Analyzing Arrow's Theorem Through Dependence and ......Analyzing Arrow’s Theorem Through...

95
Analyzing Arrow’s Theorem Through Dependence and Independence Logic Fan Yang University of Helsinki UH-CAS Workshop on Mathematical Logic Helsinki, Oct. 30 - Nov. 2, 2018 ———————————————– Partly based on joint work with Eric Pacuit (Maryland) 1/27

Transcript of Analyzing Arrow's Theorem Through Dependence and ......Analyzing Arrow’s Theorem Through...

  • Analyzing Arrow’s Theorem Through Dependenceand Independence Logic

    Fan YangUniversity of Helsinki

    UH-CAS Workshop on Mathematical LogicHelsinki, Oct. 30 - Nov. 2, 2018

    ———————————————–Partly based on joint work with Eric Pacuit (Maryland)

    1/27

  • Outline

    1 Arrow’s Impossiblity Theorem

    2 Formalizing Arrow’s Theorem in dependence and independencelogic

    3 Arrow’s Theorem as a dependency strengthening theorem

    2/27

  • Social Choice Theory

    3/27

  • Preference Aggregation

    A set of alternatives: A = {a,b, c,d , . . . }A finite set of voters: {v1, . . . , vn}A ranking R ⊆ A× A is a transitive and complete relation on A.A linear ranking is a ranking that is a linear relation.Denote by L(A) the set of all linear rankings of A.

    groupyear voter 1 voter 2 · · · voter ndecision

    2000 abc cab · · · acb ?2001 bac cba · · · cba ?2002 cba bca · · · acb ?2003 cab cba · · · acb ?

    4/27

  • Condorcet Paradox (18th century)

    Problem with the Majority Rule:

    groupvoter 1 voter 2 voter 3decision

    a c bb a c ?c b a

    Does the group prefer a over b? Yes.Does the group prefer b over c? Yes.Does the group prefer a over c? No.

    a > b > c > a

    5/27

  • Condorcet Paradox (with arbitrary rankings)

    Problem with the Majority Rule:

    groupvoter 1 voter 2 voter 3 voter 4 voter 5decision

    a a c b bb∼c b a c c ?

    c b a a

    Does the group prefer a strictly over b? Yes.Does the group prefer b strictly over c? Yes.Does the group prefer a strictly over c? No.

    a > b > c > a

    May’s Theorem (1952): When |A| ≤ 2, the majority rule is the only“fair" aggregation rule.

    6/27

  • Condorcet Paradox (with arbitrary rankings)

    Problem with the Majority Rule:

    groupvoter 1 voter 2 voter 3 voter 4 voter 5decision

    a a c b bb∼c b a c c ?

    c b a a

    Does the group prefer a strictly over b? Yes.Does the group prefer b strictly over c? Yes.Does the group prefer a strictly over c? No.

    a > b > c > a

    May’s Theorem (1952): When |A| ≤ 2, the majority rule is the only“fair" aggregation rule.

    6/27

  • Desiderata

    1 The voters’ votes should completely determine the group decision.

    2 The voters’ votes are not constrained in any way.

    3 The group decision should depend in the right way on the voters’ votes.

    Dictatorship

    Theorem (Arrow 1963)If |A| ≥ 3, then any preference aggregation rule F : D → L(A)(D ⊆ L(A)n) satisfying Universal Domain, Independence of IrrelevantAlternatives and Unanimity is a Dictatorship.

    7/27

  • Arrow’s Impossibility Theorem

    Theorem (Arrow 1963)If |A| ≥ 3, then any preference aggregation rule F : D → L(A)(D ⊆ L(A)n) satisfying Universal Domain, Independence of IrrelevantAlternatives and Unanimity is a Dictatorship.

    Nobel Prize in Economics, 1972Kenneth Arrow

    Nobel Prize in Economics, 1998

    Amartya Kumar Sen

    “Liberal paradox”

    8/27

  • Arrow’s Impossibility Theorem

    Theorem (Arrow 1963)If |A| ≥ 3, then any preference aggregation rule F : D → L(A)(D ⊆ L(A)n) satisfying Universal Domain, Independence of IrrelevantAlternatives and Unanimity is a Dictatorship.

    groupvoter 1 voter 2 · · · voter ndecision

    abc cab · · · acb abcbac cba · · · cba cbacba bca · · · abc bcacab cba · · · acb cab

    v1 v2 · · · vn uabc cab · · · acb abccab bca · · · cba cbacba cab · · · abc bcacab bca . . . acb cab

    a profile R

    = F (R)dom(F ) = L(A)n

    v1 v2 v3 uabc bac bca cbacab bca bac bcaabc bac bca bac

    v1 v2 v3 uabc cab acb abcbca abc bac abccab acb abc cab

    v1 · · · vi · · · vn uabc · · · acb · · · acb acbbca · · · abc · · · bac abccba · · · cab · · · bca cab

    Goal of the talk:

    Formalize & analyze Arrow’s Theorem in

    Dependence and Independence Logic

    Previous formalizations :in propositional logic: [Tang, Lin 2009]in first-order logic: [Grandi, Endriss 2013]in modal logic: [Ågotnes, van der Hoek, Wooldridge 2011], [Cinà, Endriss 2015]in higher order logic: [Nipkow 2009], [Wiedijk 2007]

    9/27

  • Arrow’s Impossibility Theorem

    Theorem (Arrow 1963)If |A| ≥ 3, then any preference aggregation rule F : D → L(A)(D ⊆ L(A)n) satisfying Universal Domain, Independence of IrrelevantAlternatives and Unanimity is a Dictatorship.

    groupvoter 1 voter 2 · · · voter ndecision

    abc cab · · · acb abcbac cba · · · cba cbacba bca · · · abc bcacab cba · · · acb cab

    v1 v2 · · · vn uabc cab · · · acb abccab bca · · · cba cbacba cab · · · abc bcacab bca . . . acb cab

    a profile R

    = F (R)

    dom(F ) = L(A)n

    v1 v2 v3 uabc bac bca cbacab bca bac bcaabc bac bca bac

    v1 v2 v3 uabc cab acb abcbca abc bac abccab acb abc cab

    v1 · · · vi · · · vn uabc · · · acb · · · acb acbbca · · · abc · · · bac abccba · · · cab · · · bca cab

    Goal of the talk:

    Formalize & analyze Arrow’s Theorem in

    Dependence and Independence Logic

    Previous formalizations :in propositional logic: [Tang, Lin 2009]in first-order logic: [Grandi, Endriss 2013]in modal logic: [Ågotnes, van der Hoek, Wooldridge 2011], [Cinà, Endriss 2015]in higher order logic: [Nipkow 2009], [Wiedijk 2007]

    9/27

  • Arrow’s Impossibility Theorem

    Theorem (Arrow 1963)If |A| ≥ 3, then any preference aggregation rule F : D → L(A)(D ⊆ L(A)n) satisfying Universal Domain, Independence of IrrelevantAlternatives and Unanimity is a Dictatorship.

    groupvoter 1 voter 2 · · · voter ndecision

    abc cab · · · acb abcbac cba · · · cba cbacba bca · · · abc bcacab cba · · · acb cab

    v1 v2 · · · vn uabc cab · · · acb abccab bca · · · cba cbacba cab · · · abc bcacab bca . . . acb cab

    a profile R

    = F (R)

    dom(F ) = L(A)n

    v1 v2 v3 uabc bac bca cbacab bca bac bcaabc bac bca bac

    v1 v2 v3 uabc cab acb abcbca abc bac abccab acb abc cab

    v1 · · · vi · · · vn uabc · · · acb · · · acb acbbca · · · abc · · · bac abccba · · · cab · · · bca cab

    Goal of the talk:

    Formalize & analyze Arrow’s Theorem in

    Dependence and Independence Logic

    Previous formalizations :in propositional logic: [Tang, Lin 2009]in first-order logic: [Grandi, Endriss 2013]in modal logic: [Ågotnes, van der Hoek, Wooldridge 2011], [Cinà, Endriss 2015]in higher order logic: [Nipkow 2009], [Wiedijk 2007]

    9/27

  • Arrow’s Impossibility Theorem

    Theorem (Arrow 1963)If |A| ≥ 3, then any preference aggregation rule F : D → L(A)(D ⊆ L(A)n) satisfying Universal Domain, Independence of IrrelevantAlternatives and Unanimity is a Dictatorship.

    groupvoter 1 voter 2 · · · voter ndecision

    abc cab · · · acb abcbac cba · · · cba cbacba bca · · · abc bcacab cba · · · acb cab

    v1 v2 · · · vn uabc cab · · · acb abccab bca · · · cba cbacba cab · · · abc bcacab bca . . . acb cab

    a profile R

    = F (R)dom(F ) = L(A)n

    v1 v2 v3 uabc bac bca cbacab bca bac bcaabc bac bca bac

    v1 v2 v3 uabc cab acb abcbca abc bac abccab acb abc cab

    v1 · · · vi · · · vn uabc · · · acb · · · acb acbbca · · · abc · · · bac abccba · · · cab · · · bca cab

    Goal of the talk:

    Formalize & analyze Arrow’s Theorem in

    Dependence and Independence Logic

    Previous formalizations :in propositional logic: [Tang, Lin 2009]in first-order logic: [Grandi, Endriss 2013]in modal logic: [Ågotnes, van der Hoek, Wooldridge 2011], [Cinà, Endriss 2015]in higher order logic: [Nipkow 2009], [Wiedijk 2007]

