Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and...

26
Analytical Modeling Analytical Modeling of RF Noise in of RF Noise in MOSFETs – A Review MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton, ON L8S 4K1, Canada [email protected]

Transcript of Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and...

Page 1: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

Analytical Modeling of Analytical Modeling of RF Noise in MOSFETs – RF Noise in MOSFETs –

A ReviewA Review

S. Asgaran and M. Jamal Deen

Electrical and Computer Engineering, CRL 226

McMaster University, Hamilton, ON L8S 4K1, Canada [email protected]

Page 2: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

2

RF Performance of MOSFETs

● DUTs are fabricated in 0.18m CMOS technology and measured at VDS = 1V

● Maximum fT is around 50 GHz and the best NFmin is about 0.5 dB at 2 GHz

Page 3: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

3

Noise in MOSFETsNoise in MOSFETs

time

frequency

channel

IDS

noise

1/f noise

white noise

Io

Io

+

_VG

+

_VD

Drain

Gate

Source

Substrate (Body)

LW

lateral fieldE

VD

gDS(x)v(x)

e-

n+ n+

p-substrate

VG

Source Drain

Gate

channel no ise

FT

induced gate noise

Page 4: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

4

Why Does Noise MatterWhy Does Noise Matter

The battery life time and the distance between the wireless components will be limited by the noise floor of the front-end amplifier.

distancedistance

-70

-60

-50

-40

-30

-20

-10

0

10

-80 -60 - 40 -20 0 20P in (dB)

Pout

(dB)

noise floor

ideal amplifier

dynamicrange

saturation

Burn out

D is tan ce

P ow e r

Pin2Pin1

Page 5: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

5

OutlineOutline

●Introduction

●Noise sources

●RF MOSFET noise models: long and short channel – only explicit analytical models are discussed

●Induced gate noise

●Applications of models to design

●Conclusions

Page 6: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

6

IntroductionIntroduction

●Why CMOS for RF?

►Low cost

►High integration

►Integration with digital IC (SoC)

►Technology advancement

♦ higher frequencies

J.C. Rudell, J-J. Ou, T.B. Cho, G. Chien, F. Brianti, J.A. Weldon, P.R. Gray, A 1.9-GHz wide-band IF double conversion CMOS receiver for cordless telephone applications IEEE Journal of Solid-State Circuits, Vol. 32, pp. 2071-2088, Dec. 1997

Page 7: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

7

Noise Sources in MOSFETNoise Sources in MOSFET

● SiD: Channel noise + flicker noise

●SiG: Induced gate noise

● SiR: Thermal noise of real resistances

RDRS

RG

RSB RDB SiRDBSiRSB

SiRDSB

RDSBCBDCBS

RDS

SiD SiRDSiRS

Ims

ImCGD

CGSCGB SiG

SvRG

G

S

B B

D

C. Enz, An MOS transistor model for RF IC design valid in all regions of operation IEEE Trans. Microwave Theory Tech., Vol. 50, pp. 342-359, Jan. 2002.

A.J. Scholten et al, Noise modeling for RF CMOS circuit simulation, IEEE Trans. Electron Devices, Vol. 50, pp. 618- 632, Mar. 2003.

L=0.18 m, f=3 GHz

88%88%

0.250.25m technologym technology

SSiDiD ~ L ~ Lchch-1-1

RRSUBSUB ~20% ~20% total Stotal Sinin

RRGG ~5% total S ~5% total Sinin

elec

V

VelecDI L

dVVgLI

kTS

DS

SB

D

1)(

4 22

~20% discrepancy for 0.18~20% discrepancy for 0.18m, low fm, low fSSiDiD increases with f in 2 increases with f in 2m FETm FET

No dependence on VNo dependence on VDS DS in saturationin saturation

Jamal
Page 8: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

8

Noise Models- Long Channel CaseNoise Models- Long Channel Case

●Klaassen-Prins:

►Integrating the noise current over the entire channel

●Van der ziel:

►Includes hot electron effects

►Te: a function of E(x)

●Tsividis:

