Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba,...

30
Analyzing Vulnerability of Electricity Distribution Networks to DER disruptions Devendra Shelar Saurabh Amin Massachusetts Institute of Technology ACC 2015 D. Shelar, S. Amin July 2, 2015 1 / 30

Transcript of Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba,...

Page 1: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Analyzing Vulnerability of ElectricityDistribution Networks to DER

disruptions

Devendra ShelarSaurabh Amin

Massachusetts Institute of Technology

ACC 2015

D. Shelar, S. Amin July 2, 2015 1 / 30

Page 2: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Motivation and Focus

Outline

1 Motivation and Focus

2 Vulnerability analysis under DER disruptions

3 Solution Approach

4 Computational Results

D. Shelar, S. Amin July 2, 2015 2 / 30

Page 3: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Motivation and Focus

Vulnerability analysis & control of distribution networks

Questions

How to assess vulnerability of electricity networks to disruptions ofDistributed Energy Resources (DERs)?

What is the optimal attacker interdiction plan?

Approach

Attacker-defender model; Network interdiction formulation;Characterization of worst-case attacks; Defender strategies

Results

Interdiction model captures threats to DERs / smart inverters;

Structural results on worst case attacks that maximize weighted sumof cost due to loss of voltage regulation and cost of load control;

Efficient (greedy) technique for solving interdiction problems withnonlinear power flow constraints;

D. Shelar, S. Amin July 2, 2015 3 / 30

Page 4: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Motivation and Focus

Main idea: Model of DER disruptions

Vulnerability: Control Center andSubstation communications

Substation

Transmission linesGeneration

Control Central

Distributionlines

Typical communication

New communicationrequirenments

Hack control center-substationcommunications

Introduce incorrect set-points anddisrupt DERs

Create supply-demand mismatch

Cause voltage bounds violations

Induce cascading failures

D. Shelar, S. Amin July 2, 2015 4 / 30

Page 5: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Vulnerability analysis under DER disruptions

Outline

1 Motivation and Focus

2 Vulnerability analysis under DER disruptions

3 Solution Approach

4 Computational Results

D. Shelar, S. Amin July 2, 2015 5 / 30

Page 6: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Vulnerability analysis under DER disruptions

Network interdiction

Network interdiction problem

Perfect information leader-follower game;

Attacker moves first and defender moves next.

Problem statement:

Determine attacker’s interdiction plan (compromise DERs) tomaximize the sum of loss of voltage regulation (LOVR), and loadshedding (LL),

Under defender choices:

Non-compromised DERs provide active and reactive power (VAR);Demand at consumption nodes may be partly satisfied;Small LOVR acceptable.

D. Shelar, S. Amin July 2, 2015 6 / 30

Page 7: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Vulnerability analysis under DER disruptions

Related work

Control of distribution systems

Steven Low, Javad Lavaei, et al.: Convex optimal power flow (on treenetworks)

Konstantin Turitsyn e. al., Ian A. Hiskens. et. al.: Distributedoptimal VAR control balancing voltage regulation and line losses

Resilience and security of networked systems

Ross Baldick, Kevin Wood: Interdiction for transmission networks

Daniel Bienstock, et al.: Cascading failures with linear power flow

Rakesh Bobba, Robin Berthier: AMI security, false-data injection

D. Shelar, S. Amin July 2, 2015 7 / 30

Page 8: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Vulnerability analysis under DER disruptions

Network model

Tree networks

G = (N , E) - tree network of nodes and edges

νi = |Vi |2 - square of voltage magnitude at node i

`ij = |Iij |2 - square of current magnitude from node i to j

zij = rij + jxij - impedance on line (i , j)

Pij ,Qij - real and reactive power from node i to node j

Sij = Pij + jQij - complex power flowing on line (i , j) ∈ E

V0

P01,Q01

Vi

Pij ,Qij

Vj Vy

Py ,Qy

Vk Vl Vz

Pik ,Qik

D. Shelar, S. Amin July 2, 2015 8 / 30

Page 9: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Vulnerability analysis under DER disruptions