    9/27

  • Arrow’s Impossibility Theorem

    Theorem (Arrow 1963)If |A| ≥ 3, then any preference aggregation rule F : D → L(A)(D ⊆ L(A)n) satisfying Universal Domain, Independence of IrrelevantAlternatives and Unanimity is a Dictatorship.

    groupvoter 1 voter 2 · · · voter ndecision

    abc cab · · · acb abcbac cba · · · cba cbacba bca · · · abc bcacab cba · · · acb cab

    v1 v2 · · · vn uabc cab · · · acb abccab bca · · · cba cbacba cab · · · abc bcacab bca . . . acb cab

    a profile R

    = F (R)dom(F ) = L(A)n

    v1 v2 v3 uabc bac bca cbacab bca bac bcaabc bac bca bac

    v1 v2 v3 uabc cab acb abcbca abc bac abccab acb abc cab

    v1 · · · vi · · · vn uabc · · · acb · · · acb acbbca · · · abc · · · bac abccba · · · cab · · · bca cab

    Goal of the talk:

    Formalize & analyze Arrow’s Theorem in

    Dependence and Independence Logic

    Previous formalizations :in propositional logic: [Tang, Lin 2009]in first-order logic: [Grandi, Endriss 2013]in modal logic: [Ågotnes, van der Hoek, Wooldridge 2011], [Cinà, Endriss 2015]in higher order logic: [Nipkow 2009], [Wiedijk 2007]

    9/27

  • Arrow’s Impossibility Theorem

    Theorem (Arrow 1963)If |A| ≥ 3, then any preference aggregation rule F : D → L(A)(D ⊆ L(A)n) satisfying Universal Domain, Independence of IrrelevantAlternatives and Unanimity is a Dictatorship.

    groupvoter 1 voter 2 · · · voter ndecision

    abc cab · · · acb abcbac cba · · · cba cbacba bca · · · abc bcacab cba · · · acb cab

    v1 v2 · · · vn uabc cab · · · acb abccab bca · · · cba cbacba cab · · · abc bcacab bca . . . acb cab

    a profile R

    = F (R)dom(F ) = L(A)n

    v1 v2 v3 uabc bac bca cbacab bca bac bcaabc bac bca bac

    v1 v2 v3 uabc cab acb abcbca abc bac abccab acb abc cab

    v1 · · · vi · · · vn uabc · · · acb · · · acb acbbca · · · abc · · · bac abccba · · · cab · · · bca cab

    Goal of the talk:

    Formalize & analyze Arrow’s Theorem in

    Dependence and Independence Logic

    Previous formalizations :in propositional logic: [Tang, Lin 2009]in first-order logic: [Grandi, Endriss 2013]in modal logic: [Ågotnes, van der Hoek, Wooldridge 2011], [Cinà, Endriss 2015]in higher order logic: [Nipkow 2009], [Wiedijk 2007]

    9/27

  • Arrow’s Impossibility Theorem

    Theorem (Arrow 1963)If |A| ≥ 3, then any preference aggregation rule F : D → L(A)(D ⊆ L(A)n) satisfying Universal Domain, Independence of IrrelevantAlternatives and Unanimity is a Dictatorship.

    Goal of the talk:

    Formalize & analyze Arrow’s Theorem in

    Dependence and Independence Logic

    Previous formalizations :in propositional logic: [Tang, Lin 2009]in first-order logic: [Grandi, Endriss 2013]in modal logic: [Ågotnes, van der Hoek, Wooldridge 2011], [Cinà, Endriss 2015]in higher order logic: [Nipkow 2009], [Wiedijk 2007]

    9/27

  • Formalizing Arrow’s Theorem in dependence andindependence logic

    10/27

  • Logics for expressing dependencies

    Henkin Quantifiers (1961):

    ∀u ∃v ∀x ∃y φ

    (∀u ∃v∀x ∃y

    Independence-Friendly Logic (Hintikka and Sandu, 1989):

    ∀u∃v∀x∃y/{u}φ

    Dependence Logic (Väänänen 2007):

    ∀u∃v∀x∃y( =(x ; y) ∧ φ)

    ∃fIndependence Logic (Grädel, Väänänen 2013):

    ∀u∃v∀x∃y(u ⊥ y ∧ φ)×

    Inclusion Logic (Galliani 2012):∀u∃x(u ⊆ x ∧ φ)

    Thm. (Enderton, Walkoe, Hintikka)FO+Henkin quantifiers ≡ IF-logic≡ Σ11Thm. (Galliani and Hella 2013) Inclusion logic ≡ GFP+ ≡finite,< PTIME

    11/27

  • Logics for expressing dependencies

    Henkin Quantifiers (1961):

    ∀u ∃v ∀x ∃y φ

    (∀u ∃v∀x ∃y

    Independence-Friendly Logic (Hintikka and Sandu, 1989):

    ∀u∃v∀x∃y/{u}φ

    Dependence Logic (Väänänen 2007):

    ∀u∃v∀x∃y( =(x ; y) ∧ φ)

    ∃fIndependence Logic (Grädel, Väänänen 2013):

    ∀u∃v∀x∃y(u ⊥ y ∧ φ)×

    Inclusion Logic (Galliani 2012):∀u∃x(u ⊆ x ∧ φ)

    Thm. (Enderton, Walkoe, Hintikka)FO+Henkin quantifiers ≡ IF-logic≡ Σ11Thm. (Galliani and Hella 2013) Inclusion logic ≡ GFP+ ≡finite,< PTIME

    11/27

  • Logics for expressing dependencies

    Henkin Quantifiers (1961):

    ∀u ∃v ∀x ∃y φ

    (∀u ∃v∀x ∃y

    Independence-Friendly Logic (Hintikka and Sandu, 1989):

    ∀u∃v∀x∃y/{u}φ

    Dependence Logic (Väänänen 2007):

    ∀u∃v∀x∃y( =(x ; y) ∧ φ)

    ∃fIndependence Logic (Grädel, Väänänen 2013):

    ∀u∃v∀x∃y(u ⊥ y ∧ φ)×

    Inclusion Logic (Galliani 2012):∀u∃x(u ⊆ x ∧ φ)

    Thm. (Enderton, Walkoe, Hintikka)FO+Henkin quantifiers ≡ IF-logic≡ Σ11Thm. (Galliani and Hella 2013) Inclusion logic ≡ GFP+ ≡finite,< PTIME

    11/27

  • Logics for expressing dependencies

    Henkin Quantifiers (1961): ∀u ∃v ∀x ∃y φ

    (∀u ∃v∀x ∃y

    Independence-Friendly Logic (Hintikka and Sandu, 1989):

    ∀u∃v∀x∃y/{u}φ

    Dependence Logic (Väänänen 2007):

    ∀u∃v∀x∃y( =(x ; y) ∧ φ)

    ∃fIndependence Logic (Grädel, Väänänen 2013):

    ∀u∃v∀x∃y(u ⊥ y ∧ φ)×

    Inclusion Logic (Galliani 2012):∀u∃x(u ⊆ x ∧ φ)

    Thm. (Enderton, Walkoe, Hintikka)FO+Henkin quantifiers ≡ IF-logic≡ Σ11Thm. (Galliani and Hella 2013) Inclusion logic ≡ GFP+ ≡finite,< PTIME

    11/27

  • Logics for expressing dependencies

    Henkin Quantifiers (1961):

    ∀u ∃v ∀x ∃y φ

    (∀u ∃v∀x ∃y

    Independence-Friendly Logic (Hintikka and Sandu, 1989):

    ∀u∃v∀x∃y/{u}φ

    Dependence Logic (Väänänen 2007):

    ∀u∃v∀x∃y( =(x ; y) ∧ φ)

    ∃fIndependence Logic (Grädel, Väänänen 2013):

    ∀u∃v∀x∃y(u ⊥ y ∧ φ)×

    Inclusion Logic (Galliani 2012):∀u∃x(u ⊆ x ∧ φ)

    Thm. (Enderton, Walkoe, Hintikka)FO+Henkin quantifiers ≡ IF-logic≡ Σ11Thm. (Galliani and Hella 2013) Inclusion logic ≡ GFP+ ≡finite,< PTIME

    11/27

  • Logics for expressing dependencies

    Henkin Quantifiers (1961):

    ∀u ∃v ∀x ∃y φ

    (∀u ∃v∀x ∃y

    Independence-Friendly Logic (Hintikka and Sandu, 1989):

    ∀u∃v∀x∃y/{u}φ

    Dependence Logic (Väänänen 2007):

    ∀u∃v∀x∃y( =(x ; y) ∧ φ)

    ∃fIndependence Logic (Grädel, Väänänen 2013):

    ∀u∃v∀x∃y(u ⊥ y ∧ φ)×

    Inclusion Logic (Galliani 2012):∀u∃x(u ⊆ x ∧ φ)

    Thm. (Enderton, Walkoe, Hintikka)FO+Henkin quantifiers ≡ IF-logic≡ Σ11

    Thm. (Galliani and Hella 2013) Inclusion logic ≡ GFP+ ≡finite,< PTIME

    11/27

  • Logics for expressing dependencies

    Henkin Quantifiers (1961):