►Simpler model

DSV

DiD dVVg

IL

kTS

0 002

2)(

4

DSVe

DiD dVVg

T

xT

IL

kTS

0 002

2)(

)(4

inviD QL

kTS

2

4

Page 9: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

9

Noise Models - Short ChannelNoise Models - Short Channel

● Increased noise in short channel devices

●A divided channel is used►Linear region (GCA)

►Velocity saturation region; thermal assumption questionable

G

S D

Leff,VDS

(II)

Lsat,VDSat L

(I)

P. Klein, An analytical thermal noise model of deep submicron MOSFET’s, IEEE Electron Dev. Letters, Vol. 20, pp. 399-401, Aug. 1998.

L

Iqv

L

QkTS DS

esatIeff

iD

3

84

2

0 2 4 6 8 10 120

4

8

12

16

20

Channel Length (m)

iD (Amp/Hz1/2)

VVGSGS=0.7, 0.9, 1.1, 1.3, 1.9V=0.7, 0.9, 1.1, 1.3, 1.9V

VVDSDS=2.5V=2.5V

vvsatsat~10~1077cm/scm/s

~4.3ps~4.3ps

SSIDID ~ indep. of V ~ indep. of VDSDS

Page 10: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

10

RF MOSFET Noise ModelsRF MOSFET Noise Models

212

VVDSiD SSgS

Triantis et al

● is

questionable! gDS is not

constant

● Te: in both parts of the

channel

● thermal noise source in vel. sat. region: questionable! rD is

an ac resistance

● Old measurements (Abidi, ‘86) used

● SID ~ indep. of VDS (< 1.5x)

D.P. Triantis, A.N. Birbas and D. Kondis, Thermal noise modeling for short-channnel MOSFET’s, IEEE Trans. Electron Devices, Vol. 43, no. 11, pp.1950-1955, Nov. 1996.

DIID IxxEr /)(

1 2 3 4 5 6010-24

10-23

10-22

10-21

Region II noise

Region I noise

Total noise

VGS (V)

Drain Current Noise (Amp2/Hz)

VVDSDS=4V=4V

Measurement

W=30W=30m; L=0.7m; L=0.7mm

Note: Region II noise increases with Note: Region II noise increases with VVGS; GS; device is less saturateddevice is less saturated

Note: Calculations > measurementsNote: Calculations > measurements

Page 11: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

11

RF MOSFET Noise ModelsRF MOSFET Noise ModelsPark and Park

● Mobility degradation due to channel field absent

● Carrier temperature, Te,

used to model hot carrier effects

● Noise of VS region: intrinsic diffusion noise

● SiD=g2DS×(SvI+SvII) -

questionable!

● Measurements (Abidi, ‘86)

● Temp:

● for EC=2-4V/m

33222

2

2

2232

3

4)/(cosh

)(

42

satsjs

Dsat

CGT

GTCGTC

D

cDSiD

LvxW

qDIlL

VV

VVVV

I

kTVgS

C.H. Park and Y.J. Park, Modeling of thermal noise in short-channel MOSFETs at saturation, Solid-State Electronics, Vol. 44, pp. 2053-2057, 2000.

VGS (V)1 2 3 4 5

10-24

10-23

10-22

10-21

Region II noiseTriantis

Region I noisePark & Park

Total noise - TriantisPark & Park

Drain Current Noise (Amp2/Hz)VVDSDS=4V=4V

Measurement

Region I noiseTriantis

Region II noisePark & Park

2

)(1)(

Coe E

xETxT

Page 12: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

12

RF MOSFET Noise ModelsRF MOSFET Noise Models

Knoblinger et al ● Te: in both parts of channel

● Te:

● eff=v(x)/E(x) in both parts

of the channel: wrong!

)sinh(1

2

4

)1arctan()exp(arctan2

2

4

224

24

L

cEL

DkTI

LEcL

DkTI

DSVEL

DkTIinvQeff

L

kTiDS

c

G. Knoblinger, P. Klein & H. Tiebout, A new model for thermal channel noise of deep-submicron MOSFETs and its application in RF-CMOS design , IEEE J. Solid-State Cir., vol. 36, pp. 831-7, May 2001.