Power flow and operational constraints

Generated power: sgi = pgi + jqgiConsumed power: sci = pci + jqciPower flow

Pij =∑

k:j→k

Pjk + pcj − pgj + rij`ij

Qij =∑

k:j→k

Qjk + qcj − qgj + xij`ij

νj = νi − 2(rijPij + xijQij) + (r2ij + x2ij )`ij

`ij =P2ij + Q2

ij

νi

Voltage limitsν i ≤ νi ≤ ν i

Maximum injected power

−√sg2

i − (pgi )2 ≤ qgi ≤√

sg2i − (pgi )2

D. Shelar, S. Amin July 2, 2015 9 / 30

Page 10: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Vulnerability analysis under DER disruptions

Attacker modelAttacker strategy: ψ = (δ, p̃g a, q̃g a)

δ is a vector, with elements δi = 1 if DER i is compromised and zero otherwise;

p̃g a : Active power set-points induced by the attacker;

q̃g a : Reactive power set-points induced by the attacker.

Satisfy resource constraintn∑

i=1

δi ≤ M

M: attacker’s budget.

Change on set-points due to theattack

Power injected by each DER constrained by:

−√

sg 2i − (p̃g a

i )2 ≤ q̃g a

i ≤√

sg 2i − (p̃g a

i )2

D. Shelar, S. Amin July 2, 2015 10 / 30

Page 11: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Vulnerability analysis under DER disruptions

Attacker’s impact with no defender response

Scenario: Attacker introduces incorrect set-points s̃g a that lead voltagebelow (or above) the permitted thresholds.

DER Interconnection guidelines would mandate disconnections of othernon-compromised DERs.

This could cause disconnection of DERs or load-shedding which, if uncontrolled,

may result in failures in other DNs.

D. Shelar, S. Amin July 2, 2015 11 / 30

Page 12: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Vulnerability analysis under DER disruptions

Defender model

Defender response: φ = (γ, p̃gd , q̃gd)

γ ∈ [0, 1] the portion of controlled loads;

p̃gd : New active power set-points set by defender;

q̃gd : New reactive power set-points set by the defender.

New set-points areobtained for thenoncompromisedDERs.

pci = γipcdi , qci = γiqc

di

Power injected by each DER constrained by:

−√

sg 2i − (p̃gd

i )2 ≤ q̃gd

i ≤√

sg 2i − (p̃gd

i )2

Final PV outputpgi = δi p̃g

ai + (1− δi )p̃gd

i

qgi = δi q̃gai + (1− δi )q̃gd

i

How to choose the defender response (set-points)?

D. Shelar, S. Amin July 2, 2015 12 / 30

Page 13: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Vulnerability analysis under DER disruptions

Losses

Loss of voltage regulation

LLOVR ≡ maxi∈N0

Wi (ν i − νi )+

Cost incurred due to load control

LVOLL ≡∑

i∈N0

Ci (1− γi )

Composite loss function

L(ψ, φ) = LLOVR + LVOLL

D. Shelar, S. Amin July 2, 2015 13 / 30

Page 14: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Vulnerability analysis under DER disruptions

Problem statement

Find attacker’s interdiction plan to maximize composite loss L(ψ, φ), giventhat defender optimally responds

maxψ

minφ

max

i∈N0

Wi (ν i − νi )+ +∑

i∈N0

Ci (1− γi )

s.t. Power flow, DER constraints and resource contraints

φ = (γ, p̃gd , q̃gd)

ψ = (δ, p̃ga, q̃ga)

δ ∈ {0, 1}N , γ ∈∏

i∈N0

[γi, 1]

This bilevel-problem is hard!

Outer problem: mixed-integer attack variables

Inner problem: nonlinear in control variables

D. Shelar, S. Amin July 2, 2015 14 / 30

Page 15: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Solution Approach

Outline

1 Motivation and Focus

2 Vulnerability analysis under DER disruptions

3 Solution Approach

4 Computational Results

D. Shelar, S. Amin July 2, 2015 15 / 30

Page 16: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Solution Approach

Bilevel Network Interdiction Problem

[ADLP1] z∗1 = minx∈X

z1(x),where

z1(x) ≡ maxy

cTy

s.t. Ay ≤ b

0 ≤ y ≤ U(1− x).