    ∀u ∃v ∀x ∃y φ

    (∀u ∃v∀x ∃y

    Independence-Friendly Logic (Hintikka and Sandu, 1989):

    ∀u∃v∀x∃y/{u}φ

    Dependence Logic (Väänänen 2007):

    ∀u∃v∀x∃y( =(x ; y) ∧ φ)

    ∃f

    Independence Logic (Grädel, Väänänen 2013):

    ∀u∃v∀x∃y(u ⊥ y ∧ φ)×

    Inclusion Logic (Galliani 2012):∀u∃x(u ⊆ x ∧ φ)

    Thm. (Enderton, Walkoe, Hintikka)FO+Henkin quantifiers ≡ IF-logic≡ Σ11

    Thm. (Galliani and Hella 2013) Inclusion logic ≡ GFP+ ≡finite,< PTIME

    11/27

  • Logics for expressing dependencies

    Henkin Quantifiers (1961):

    ∀u ∃v ∀x ∃y φ

    (∀u ∃v∀x ∃y

    Independence-Friendly Logic (Hintikka and Sandu, 1989):

    ∀u∃v∀x∃y/{u}φ

    Dependence Logic (Väänänen 2007):

    ∀u∃v∀x∃y( =(x ; y) ∧ φ)

    ∃fIndependence Logic (Grädel, Väänänen 2013):

    ∀u∃v∀x∃y(u ⊥ y ∧ φ)×

    Inclusion Logic (Galliani 2012):∀u∃x(u ⊆ x ∧ φ)

    Thm. (Enderton, Walkoe, Hintikka, Väänänen, Grädel)FO+Henkin quantifiers ≡ IF-logic ≡ (In)dependence logic≡ Σ11 ≡finite NP

    Thm. (Galliani and Hella 2013) Inclusion logic ≡ GFP+ ≡finite,< PTIME

    11/27

  • Logics for expressing dependencies

    Henkin Quantifiers (1961):

    ∀u ∃v ∀x ∃y φ

    (∀u ∃v∀x ∃y

    Independence-Friendly Logic (Hintikka and Sandu, 1989):

    ∀u∃v∀x∃y/{u}φ

    Dependence Logic (Väänänen 2007):

    ∀u∃v∀x∃y( =(x ; y) ∧ φ)

    ∃fIndependence Logic (Grädel, Väänänen 2013):

    ∀u∃v∀x∃y(u ⊥ y ∧ φ)×

    Inclusion Logic (Galliani 2012):∀u∃x(u ⊆ x ∧ φ)

    Thm. (Enderton, Walkoe, Hintikka, Väänänen, Grädel)FO+Henkin quantifiers ≡ IF-logic ≡ (In)dependence logic≡ Σ11 ≡finite NPThm. (Galliani and Hella 2013) Inclusion logic ≡ GFP+ ≡finite,< PTIME

    11/27

  • Functional dependency expressed in team semantics

    v1 v2 v3 u

    s1 bac cab abc abcs2 bac cab abc abcs3 cab bca acb cbas4 cab bca acb cba

    Team semantics (Hodges 1997)

    a set T of assignmentssa team:

    M |=s2 =(~v ; u)?

    iff for any s, s′ ∈ T ,

    s(~t) = s′(~t) =⇒ s(~t ′) = s′(~t ′)

    The functionality of aggregation rule:

    θF := =(v1, . . . , vn; u)

    Define ΓDM = “dom(M) = L(A).”

    12/27

  • Functional dependency expressed in team semantics

    v1 v2 v3 u

    s1 bac cab abc abcs2 bac cab abc abcs3 cab bca acb cbas4 cab bca acb cba

    Team semantics (Hodges 1997)

    a set T of assignmentssa team:

    M |=T =(~v ; u) iff for any s, s′ ∈ T ,s(~v) = s′(~v) =⇒ s(u) = s′(u).

    s(~t) = s′(~t) =⇒ s(~t ′) = s′(~t ′)

    The functionality of aggregation rule:θF := =(v1, . . . , vn; u)

    Define ΓDM = “dom(M) = L(A).”

    12/27

  • Functional dependency expressed in team semantics

    v1 v2 v3 u

    s1 bac cab abc abcs2 bac cab abc abcs3 cab bca acb cbas4 cab bca acb cba

    Team semantics (Hodges 1997)

    a set T of assignmentssa team:

    M |=T =(~t ; ~t ′) iff for any s, s′ ∈ T ,

    s(~t) = s′(~t) =⇒ s(~t ′) = s′(~t ′)

    The functionality of aggregation rule:

    θF := =(v1, . . . , vn; u)

    Define ΓDM = “dom(M) = L(A).”

    12/27

  • Functional dependency expressed in team semantics

    v1 v2 v3 u

    s1 bac cab abc abcs2 bac cab abc abcs3 cab bca acb cbas4 cab bca acb cba

    Team semantics (Hodges 1997)

    a set T of assignmentssa team:

    M |=T =(~t ; ~t ′) iff for any s, s′ ∈ T ,

    s(~t) = s′(~t) =⇒ s(~t ′) = s′(~t ′)

    The functionality of aggregation rule:

    θF := =(v1, . . . , vn; u)

    Define ΓDM = “dom(M) = L(A).”

    12/27

  • Functional dependency expressed in team semantics

    v1 v2 v3 u

    s1 bac cab abc abcs2 bac cab abc abcs3 cab bca acb cbas4 cab bca acb cba

    Team semantics (Hodges 1997)

    a set T of assignmentssa team:

    M |=T =(~t ; ~t ′) iff for any s, s′ ∈ T ,

    s(~t) = s′(~t) =⇒ s(~t ′) = s′(~t ′)

    The functionality of aggregation rule:

    θF := =(v1, . . . , vn; u)

    Define ΓDM = “dom(M) = L(A).”

    12/27

  • Functional dependency expressed in team semantics

    v1 v2 v3 u

    s1 bac cab abc abcs2 bac cab abc abcs3 cab bca acb cbas4 cab bca acb cba

    Team semantics (Hodges 1997)

    a set T of assignmentssa team:

    M |=T =(~t ; ~t ′) iff for any s, s′ ∈ T ,

    s(~t) = s′(~t) =⇒ s(~t ′) = s′(~t ′)

    The functionality of aggregation rule:

    θF := =(v1, . . . , vn; u)

    Define ΓDM = “dom(M) = L(A).”

    12/27

  • IIA: The group decision on the relative preference between two alternatives a,b depends only on how the individual voters rank these two alternatives. It isindependent of their rankings with respect to other alternatives.

    v1 v2 v3 us1 abc bac bca cbas2 cab bca bac bcas3 abc bac bca bac

    − θIIA :=∧{ =(Pab(v1), . . . ,Pab(vn); Pab(u)

    )| a,b ∈ A}

    The signature LA consists of unary function symbols Pab for each(a,b) ∈ A× A.

    for all >∈ L(A), PMab(>) = 1 iff a > b; PMab(>) = 0 iff a 6> b.

    Define ΓOrd :={∀x((Pab(x)=1 ∧ Pbc(x) = 1)→ Pac(x)=1

    )| a, b, c ∈ A} ∪ . . .

    13/27

  • Independence of irrelevant alternatives (IIA)

    IIA: The group decision on the relative preference between two alternatives a,b depends only on how the individual voters rank these two alternatives. It isindependent of their rankings with respect to other alternatives.

    v1 v2 v3 us1 abc bac bca cbas2 cab bca bac bcas3 abc bac bca bac

    − θIIA :=∧{

    =(Pab(v1), . . . ,Pab(vn); Pab(u)

    )

    | a,b ∈ A}

    The signature LA consists of unary function symbols Pab for each(a,b) ∈ A× A.

    for all >∈ L(A), PMab(>) = 1 iff a > b; PMab(>) = 0 iff a 6> b.

    Define ΓOrd :={∀x((Pab(x)=1 ∧ Pbc(x) = 1)→ Pac(x)=1

    )| a, b, c ∈ A} ∪ . . .

    13/27

  • Independence of irrelevant alternatives (IIA)

    IIA: The group decision on the relative preference between two alternatives a,b depends only on how the individual voters rank these two alternatives. It isindependent of their rankings with respect to other alternatives.

    v1 v2 v3 us1 abc bac bca cbas2 cab bca bac bcas3 abc bac bca bac

    − θIIA :=∧{

    =(Pab(v1), . . . ,Pab(vn); Pab(u)

    )

    | a,b ∈ A}

    The signature LA consists of unary function symbols Pab for each(a,b) ∈ A× A.

    for all >∈ L(A), PMab(>) = 1 iff a > b; PMab(>) = 0 iff a 6> b.

    Define ΓOrd :={∀x((Pab(x)=1 ∧ Pbc(x) = 1)→ Pac(x)=1

    )| a, b, c ∈ A} ∪ . . .

    13/27

  • Independence of irrelevant alternatives (IIA)

    IIA: The group decision on the relative preference between two alternatives a,b depends only on how the individual voters rank these two alternatives. It isindependent of their rankings with respect to other alternatives.

    v1 v2 v3 us1 abc bac bca cbas2 cab bca bac bcas3 abc bac bca bac

    − θIIA :=∧{ =(Pab(v1), . . . ,Pab(vn); Pab(u)

    )| a,b ∈ A}

    The signature LA consists of unary function symbols Pab for each(a,b) ∈ A× A.

    for all >∈ L(A), PMab(>) = 1 iff a > b; PMab(>) = 0 iff a 6> b.