2

2

( )e

c

E xT T T

E

~1.0 and noise from region Ia ~1.0 and noise from region Ia (T=lattice temperature) gave (T=lattice temperature) gave better fit to data at Vbetter fit to data at VGSGS>1.5V>1.5V

S D

Leff,VDS

(II)

Lsat,VDSatL

(I)

G

Page 13: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

13

RF MOSFET Noise ModelsRF MOSFET Noise Models

Scholten et al

●CLM not taken into account

Te is not needed!

DSatV

eD

iD dVVgxkTIL

S0

22

)()(41

pp

C

eff

E

E1

1

n

Ce E

ETT

1

A.J. Scholten et al, Accurate thermal noise model for deep-submicron CMOS, IEDM Tech. Digest, pp. 155-158, 1999.

Page 14: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

14

RF MOSFET Noise ModelsRF MOSFET Noise Models

Chen & Deen ●Channel length

modulation (CLM) is accounted for

●=0 in experiments►no Te needed

●No noise from VS region

DSatCelec

Dinv

elec

effiD V

EL

kTIQ

L

kTS

222

44

C.H. Chen and M.J. Deen, Channel noise Channel noise

modeling of deep submicron MOSFETs, modeling of deep submicron MOSFETs, IEEE Trans. Electron Devices, vol. 49, pp. 1484-1487, Aug. 2002.

Page 15: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

15

RF MOSFET NoiseRF MOSFET Noise ModelsModelsScholten et al

●Modified Klaassen-Prins

●Takes into account CLM

●No noise from VS region

●A closed-form solution as a function of surface potential - too complicated! Difficult to provide insight to designers

●Not accurate for short channels at high VGS

A.J. Scholten et al, Noise modeling for RF CMOS circuit simulation, IEEE Trans. Electron Devices, Vol. 50, pp. 618- 632, Mar. 2003.

DSV

DeleciD dVVg

IL

kTS

0 002

2)(

4

eleciD

L

1S

Page 16: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

16

RF MOSFET Noise ModelsRF MOSFET Noise ModelsHan et al.

●Considers the channel field effect on mobility

●Starts from impedance field theory

●Uses Einstein equation in MOSFET channel : questionable! MOSFET channel is degenerate in strong inversion

●The result is based on thermal noise theory

dVVg

EL

VIL

kTS

DSV

o

celec

DSDelec

iD

0

22

2

)(

1

4

cEE

1

x

WQfDqi invnn

42

K. Han, H.Shin and K. Lee, Analytical Drain Thermal Noise Current Model Valid for Deep Submicron MOSFETs, IEEE Trans. Electron Devices, vol. 51, pp. 261-269, Feb. 2004.

Page 17: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

17

RF MOSFET Noise ModelsRF MOSFET Noise Models

K. Han, H.Shin and K. Lee, Analytical Drain Thermal Noise Current Model Valid for Deep Submicron MOSFETs, IEEE Trans. Electron Devices, vol. 51, pp. 261-269, Feb. 2004.

dVVg

EL

VIL

kTS

DSV

o

celec

DSDelec

iD

0

2

22

)(

1

4

cEE

1

Dashed line Dashed line is without this is without this termterm

Page 18: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

18

RF MOSFET Noise ModelsRF MOSFET Noise Models

Analytical Model●Based on simple

analytical drain current expression

● Includes the channel field effect

●Purely analytical (no integration, etc.)