[ADLP2] z∗2 = minx∈X

z2(x),where

z2(x) ≡ maxy

(cT − xTR)y

s.t. Ay ≤ b

0 ≤ y ≤ U(1− x)

where R = diag(r), r = (r1 . . . rn)T and rk is an upper bound to theoptimal dual variable for the constraint yk ≤ uk(1− xk).

Can be solved using Bender’s decomposition

D. Shelar, S. Amin July 2, 2015 16 / 30

Page 17: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Solution Approach

Simple case

For a fixed defender choice and ignoring loss of freq. regulation:

maxδ

(maxi∈N0

Wi (ν i − νi )+)

s.t. Power flow, DER constraints, and resource contraints

Results for this simple case also extend to the case when R/X ratio ishomogeneous and defender responds with only DER control.

D. Shelar, S. Amin July 2, 2015 17 / 30

Page 18: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Solution Approach

Precedence description

0 a b c i m

e d k

g j

In the above figure

j ≺i k: Node j is before node k with respect to node i

e =i k: Node e is at the same level as node k with respect to node i

b ≺ k: Node b is before node k because of b is ancestor of k

D. Shelar, S. Amin July 2, 2015 18 / 30

Page 19: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Solution Approach

Optimal interdiction plan

Theorem

For a tree network, given nodes i (pivot), j , k ∈ N0:

If DGs at j , k are homogenous and j is before k w.r.t. i , then DG disruptionat k will have larger effect on νi at i (relative to disruption at node j);

If DGs at j , k are homogenous and j is at the same level as k w.r.t. i , thenDG disruptions at j and k will have the same effect on νi at i ;

Let νoldi /νnewi be |Vi |2 before/after the attack

∆(νi ) = νoldi − νnewi

∆j(νi ) < ∆k(νi )

∆e(νi ) ≈ ∆k(νi )

0 a b c i m

e d k

g j

j ≺i ke =i kb ≺ k

D. Shelar, S. Amin July 2, 2015 19 / 30

Page 20: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Solution Approach

Computing optimal attack: fixed defender choices

1: procedure OptimalAttackForFixedResponse2: for i ∈ N0 do3: for j ∈ N0 do4: Compute ∆j(νi )5: end for6: Sort js in decreasing order of ∆j(νi ) values7: Compute J∗i by picking js corresponding to top M ∆j(νi )

values.8: end for9: k := Wi arg min

i∈N0

νi −∆J∗i(νi )

10: return J∗ := J∗k (Pick J∗i which violates voltage constraint themost)

11: end procedure

O(n2log n)

D. Shelar, S. Amin July 2, 2015 20 / 30

Page 21: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Solution Approach

Greedy algorithm for optimal attack: defender response

Compute φ given δfor problem CLPF (δ)

Compute δ given φfor the problem FDR(φ)

δ ∈ ds ?

iter > max ?

timeout

δ

φ

δ

no

yes

success

failure

no

yes

δ∗, φ ∗

δ∗ = 0, φ ∗ = 0L∗ = 0, iter = 0δ = 0, φ = 0, ds = {}

if L(δ, φ) > L∗?then δ∗ = δ, φ∗ = φ

δ

φ

ds = ds ∪ {δ}iter = iter + 1

δ

δ

D. Shelar, S. Amin July 2, 2015 21 / 30

Page 22: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Solution Approach

IEEE 37-node network

0

1

23

4

5 6 7

8

9

10

1112

13

16171819

20 21

22 23

24

2526

2728

2829

31 32 33 34 36

35 35

14

15

SubstationControlCenter

s̃gd s̃g

s̃ga

Nodes with PVs

Critical Nodes

D. Shelar, S. Amin July 2, 2015 22 / 30

Page 23: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Solution Approach

Secure network designs: which DERs to secure?

0

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

0

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Design 1 Design 2

Consider a DN with balanced tree topology, homogeneous R/X ratio, andhomogenous nodes. In an optimally secure design:

If any node is secure, all its child nodes must also be secure;

There exists at most one intermediate level (depth) that containsboth vulnerable and secure nodes;

In this intermediate level, the secure nodes are “uniformlydistributed”.