    Define ΓOrd :={∀x((Pab(x)=1 ∧ Pbc(x) = 1)→ Pac(x)=1

    )| a, b, c ∈ A} ∪ . . .

    13/27

  • Independence

    Universal domain: dom(F ) = L(A)n

    v1 v2 v3 us1 abc bac cab bcas2 acb acb bac cbas3 acb bac cab acbs4 abc acb bac abc...

    ss′

    s′′

    • M |=T iff for all s, s′ ∈ T , there exists s′′ ∈ T s.t.s′′() = s() and s′′() = s′().

    Independence: θI :=∧{vi ⊥ 〈vj〉j 6=i | 1 ≤ i ≤ n}

    14/27

  • Independence

    Universal domain: dom(F ) = L(A)n

    v1 v2 v3 us1 abc bac cab bcas2 acb acb bac cbas3 acb bac cab acbs4 abc acb bac abc...

    ss′

    s′′

    • M |=T v1 ⊥ v2v3 iff for all s, s′ ∈ T , there exists s′′ ∈ T s.t.s′′(v1) = s(v1) and s′′(v2v3) = s′(v2v3).

    Independence: θI :=∧{vi ⊥ 〈vj〉j 6=i | 1 ≤ i ≤ n}

    14/27

  • Independence

    Universal domain: dom(F ) = L(A)n

    v1 v2 v3 us1 abc bac cab bcas2 acb acb bac cbas3 acb bac cab acbs4 abc acb bac abc...

    ss′

    s′′

    • M |=T v1 ⊥ v2v3 iff for all s, s′ ∈ T , there exists s′′ ∈ T s.t.s′′(v1) = s(v1) and s′′(v2v3) = s′(v2v3).

    Independence: θI :=∧{vi ⊥ 〈vj〉j 6=i | 1 ≤ i ≤ n}

    14/27

  • Independence

    Universal domain: dom(F ) = L(A)n

    v1 v2 v3 us1 abc bac cab bcas2 acb acb bac cbas3 acb bac cab acbs4 abc acb bac abc...

    ss′

    s′′

    • M |=T v1 ⊥ v2v3 iff for all s, s′ ∈ T , there exists s′′ ∈ T s.t.s′′(v1) = s(v1) and s′′(v2v3) = s′(v2v3).

    Independence: θI :=∧{vi ⊥ 〈vj〉j 6=i | 1 ≤ i ≤ n}

    14/27

  • Independence

    Universal domain: dom(F ) = L(A)n

    v1 v2 v3 us1 abc bac cab bcas2 acb acb bac cbas3 acb bac cab acbs4 abc acb bac abc...

    ss′

    s′′

    • M |=T ~t ⊥ ~t ′ iff for all s, s′ ∈ T , there exists s′′ ∈ T s.t.s′′(~t) = s(~t) and s′′(~t ′) = s′(~t ′).

    Independence: θI :=∧{vi ⊥ 〈vj〉j 6=i | 1 ≤ i ≤ n}

    14/27

  • Inclusion

    Universal domain: dom(F ) = L(A)n.

    x v1 v2 v3 u

    s1 abc acb cab bac bcas2 acb bac bac abc cbas3 bac abc cab acb acbs4 bca cba acb abc abcs5 cab bca acb abc abcs6 cba bac acb bac bac

    ...

    M |=T x ⊆ vi iff for all s ∈ T , there exists s′ ∈ T such thats(x) = s′(vi).

    All ranking: θAR :=

    ∧{

    ∀x(x ⊆ vi)

    : 1 ≤ i ≤ n}

    (Recall: dom(M) = L(A).)

    15/27

  • Inclusion

    Universal domain: dom(F ) = L(A)n.

    x v1 v2 v3 u

    s1 abc acb cab bac bcas2 acb bac bac abc cbas3 bac abc cab acb acbs4 bca cba acb abc abcs5 cab bca acb abc abcs6 cba bac acb bac bac

    ...

    M |=T x ⊆ vi iff for all s ∈ T , there exists s′ ∈ T such thats(x) = s′(vi).

    All ranking: θAR :=∧{∀x(x ⊆ vi) : 1 ≤ i ≤ n}

    (Recall: dom(M) = L(A).)

    15/27

  • Inclusion

    Universal domain: dom(F ) = L(A)n.

    x v1 v2 v3 u

    s1 abc acb cab bac bcas2 acb bac bac abc cbas3 bac abc cab acb acbs4 bca cba acb abc abcs5 cab bca acb abc abcs6 cba bac acb bac bac

    ...

    M |=T x ⊆ vi iff for all s ∈ T , there exists s′ ∈ T such thats(x) = s′(vi).

    All ranking: θAR :=∧{∀x(x ⊆ vi) : 1 ≤ i ≤ n}

    (Recall: dom(M) = L(A).)

    15/27

  • Inclusion

    Universal domain: dom(F ) = L(A)n.

    x v1 v2 v3 u

    s1 abc acb cab bac bcas2 acb bac bac abc cbas3 bac abc cab acb acbs4 bca cba acb abc abcs5 cab bca acb abc abcs6 cba bac acb bac bac

    ...

    M |=T x ⊆ vi iff for all s ∈ T , there exists s′ ∈ T such thats(x) = s′(vi).

    All ranking: θAR :=∧{∀x(x ⊆ vi) : 1 ≤ i ≤ n}

    (Recall: dom(M) = L(A).)

    15/27

  • Inclusion

    Universal domain: dom(F ) = L(A)n.

    x v1 v2 v3 u

    s1 abc acb cab bac bcas2 acb bac bac abc cbas3 bac abc cab acb acbs4 bca cba acb abc abcs5 cab bca acb abc abcs6 cba bac acb bac bac

    ...

    M |=T x ⊆ vi iff for all s ∈ T , there exists s′ ∈ T such thats(x) = s′(vi).

    All ranking: θAR :=∧{∀x(x ⊆ vi) : 1 ≤ i ≤ n}

    (Recall: dom(M) = L(A).)

    15/27

  • Inclusion

    Universal domain: dom(F ) = L(A)n.

    x v1 v2 v3 u

    s1 abc acb cab bac bcas2 acb bac bac abc cbas3 bac abc cab acb acbs4 bca cba acb abc abcs5 cab bca acb abc abcs6 cba bac acb bac bac

    ...

    M |=T x ⊆ vi iff for all s ∈ T , there exists s′ ∈ T such thats(x) = s′(vi).

    All ranking: θAR :=∧{∀x(x ⊆ vi) : 1 ≤ i ≤ n}

    (Recall: dom(M) = L(A).)

    15/27

  • Inclusion

    Universal domain: dom(F ) = L(A)n.

    x v1 v2 v3 u

    s1 abc acb cab bac bcas2 acb bac bac abc cbas3 bac abc cab acb acbs4 bca cba acb abc abcs5 cab bca acb abc abcs6 cba bac acb bac bac

    ...

    M |=T x ⊆ vi iff for all s ∈ T , there exists s′ ∈ T such thats(x) = s′(vi).

    All ranking: θAR :=∧{∀x(x ⊆ vi) : 1 ≤ i ≤ n}

    (Recall: dom(M) = L(A).)

    15/27

  • Inclusion

    Universal domain: dom(F ) = L(A)n.

    x v1 v2 v3 u

    s1 abc acb cab bac bcas2 acb bac bac abc cbas3 bac abc cab acb acbs4 bca cba acb abc abcs5 cab bca acb abc abcs6 cba bac acb bac bac

    ...

    M |=T ~t ⊆ ~t ′ iff for all s ∈ T , there exists s′ ∈ T such thats(~t) = s′(~t ′).

    All ranking: θAR :=∧{∀x(x ⊆ vi) : 1 ≤ i ≤ n}

    (Recall: dom(M) = L(A).)

    15/27

  • Independence Logic & first-order formulas

    Independence Logic = first-order logic + =(̄t ; t̄ ′) + t̄ ⊥ t̄ ′ + t̄ ⊆ t̄ ′

    Def. For every formula α of first-order logic,M |=T α ⇐⇒ ∀s ∈ T : M |=s α.

    v1 v2 v3 uabc cab acb abcbca abc bac abccab acb abc cab

    Unanimity:

    θUN :=∧

    a,b∈A

    (

    (Pab(v1) = 1 ∧ · · · ∧ Pab(vn) = 1

    )→ Pab(u) = 1

    )

    16/27

  • Independence Logic & first-order formulas

    Independence Logic = first-order logic + =(̄t ; t̄ ′) + t̄ ⊥ t̄ ′ + t̄ ⊆ t̄ ′

    Def. For every formula α of first-order logic,M |=T α ⇐⇒ ∀s ∈ T : M |=s α.

    v1 v2 v3 uabc cab acb abcbca abc bac abccab acb abc cab

    Unanimity:

    θUN :=∧

    a,b∈A

    (

    (Pab(v1) = 1 ∧ · · · ∧ Pab(vn) = 1

    )→ Pab(u) = 1

    )

    16/27

  • Independence Logic & first-order formulas

    Independence Logic = first-order logic + =(̄t ; t̄ ′) + t̄ ⊥ t̄ ′ + t̄ ⊆ t̄ ′

    Def. For every formula α of first-order logic,M |=T α ⇐⇒ ∀s ∈ T : M |=s α.

