systems, 4 December 2006, Napa, CA, USA 48

    Reference for further reading1. P. Kundur: "Power systems stability and control," McGraw-Hill, 1994.2. O. Anaya-Lara, F. M. Hughes, N. Jenkins, and G. Strbac, Influence of wind farms on

    power system dynamic and transient stability, Wind Engineering, Vol. 30, No. 2, pp.107-127, March 2006.

    3. F. M. Hughes, O. Anaya-Lara, N. Jenkins, and G. Strbac, Control of DFIG-based windgeneration for power network support, IEEE Transactions on Power Systems, Vol. 20,No. 4, pp. 1958-1966, November 2005.

    4. O. Anaya-Lara, F. M. Hughes, N. Jenkins, and G. Strbac, Rotor flux magnitude andangle control strategy for doubly fed induction generators, Wind Energy, Vol. 9. No. 5,pp. 479-495, June 2006.

    5. O. Anaya-Lara, F. M. Hughes, N. Jenkins, and G. Strbac, Power system stabiliser for ageneric DFIG-based wind farm controller, paper accepted for publication at the IEEAC/DC Conference, March, 2006

  • Modelling and Controlof Wind Generation Systems

    Dr Olimpo Anaya-Lara

    TUTORIAL:Transmission and Integration of Wind Power Systems:

    Issues and Solutions2nd International Conference on Integration of Renewable and

    Distributed Energy ResourcesDecember 4-8, 2006, Napa, CA, US