D. Shelar, S. Amin July 2, 2015 23 / 30

Page 24: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Computational Results

Outline

1 Motivation and Focus

2 Vulnerability analysis under DER disruptions

3 Solution Approach

4 Computational Results

D. Shelar, S. Amin July 2, 2015 24 / 30

Page 25: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Computational Results

Results: VOLL vs |δ|, γ = 0.5

0 2 4 6 8 10 12 14

0

200

400

600

800

1000

1200

1400

1600

|δ |

VOLL

(in$)

W

C= 2

W

C= 10

W

C= 18

BF

GA

BC NPF

BC LPF

D. Shelar, S. Amin July 2, 2015 25 / 30

Page 26: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Computational Results

Results: LOVR vs |δ|, γ = 0.5

0 2 4 6 8 10 12 14

0

200

400

600

800

1000

1200

|δ |

LOVR

(in$)

W

C= 2

W

C= 10

W

C= 18

BF

GA

BC NPF

BC LPF

D. Shelar, S. Amin July 2, 2015 26 / 30

Page 27: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Computational Results

Results: Homogeneous Network

0 2 4 6 8 10 12

0.8

0.9

1

1.1

1.2

1.3

Distance from Substation

ν

ν

ν

M = 0

M = 7, γ = 1

BF, M = 7

GA, M = 7

BC, M = 7

RA, M = 7

Figure : ν vs Distance fromSubstation

0 0.005 0.01 0.015 0.02 0.025 0.030

0.005

0.01

0.015

0.02

0.025

0.03

qg i

n p

.u.

pg in p.u.

θ = arctanx

r

PV output range

M = 0

M = 2

M = 6

M = 7

Figure : Reactive Power vs Real PowerOutput of PVs

D. Shelar, S. Amin July 2, 2015 27 / 30

Page 28: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Computational Results

Results: Homogeneous vs Heterogeneous Network

0 0.005 0.01 0.015 0.02 0.025 0.030

0.005

0.01

0.015

0.02

0.025

0.03

qg i

n p

.u.

pg in p.u.

θ = arctanx

r

PV output range

M = 0

M = 2

M = 6

M = 7

Figure : ν vs Distance fromSubstation

0 0.005 0.01 0.015 0.02 0.025 0.030

0.005

0.01

0.015

0.02

0.025

0.03

qg i

n p

.u.

pg in p.u.

θ = arctanx

r

PV output ranges

M = 0

M = 2

M = 6

M = 7

Figure : Reactive Power vs Real PowerOutput of PVs

D. Shelar, S. Amin July 2, 2015 28 / 30

Page 29: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Computational Results

Main insights

Results using greedy algorithm compare very well with results from(more computationally intensive) brute force and Bender’s cut;

Optimal attack plans with defender response (using both DER controland load control) show downstream preference;

When cost of load control is high (resp. low), defender permits (resp.does not permit) increase in cost due to LOVR;

For small # of compromised DERs, load control is preferred overLOVR;

Beyond a certain attack intensity, load control is not effective andattacker starts targeting upstream nodes (and their voltage bounds).

D. Shelar, S. Amin July 2, 2015 29 / 30

Page 30: Analyzing Vulnerability of Electricity Distribution ...shelard/slides/ACC2015.pdf · Rakesh Bobba, Robin Berthier: AMI security, false-data injection D. Shelar, S. Amin July 2, 2015

Computational Results

Vulnerability analysis & control of distribution networks

Questions

How to assess vulnerability of electricity networks to disruptions ofDistributed Energy Resources (DERs)?What is the optimal attacker interdiction plan?

Approach

Attacker-defender model; Network interdiction formulation;Characterization of worst-case attacks; Defender strategies

Results

Interdiction model captures threats to DERs / smart inverters;

Structural results on worst case attacks that maximize weighted sumof cost due to loss of voltage regulation and cost of load control;

Efficient (greedy) technique for solving interdiction problems withnonlinear power flow constraints;

D. Shelar, S. Amin July 2, 2015 30 / 30