    v1 v2 v3 uabc cab acb abcbca abc bac abccab acb abc cab

    Unanimity:

    θUN :=∧

    a,b∈A

    (

    (Pab(v1) = 1 ∧ · · · ∧ Pab(vn) = 1

    )→ Pab(u) = 1

    )

    16/27

  • Independence Logic & first-order formulas

    Independence Logic = first-order logic + =(̄t ; t̄ ′) + t̄ ⊥ t̄ ′ + t̄ ⊆ t̄ ′

    Def. For every formula α of first-order logic,M |=T α ⇐⇒ ∀s ∈ T : M |=s α.

    v1 v2 v3 uabc cab acb abcbca abc bac abccab acb abc cab

    Unanimity:

    θUN :=∧

    a,b∈A

    (

    (Pab(v1) = 1 ∧ · · · ∧ Pab(vn) = 1

    )→ Pab(u) = 1

    )

    16/27

  • Independence Logic & first-order formulas

    Independence Logic = first-order logic + =(̄t ; t̄ ′) + t̄ ⊥ t̄ ′ + t̄ ⊆ t̄ ′

    Def. For every formula α of first-order logic,M |=T α ⇐⇒ ∀s ∈ T : M |=s α.

    v1 v2 v3 uabc cab acb abcbca abc bac abccab acb abc cab

    Unanimity:

    θUN :=∧

    a,b∈A

    (

    (Pab(v1) = 1 ∧ · · · ∧ Pab(vn) = 1

    )→ Pab(u) = 1

    )

    16/27

  • Independence Logic & first-order formulas

    Independence Logic = first-order logic + =(̄t ; t̄ ′) + t̄ ⊥ t̄ ′ + t̄ ⊆ t̄ ′

    Def. For every formula α of first-order logic,M |=T α ⇐⇒ ∀s ∈ T : M |=s α.

    v1 v2 v3 uabc cab acb abcbca abc bac abccab acb abc cab

    Unanimity:

    θUN :=∧

    a,b∈A

    ((Pab(v1) = 1 ∧ · · · ∧ Pab(vn) = 1

    )→ Pab(u) = 1

    )

    16/27

  • Decisive sets and dictatorship

    v1 v2 v3 uabc cab acb abcbca abc bac abccab acb abc cab

    v1 v2 v3 ucba cab acb abcbca abc bac abccab acb abc cab

    v1 · · · vi · · · vn uabc · · · acb · · · acb acbbca · · · bac · · · bac baccba · · · cba · · · bca cba

    Unanimity:

    θUN :=∧

    a,b∈A

    ((Pab(v1) = 1 ∧ · · · ∧ Pab(vn) = 1

    )→ Pab(u) = 1

    )The set {vi1 , . . . , vik} is decisive:

    δ(vi1 , . . . , vik ) :=∧

    a,b∈A

    ((Pab(vi1 ) = 1 ∧ · · · ∧ Pab(vik ) = 1

    )→ Pab(u) = 1

    )θUN = δ(v1, . . . , vn)

    Dictatorship: θD := δ(vi)

    17/27

  • Decisive sets and dictatorship

    v1 v2 v3 uabc cab acb abcbca abc bac abccab acb abc cab

    v1 v2 v3 ucba cab acb abcbca abc bac abccab acb abc cab

    v1 · · · vi · · · vn uabc · · · acb · · · acb acbbca · · · bac · · · bac baccba · · · cba · · · bca cba

    Unanimity:

    θUN :=∧

    a,b∈A

    ((Pab(v1) = 1 ∧ · · · ∧ Pab(vn) = 1

    )→ Pab(u) = 1

    )The set {vi1 , . . . , vik} is decisive:

    δ(vi1 , . . . , vik ) :=∧

    a,b∈A

    ((Pab(vi1 ) = 1 ∧ · · · ∧ Pab(vik ) = 1

    )→ Pab(u) = 1

    )θUN = δ(v1, . . . , vn)

    Dictatorship: θD := δ(vi)

    17/27

  • Decisive sets and dictatorship

    v1 v2 v3 uabc cab acb abcbca abc bac abccab acb abc cab

    v1 v2 v3 ucba cab acb abcbca abc bac abccab acb abc cab

    v1 · · · vi · · · vn uabc · · · acb · · · acb acbbca · · · bac · · · bac baccba · · · cba · · · bca cba

    Unanimity:

    θUN :=∧

    a,b∈A

    ((Pab(v1) = 1 ∧ · · · ∧ Pab(vn) = 1

    )→ Pab(u) = 1

    )The set {vi1 , . . . , vik} is decisive:

    δ(vi1 , . . . , vik ) :=∧

    a,b∈A

    ((Pab(vi1 ) = 1 ∧ · · · ∧ Pab(vik ) = 1

    )→ Pab(u) = 1

    )θUN = δ(v1, . . . , vn)

    Dictatorship: θD := δ(vi)

    17/27

  • Decisive sets and dictatorship

    v1 v2 v3 uabc cab acb abcbca abc bac abccab acb abc cab

    v1 v2 v3 ucba cab acb abcbca abc bac abccab acb abc cab

    v1 · · · vi · · · vn uabc · · · acb · · · acb acbbca · · · bac · · · bac baccba · · · cba · · · bca cba

    Unanimity:

    θUN :=∧

    a,b∈A

    ((Pab(v1) = 1 ∧ · · · ∧ Pab(vn) = 1

    )→ Pab(u) = 1

    )The set {vi1 , . . . , vik} is decisive:

    δ(vi1 , . . . , vik ) :=∧

    a,b∈A

    ((Pab(vi1 ) = 1 ∧ · · · ∧ Pab(vik ) = 1

    )→ Pab(u) = 1

    )θUN = δ(v1, . . . , vn)

    Dictatorship: θD :=∨n

    i=1 δ(vi)

    17/27

  • Decisive sets and dictatorship

    v1 v2 v3 uabc cab acb abcbca abc bac abccab acb abc cab

    v1 v2 v3 ucba cab acb abcbca abc bac abccab acb abc cab

    v1 · · · vi · · · vn uabc · · · acb · · · acb acbbca · · · bac · · · bac baccba · · · cba · · · bca cba

    Unanimity:

    θUN :=∧

    a,b∈A

    ((Pab(v1) = 1 ∧ · · · ∧ Pab(vn) = 1

    )→ Pab(u) = 1

    )The set {vi1 , . . . , vik} is decisive:

    δ(vi1 , . . . , vik ) :=∧

    a,b∈A

    ((Pab(vi1 ) = 1 ∧ · · · ∧ Pab(vik ) = 1

    )→ Pab(u) = 1

    )θUN = δ(v1, . . . , vn)

    Dictatorship: θD :=

    > ni=1δ(vi)

    17/27

  • Decisive sets and dictatorship

    v1 v2 v3 uabc cab acb abcbca abc bac abccab acb abc cab

    v1 v2 v3 ucba cab acb abcbca abc bac abccab acb abc cab

    v1 · · · vi · · · vn uabc · · · acb · · · acb acbbca · · · bac · · · bac baccba · · · cba · · · bca cba

    Unanimity:

    θUN :=∧

    a,b∈A

    ((Pab(v1) = 1 ∧ · · · ∧ Pab(vn) = 1

    )→ Pab(u) = 1

    )The set {vi1 , . . . , vik} is decisive:

    δ(vi1 , . . . , vik ) :=∧

    a,b∈A

    ((Pab(vi1 ) = 1 ∧ · · · ∧ Pab(vik ) = 1

    )→ Pab(u) = 1

    )θUN = δ(v1, . . . , vn)

    Dictatorship: θD :=∨n

    i=1 δ(vi)

    17/27

  • Formalization of Arrow’s Theorem in independence logic

    Theorem (Arrow 1963)If |A| ≥ 3, then any preference aggregation rule F : D → L(A)(D ⊆ L(A)n) satisfying Universal Domain, Independence of IrrelevantAlternatives and Unanimity is a Dictatorship.

    Let ΓArrow = ΓOrd ∪ {θF , θI , θAR, θIIA, θUN}.

    ΓArrow |= θDor ΓArrow ,∼ θD |= ⊥

    18/27

  • non-dictatorship unanimity

    universal domainirrelevant alternativesindependence of

    non-dictatorship unanimity

    universal domainirrelevant alternativesindependence of

    M. C. Escher, 1960

    Local consistency vs. global inconsistency

    19/27

  • non-dictatorship unanimity

    universal domainirrelevant alternativesindependence of

    non-dictatorship unanimity

    universal domainirrelevant alternativesindependence of

    Local consistency vs. global inconsistency

    19/27

  • non-dictatorship unanimity

    universal domainirrelevant alternativesindependence of

    non-dictatorship unanimity

    universal domainirrelevant alternativesindependence of

    Local consistency vs. global inconsistency

    19/27

  • non-dictatorship unanimity

    universal domainirrelevant alternativesindependence of

    non-dictatorship unanimity

    universal domainirrelevant alternativesindependence of

    Local consistency vs. global inconsistency19/27

  • A formal proof of Arrow’s Theorem

    Let ΓArrow = {ΓOrd , θF , θAR, θI , θIIA, θU}.