●Suitable for circuit design

satoxD

c

GTGTelec vWC

IVVE

VVVL

0 and

)(

0

0

G

S D

Leff,VDS

(II)

Lelec L

(I)

)(3

244

02

02

02

VVV

VVVVIkTS

GTGT

GTGTDiD

SB

D

VT

dsat

dsatSB

iD

dV

dI

V

V

VkT

dV

dS2

2

3

14

SdsatSBopt VV with

Page 19: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

19

RF MOSFET Noise ModelsRF MOSFET Noise Models

B. Wang, J.R. Hellums and C.G. Sodini, MOSFET thermal noise modeling for analog integrated circuits, IEEE JSSC vol. 29, pp. 833-835, July 1994.

inveff

effiD Q

L

kTS

2

4

model

Analytical modelAnalytical model

Analytical modelAnalytical model

Page 20: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

20

RF MOSFET Noise ModelsRF MOSFET Noise Models

2

2

)(3

14

GTcc

cc

cc

VLE

LE

LEGTVsatkTWviDS

cL

GTVeffoxkTWCiDS

1

24

●Noise and scaling

●For very short channel devices

Page 21: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

21

Induced Gate NoiseInduced Gate Noise●Induced gate noise at x in channel

where

● Induced gate noise ig(xo) is fully correlated with the

channel thermal noise id (xo)

●VDS becomes VDSsat in the saturation mode

1 212 6

12

GS THas D

DSS

GS T

S

DSH

DV V

V

V VV V

V V

(( ( )

( ))

)og o as o

ds

x o

l

o

e ec

g V v xji x V V x

I L

WLC

CCGSGS iidd(x(xoo))

Page 22: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

22

SSIGIG and Correlation Noise and Correlation Noise

●MOSFET channel- RC network at high f►Gate capacitance and channel R

●Channel noise coupled to the gate→ SIG, correlation noise

●Frequency dependent

●Negligible as the channel length shrinks

L=0.18 m

L=0.27 m

L=0.42 m

L=0.64 m

L=0.97 m

Frequency (GHz) 1011×10-25

1×10-24

1×10-23

1×10-22

SiG (A2/Hz) Correlation Noise (A2/Hz)

L=0.18 m

L=0.27 m

L=0.42 m

L=0.64 m

L=0.97 m

Frequency (GHz)61

0

2×10-23

4×10-23

6×10-23

8×10-23

2 3 4 5

M.J. Deen, C.H. Chen and Y. Cheng, MOSFET Modeling for Low Noise, RF Circuit Design, Proceedings of IEEE CICC, pp. 201-208, May 2002

Page 23: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

23

Choosing Device SizeChoosing Device Size

● Channel length of devices reduced

► Increased gm and peak value of gm occurs at lower VGS values

● The faster increase in gm results in

► Reduced NFmin and the lowest NFmin is shifted to lower VGS values

NFNFminmin

ggm,maxm,max

Page 24: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

24

Choosing DC Bias Conditions

● Higher VDS bias will increase gm at the higher VGS region

● Higher gm will decrease NFmin at higher VGS region

● Decreased NFmin at higher VGS makes lowest NFmin less sensitive to VGS

NFNFminmin

ggmm

Page 25: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

25

Concluding RemarksConcluding Remarks

●MOSFET channel noise analytical models MOSFET channel noise analytical models discusseddiscussed► Long channel caseLong channel case

► Short channel caseShort channel case

●Some ideas on how to use noise to design Some ideas on how to use noise to design circuitscircuits

●Future applications demand low powerFuture applications demand low power► MOSFET in moderate or weak inversion MOSFET in moderate or weak inversion

► Noise models needed in these regionsNoise models needed in these regions

Page 26: Analytical Modeling of RF Noise in MOSFETs – A Review S. Asgaran and M. Jamal Deen Electrical and Computer Engineering, CRL 226 McMaster University, Hamilton,

26

AcknowledgementsAcknowledgements

●Professor C.H. Chen (McMaster University) Professor C.H. Chen (McMaster University)

●Dr. Y. Cheng (Conexant/Skyworks)Dr. Y. Cheng (Conexant/Skyworks)

●Funding - Rockwell/Conexant/Skyworks, USA Funding - Rockwell/Conexant/Skyworks, USA and Gennum, Canadaand Gennum, Canada

●Funding - NSERC of Canada Funding - NSERC of Canada

●Funding - MicronetFunding - Micronet

●Funding - Canada Research Chair ProgramFunding - Canada Research Chair Program