    ΓArrow |= θDor ΓArrow ,∼ θD |= ⊥

    =⇒ Γ ` θD (by Completeness Theorem, and by (Pacuit, Y. 2017))

    Theorem ((Kontinen, Väänänen, 2012), (Hannula 2015), (Y. 2016))For any set Γ ∪ {θ} of formulas of independence logic with θ(essentially) first-order,

    Γ ` θ ⇐⇒ Γ |= θ.

    20/27

  • Proof idea (based on [Arrow 51], [Blau 72], etc.)

    Lemma. If {vi1 , . . . , vik} ∩ {vj1 , . . . , vjm} = ∅, then

    ΓArrow , δ(vi1 , . . . , vik , vj1 , . . . , vjm ) ` δ(vi1 , . . . , vik ) ∨ δ(vj1 , . . . , vjm )

    v1 . . . ~vi . . . ~vj . . . vn u

    δ(vi1 , . . . , vik ) =(vi1 , . . . , vik ; u)

    =∧a,b∈A

    ((Pab(vi1 ) = 1 ∧ · · · ∧ Pab(vik ) = 1

    )→ Pab(u) = 1

    )

    21/27

  • Proof idea (based on [Arrow 51], [Blau 72], etc.)

    Lemma. If {vi1 , . . . , vik} ∩ {vj1 , . . . , vjm} = ∅, then

    ΓArrow , δ(vi1 , . . . , vik , vj1 , . . . , vjm ) ` δ(vi1 , . . . , vik ) ∨ δ(vj1 , . . . , vjm )

    v1 . . . ~vi . . . ~vj . . . vn u

    δ(vi1 , . . . , vik ) =(vi1 , . . . , vik ; u)

    =∧a,b∈A

    ((Pab(vi1 ) = 1 ∧ · · · ∧ Pab(vik ) = 1

    )→ Pab(u) = 1

    )

    21/27

  • Proof idea (based on [Arrow 51], [Blau 72], etc.)

    Lemma. If {vi1 , . . . , vik} ∩ {vj1 , . . . , vjm} = ∅, then

    ΓArrow , δ(vi1 , . . . , vik , vj1 , . . . , vjm ) ` δ(vi1 , . . . , vik ) ∨ δ(vj1 , . . . , vjm )

    Therefore,

    ΓArrow , δ(v1, . . . , vn) ` δ(v1) ∨ δ(v2, . . . , vn)` δ(v1) ∨ δ(v2) ∨ δ(v3, . . . , vn)...` δ(v1) ∨ δ(v2) ∨ · · · ∨ δ(vn).

    δ(vi1 , . . . , vik ) =(vi1 , . . . , vik ; u)

    =∧a,b∈A

    ((Pab(vi1 ) = 1 ∧ · · · ∧ Pab(vik ) = 1

    )→ Pab(u) = 1

    )

    21/27

  • Proof idea

    Lemma. If {vi1 , . . . , vik} ∩ {vj1 , . . . , vjm} = ∅, then

    ΓArrow , δ(vi1 , . . . , vik , vj1 , . . . , vjm ) ` δ(vi1 , . . . , vik ) ∨ δ(vj1 , . . . , vjm )

    Therefore,

    ΓArrow , δ(v1, . . . , vn) ` δ(v1) ∨ δ(v2, . . . , vn)` δ(v1) ∨ δ(v2) ∨ δ(v3, . . . , vn)...` δ(v1) ∨ δ(v2) ∨ · · · ∨ δ(vn).

    δ(vi1 , . . . , vik ) =(vi1 , . . . , vik ; u)

    =∧a,b∈A

    ((Pab(vi1 ) = 1 ∧ · · · ∧ Pab(vik ) = 1

    )→ Pab(u) = 1

    )21/27

  • Proof idea

    Lemma. If {vi1 , . . . , vik} ∩ {vj1 , . . . , vjm} = ∅, then

    ΓArrow , =(vi1 , . . . , vik , vj1 , . . . , vjm ; u) ` =(vi1 , . . . , vik ; u)∨=(vj1 , . . . , vjm ; u)

    Therefore,

    ΓArrow , =(v1, . . . , vn; u) `=(v1; u)∨ =(v2, . . . , vn; u)`=(v1; u)∨ =(v2; u)∨ =(v3, . . . , vn; u)...` =(v1; u) ∨=(v2; u) ∨ · · · ∨=(vn; u).

    δ(vi1 , . . . , vik ) =(vi1 , . . . , vik ; u)

    =∧a,b∈A

    ((Pab(vi1 ) = 1 ∧ · · · ∧ Pab(vik ) = 1

    )→ Pab(u) = 1

    )21/27

  • Arrow’s Theorem as a dependency strengtheningtheorem (work in progress)

    22/27

  • A “dependency strengthening" theorem

    =(v1, . . . , vn; u) i.e., u = F (v1, . . . , vn)

    =(v1; u) ∨ · · · ∨ =(vn; u) i.e., u = G(vi )

    Γ

    i.e., vi is a dictatorδ(v1) ∨ · · · ∨ δ(vn) i.e., u = vi(u = v1) ∨ · · · ∨ (u = vn)

    v1 . . . . . . vn ucabcbabcacba

    Work in progress: Find in general Γ and α(x) s.t.

    Γ, =(α(v1), . . . , α(vn);α(u)) `n∨

    i=1

    (α(vi )↔ α(u)).

    Arrow’s Thm and its generalizations (e.g., Kalai-Muller-SatterthwaiteThm) are special cases.

    23/27

  • A “dependency strengthening" theorem

    =(v1, . . . , vn; u) i.e., u = F (v1, . . . , vn)

    =(v1; u) ∨ · · · ∨ =(vn; u) i.e., u = G(vi )

    Γ

    i.e., vi is a dictatorδ(v1) ∨ · · · ∨ δ(vn) i.e., u = vi(u = v1) ∨ · · · ∨ (u = vn)

    v1 . . . vi . . . vn ucab cabcba cbabca bcacba cba

    Work in progress: Find in general Γ and α(x) s.t.

    Γ, =(α(v1), . . . , α(vn);α(u)) `n∨

    i=1

    (α(vi )↔ α(u)).

    Arrow’s Thm and its generalizations (e.g., Kalai-Muller-SatterthwaiteThm) are special cases.

    23/27

  • A “dependency strengthening" theorem

    =(v1, . . . , vn; u) i.e., u = F (v1, . . . , vn)

    =(v1; u) ∨ · · · ∨ =(vn; u) i.e., u = G(vi )

    Γ

    i.e., vi is a dictatorδ(v1) ∨ · · · ∨ δ(vn)

    i.e., u = vi(u = v1) ∨ · · · ∨ (u = vn)

    v1 . . . vi . . . vn ucab cabcba cbabca bcacba cba

    Work in progress: Find in general Γ and α(x) s.t.

    Γ, =(α(v1), . . . , α(vn);α(u)) `n∨

    i=1

    (α(vi )↔ α(u)).

    Arrow’s Thm and its generalizations (e.g., Kalai-Muller-SatterthwaiteThm) are special cases.

    23/27

  • A “dependency strengthening" theorem

    =(v1, . . . , vn; u) i.e., u = F (v1, . . . , vn)

    =(v1; u) ∨ · · · ∨ =(vn; u) i.e., u = G(vi )

    Γ

    i.e., vi is a dictatorδ(v1) ∨ · · · ∨ δ(vn)

    i.e., u = vi(u = v1) ∨ · · · ∨ (u = vn)

    v1 . . . vi . . . vn ucab cabcba cbabca bcacba cba

    Work in progress: Find in general Γ and α(x) s.t.

    Γ, =(α(v1), . . . , α(vn);α(u)) `n∨

    i=1

    (α(vi )↔ α(u)).

    Arrow’s Thm and its generalizations (e.g., Kalai-Muller-SatterthwaiteThm) are special cases.

    23/27

  • A “dependency strengthening" theorem

    =(v1, . . . , vn; u) i.e., u = F (v1, . . . , vn)

    =(v1; u) ∨ · · · ∨ =(vn; u) i.e., u = G(vi )

    Γ

    i.e., vi is a dictatorδ(v1) ∨ · · · ∨ δ(vn)

    i.e., u = vi(u = v1) ∨ · · · ∨ (u = vn)

    v1 . . . vi . . . vn ucab cabcba cbabca bcacba cba

    Work in progress: Find in general Γ and α(x) s.t.

    Γ, =(α(v1), . . . , α(vn);α(u)) `n∨

    i=1

    (α(vi )↔ α(u)).

    Arrow’s Thm and its generalizations (e.g., Kalai-Muller-SatterthwaiteThm) are special cases. 23/27

  • Analyzing Arrow’s Theorem

    v1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    v1Pab(v1) Pbc(v1) Pac(v1)

    1 0 1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    x1y1z1 x2y2z2 x3y3z3 xyz101 011 100 010111 101 010 111011 011 100 101

    v1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    Judgement aggregation: (Dietrich, List 2007), etc.

    xyz = F (x1y1z1, . . . , xnynzn)= f (x̄)g(ȳ)h(z̄)= xiyizi

    Functionality: θF := =(x1y1z1, . . . , xnynzn; xyz)

    IIA: θIIA := =(x1, . . . , xn; x) ∧ =(y1, . . . , yn; y) ∧ =(z1, . . . , zn; z)

    Dictatorship: θD :=n∨

    i=1

    xyz = xiyizi

    24/27

  • Analyzing Arrow’s Theorem

    v1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    v1Pab(v1) Pbc(v1) Pac(v1)

    1 0 1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    x1y1z1 x2y2z2 x3y3z3 xyz101 011 100 010111 101 010 111011 011 100 101

    v1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    Judgement aggregation: (Dietrich, List 2007), etc.

    xyz = F (x1y1z1, . . . , xnynzn)= f (x̄)g(ȳ)h(z̄)= xiyizi

    Functionality: θF := =(x1y1z1, . . . , xnynzn; xyz)

    IIA: θIIA := =(x1, . . . , xn; x) ∧ =(y1, . . . , yn; y) ∧ =(z1, . . . , zn; z)

    Dictatorship: θD :=n∨

    i=1

    xyz = xiyizi

    24/27

  • Analyzing Arrow’s Theorem

    v1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    v1Pab(v1) Pbc(v1) Pac(v1)

    1 0 1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    x1y1z1 x2y2z2 x3y3z3 xyz101 011 100 010111 101 010 111011 011 100 101

    v1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    Judgement aggregation: (Dietrich, List 2007), etc.

    xyz = F (x1y1z1, . . . , xnynzn)= f (x̄)g(ȳ)h(z̄)= xiyizi

    Functionality: θF := =(x1y1z1, . . . , xnynzn; xyz)

    IIA: θIIA := =(x1, . . . , xn; x) ∧ =(y1, . . . , yn; y) ∧ =(z1, . . . , zn; z)

    Dictatorship: θD :=n∨

    i=1

    xyz = xiyizi

    24/27

  • Analyzing Arrow’s Theorem

    v1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    v1Pab(v1) Pbc(v1) Pac(v1)

    1 0 1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    x1y1z1 x2y2z2 x3y3z3 xyz101 011 100 010111 101 010 111011 011 100 101

    v1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    Judgement aggregation: (Dietrich, List 2007), etc.

    xyz = F (x1y1z1, . . . , xnynzn)= f (x̄)g(ȳ)h(z̄)= xiyizi

    Functionality: θF := =(x1y1z1, . . . , xnynzn; xyz)

    IIA: θIIA := =(x1, . . . , xn; x) ∧ =(y1, . . . , yn; y) ∧ =(z1, . . . , zn; z)

    Dictatorship: θD :=n∨

    i=1

    xyz = xiyizi

    24/27

  • Analyzing Arrow’s Theorem

    v1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    v1Pab(v1) Pbc(v1) Pac(v1)

    1 0 1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    x1y1z1 x2y2z2 x3y3z3 xyz101 011 100 010111 101 010 111011 011 100 101

    v1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    Judgement aggregation: (Dietrich, List 2007), etc.

    xyz = F (x1y1z1, . . . , xnynzn)

    = f (x̄)g(ȳ)h(z̄)= xiyizi

    Functionality: θF := =(x1y1z1, . . . , xnynzn; xyz)

    IIA: θIIA := =(x1, . . . , xn; x) ∧ =(y1, . . . , yn; y) ∧ =(z1, . . . , zn; z)

    Dictatorship: θD :=n∨

    i=1

    xyz = xiyizi

    24/27

  • Analyzing Arrow’s Theorem

    v1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    v1Pab(v1) Pbc(v1) Pac(v1)

    1 0 1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    x1y1z1 x2y2z2 x3y3z3 xyz101 011 100 010111 101 010 111011 011 100 101

    v1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    Judgement aggregation: (Dietrich, List 2007), etc.

    xyz = F (x1y1z1, . . . , xnynzn)= f (x̄)g(ȳ)h(z̄)

    = xiyizi

    Functionality: θF := =(x1y1z1, . . . , xnynzn; xyz)

    IIA: θIIA := =(x1, . . . , xn; x) ∧ =(y1, . . . , yn; y) ∧ =(z1, . . . , zn; z)

    Dictatorship: θD :=n∨

    i=1

    xyz = xiyizi

    24/27

  • Analyzing Arrow’s Theorem

    v1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    v1Pab(v1) Pbc(v1) Pac(v1)

    1 0 1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    x1y1z1 x2y2z2 x3y3z3 xyz101 011 100 010111 101 010 111011 011 100 101

    v1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    Judgement aggregation: (Dietrich, List 2007), etc.

    xyz = F (x1y1z1, . . . , xnynzn)= f (x̄)g(ȳ)h(z̄)= xiyizi

    Functionality: θF := =(x1y1z1, . . . , xnynzn; xyz)

    IIA: θIIA := =(x1, . . . , xn; x) ∧ =(y1, . . . , yn; y) ∧ =(z1, . . . , zn; z)

    Dictatorship: θD :=n∨

    i=1

    xyz = xiyizi

    24/27

  • Analyzing Arrow’s Theorem

    v1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    xyz = F (x1y1z1, . . . , xnynzn)= f (x̄)g(ȳ)h(z̄)= xiyizi

    Functionality: θF := =(x1y1z1, . . . , xnynzn; xyz)

    IIA: θIIA := =(x1, . . . , xn; x) ∧ =(y1, . . . , yn; y) ∧ =(z1, . . . , zn; z)

    Dictatorship: θD :=∨n

    i=1 xyz = xiyizi

    Unanimity: θUN := (x̄ = 1̄→ x = 1) ∧ (x̄ = 0̄→ x = 0)∧(ȳ = 1̄→ y = 1) ∧ (ȳ = 0̄→ y = 0)

    ∧(z̄ = 1̄→ z = 1) ∧ (z̄ = 0̄→ z = 0)

    Fixed values

    Collective Rationality: θCR :=(x = 1 ∧ y = 1→ z = 1) ∧ (x = 0 ∧ y = 0→ z = 0)

    Universal Domain: θUD :=∧{[1[2[3 ⊆ xiyizi | [1, [2, [3 ∈ {0, 1}, [1 = [2 → [3 = [1}

    ∧∧{xiyizi ⊥ 〈xjyjzj | j 6= i〉 | 1 ≤ i ≤ n}

    Excluded values and interactions

    25/27

  • Analyzing Arrow’s Theorem

    v1 v2 v3 uacb bac cab bcaabc acb bac abcbac bac cab acb

    xyz = F (x1y1z1, . . . , xnynzn)= f (x̄)g(ȳ)h(z̄)= xiyizi

    Functionality: θF := =(x1y1z1, . . . , xnynzn; xyz)

    IIA: θIIA := =(x1, . . . , xn; x) ∧ =(y1, . . . , yn; y) ∧ =(z1, . . . , zn; z)

    Dictatorship: θD :=∨n

    i=1 xyz = xiyizi

    Unanimity: θUN := (x̄ = 1̄→ x = 1) ∧ (x̄ = 0̄→ x = 0)∧(ȳ = 1̄→ y = 1) ∧ (ȳ = 0̄→ y = 0)

    ∧(z̄ = 1̄→ z = 1) ∧ (z̄ = 0̄→ z = 0)

    Fixed values

    Collective Rationality: θCR :=(x = 1 ∧ y = 1→ z = 1) ∧ (x = 0 ∧ y = 0→ z = 0)

    Universal Domain: θUD :=∧{[1[2[3 ⊆ xiyizi | [1, [2, [3 ∈ {0, 1}, [1 = [2 → [3 = [1}

    ∧∧{xiyizi ⊥ 〈xjyjzj | j 6= i〉 | 1 ≤ i ≤ n}

    Excluded values and interactions

    25/27

  • Dependency strengthening theorems

    v1 v2 v3 uabc bac cab bcaacb acb bac abcacb bac cab acb

    xyz = F (x1y1z1, . . . , xnynzn)= f (x̄)g(ȳ)h(z̄)

    Functionality: θF := =(x1y1z1, . . . , xnynzn; xyz)

    IIA: θIIA := =(x1, . . . , xn; x) ∧ =(y1, . . . , yn; y) ∧ =(z1, . . . , zn; z)

    Dictatorship: θD :=∨n

    i=1 xyz = id(xi)id(yi)id(zi)

    Unanimity: θUN := (x̄ = 1̄→ x = 1) ∧ (x̄ = 0̄→ x = 0)∧(ȳ = 1̄→ y = 1) ∧ (ȳ = 0̄→ y = 0)

    ∧(z̄ = 1̄→ z = 1) ∧ (z̄ = 0̄→ z = 0)

    Fixed values

    Collective Rationality: θCR :=(x = 1 ∧ y = 1→ z = 1) ∧ (x = 0 ∧ y = 0→ z = 0)

    Universal Domain: θUD :=∧{[1[2[3 ⊆ xiyizi | [1, [2, [3 ∈ {0, 1}, [1 = [2 → [3 = [1}

    ∧∧{xiyizi ⊥ 〈xjyjzj | j 6= i〉 | 1 ≤ i ≤ n}

    Excluded values and interactions

    Thm. For any f,g ∈ {id,ex}, θF , θIIA, θfUD, θfCR, θgUN ` θ

    gD.

    26/27

  • Dependency strengthening theorems

    v1 v2 v3 uabc bac cab bcaacb acb bac abcacb bac cab acb

    xyz = F (x1y1z1, . . . , xnynzn)= f (x̄)g(ȳ)h(z̄)

    Functionality: θF := =(x1y1z1, . . . , xnynzn; xyz)

    IIA: θIIA := =(x1, . . . , xn; x) ∧ =(y1, . . . , yn; y) ∧ =(z1, . . . , zn; z)

    Dictatorship: θD :=∨n

    i=1 xyz = id(xi)id(yi)id(zi)

    Unanimity: θUN := (x̄ = 1̄→ x = id(1)) ∧ (x̄ = 0̄→ x = id(0))∧(ȳ = 1̄→ y = 1) ∧ (ȳ = 0̄→ y = 0)

    ∧(z̄ = 1̄→ z = 1) ∧ (z̄ = 0̄→ z = 0)

    Fixed values

    Collective Rationality: θCR :=(x = 1 ∧ y = 1→ z = 1) ∧ (x = 0 ∧ y = 0→ z = 0)

    Universal Domain: θUD :=∧{[1[2[3 ⊆ xiyizi | [1, [2, [3 ∈ {0, 1}, [1 = [2 → [3 = [1}

    ∧∧{xiyizi ⊥ 〈xjyjzj | j 6= i〉 | 1 ≤ i ≤ n}

    Excluded values and interactions

    Thm. For any f,g ∈ {id,ex}, θF , θIIA, θfUD, θfCR, θgUN ` θ

    gD.

    26/27

  • Dependency strengthening theorems

    v1 v2 v3 uabc bac cab bcaacb acb bac abcacb bac cab acb

    xyz = F (x1y1z1, . . . , xnynzn)= f (x̄)g(ȳ)h(z̄)

    Functionality: θF := =(x1y1z1, . . . , xnynzn; xyz)

    IIA: θIIA := =(x1, . . . , xn; x) ∧ =(y1, . . . , yn; y) ∧ =(z1, . . . , zn; z)

    Dictatorship: θidD :=∨n

    i=1 xyz = id(xi)id(yi)id(zi)

    Unanimity: θidUN := (x̄ = 1̄→ x = id(1)) ∧ (x̄ = 0̄→ x = id(0))∧(ȳ = 1̄→ y = id(1)) ∧ (ȳ = 0̄→ y = id(0))

    ∧(z̄ = 1̄→ z = id(1)) ∧ (z̄ = 0̄→ z = id(0))

    Fixed values

    Collective Rationality: θidCR :=(x = 1 ∧ y = 1→ z = id(1)) ∧ (x = 0 ∧ y = 0→ z = id(0))

    Universal Domain:∧∧{xiyizi ⊥ 〈xjyjzj | j 6= i〉 | 1 ≤ i ≤ n}

    θidUD :=∧{[1[2[3 ⊆ xiyizi | [1, [2, [3 ∈ {0, 1}, [1 = [2 → [3 = id([1)}

    Excluded values and interactions

    Thm. For any f,g ∈ {id,ex}, θF , θIIA, θfUD, θfCR, θgUN ` θ

    gD.

    26/27

  • Dependency strengthening theorems

    v1 v2 v3 uabc bac cab bcaacb acb bac abcacb bac cab acb

    xyz = F (x1y1z1, . . . , xnynzn)= f (x̄)g(ȳ)h(z̄)

    Functionality: θF := =(x1y1z1, . . . , xnynzn; xyz)

    IIA: θIIA := =(x1, . . . , xn; x) ∧ =(y1, . . . , yn; y) ∧ =(z1, . . . , zn; z)

    Dictatorship: θexD :=∨n

    i=1 xyz = ex(xi)ex(yi)ex(zi)ex(1) = 0ex(0) = 1

    Unanimity: θidUN := (x̄ = 1̄→ x = id(1)) ∧ (x̄ = 0̄→ x = id(0))∧(ȳ = 1̄→ y = id(1)) ∧ (ȳ = 0̄→ y = id(0))

    ∧(z̄ = 1̄→ z = id(1)) ∧ (z̄ = 0̄→ z = id(0))

    Fixed values

    Collective Rationality: θidCR :=(x = 1 ∧ y = 1→ z = id(1)) ∧ (x = 0 ∧ y = 0→ z = id(0))

    Universal Domain:∧∧{xiyizi ⊥ 〈xjyjzj | j 6= i〉 | 1 ≤ i ≤ n}

    θidUD :=∧{[1[2[3 ⊆ xiyizi | [1, [2, [3 ∈ {0, 1}, [1 = [2 → [3 = id([1)}

    Excluded values and interactions

    Thm. For any f,g ∈ {id,ex}, θF , θIIA, θfUD, θfCR, θgUN ` θ

    gD.

    26/27

  • Dependency strengthening theorems

    Functionality: θF := =(x1y1z1, . . . , xnynzn; xyz)

    IIA: θIIA := =(x1, . . . , xn; x) ∧ =(y1, . . . , yn; y) ∧ =(z1, . . . , zn; z)

    Dictatorship: θexD :=∨n

    i=1 xyz = ex(xi)ex(yi)ex(zi)ex(1) = 0ex(0) = 1

    Unanimity: θidUN := (x̄ = 1̄→ x = id(1)) ∧ (x̄ = 0̄→ x = id(0))∧(ȳ = 1̄→ y = id(1)) ∧ (ȳ = 0̄→ y = id(0))

    ∧(z̄ = 1̄→ z = id(1)) ∧ (z̄ = 0̄→ z = id(0))

    Fixed values

    Collective Rationality: θidCR :=(x = 1 ∧ y = 1→ z = id(1)) ∧ (x = 0 ∧ y = 0→ z = id(0))

    Universal Domain:∧∧{xiyizi ⊥ 〈xjyjzj | j 6= i〉 | 1 ≤ i ≤ n}

    θidUD :=∧{[1[2[3 ⊆ xiyizi | [1, [2, [3 ∈ {0, 1}, [1 = [2 → [3 = id([1)}

    Excluded values and interactions

    Thm. For any f,g ∈ {id,ex}, θF , θIIA, θfUD, θfCR, θgUN ` θ

    gD.

    C.f. [Tang, Lin 2009]

    26/27

  • Dependency strengthening theorems

    Functionality: θF := =(x1y1z1, . . . , xnynzn; xyz)

    IIA: θIIA := =(x1, . . . , xn; x) ∧ =(y1, . . . , yn; y) ∧ =(z1, . . . , zn; z)

    Dictatorship: θid,id,exD :=∨n

    i=1 xyz = id(xi)id(yi)ex(zi)ex(1) = 0ex(0) = 1

    Unanimity: θid,id,exUN :=(x̄ = 1̄→ x = id(1)) ∧ (x̄ = 0̄→ x = id(0))∧(ȳ = 1̄→ y = id(1)) ∧ (ȳ = 0̄→ y = id(0))

    ∧(z̄ = 1̄→ z = ex(1)) ∧ (z̄ = 0̄→ z = ex(0))

    Fixed values

    Collective Rationality: θidCR :=(x = 1 ∧ y = 1→ z = id(1)) ∧ (x = 0 ∧ y = 0→ z = id(0))

    Universal Domain:∧∧{xiyizi ⊥ 〈xjyjzj | j 6= i〉 | 1 ≤ i ≤ n}

    θidUD :=∧{[1[2[3 ⊆ xiyizi | [1, [2, [3 ∈ {0, 1}, [1 = [2 → [3 = id([1)}

    Excluded values and interactions

    Thm. For any f,g ∈ {id,ex}, θF , θIIA, θfUD, θfCR, θgUN ` θ

    gD.

    C.f. [Tang, Lin 2009]

    26/27

  • Dependency strengthening theorems

    Functionality: θF := =(x1y1z1, . . . , xnynzn; xyz)

    IIA: θIIA := =(x1, . . . , xn; x) ∧ =(y1, . . . , yn; y) ∧ =(z1, . . . , zn; z)

    Dictatorship: θid,id,exD :=∨n

    i=1 xyz = id(xi)id(yi)ex(zi)ex(1) = 0ex(0) = 1

    Unanimity: θid,id,exUN :=(x̄ = 1̄→ x = id(1)) ∧ (x̄ = 0̄→ x = id(0))∧(ȳ = 1̄→ y = id(1)) ∧ (ȳ = 0̄→ y = id(0))

    ∧(z̄ = 1̄→ z = ex(1)) ∧ (z̄ = 0̄→ z = ex(0))

    Fixed values

    Collective Rationality: θidCR :=(x = 1 ∧ y = 1→ z = id(1)) ∧ (x = 0 ∧ y = 0→ z = id(0))

    Universal Domain:∧∧{xiyizi ⊥ 〈xjyjzj | j 6= i〉 | 1 ≤ i ≤ n}

    θidUD :=∧{[1[2[3 ⊆ xiyizi | [1, [2, [3 ∈ {0, 1}, [1 = [2 → [3 = id([1)}

    Excluded values and interactions

    Thm. For any f,g ∈ {id,ex}, θF , θIIA, θfUD, θfCR, θgUN ` θ

    gD.

    Thm. θF , θIIA, θidUD, θexCR , θid,id,exUN ` θ

    id,id,exD ; θF , θIIA, θ

    exUD, θ

    idCR , θ

    ex,ex,idUN ` θ

    ex,ex,idD .

    26/27

  • Thank you!

    27/27

    Arrow's Impossiblity TheoremFormalizing Arrow's Theorem in dependence and independence logicArrow's Theorem as a dependency strengthening theorem