Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral...

32

Transcript of Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral...

Page 1: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen
Page 2: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

. .

.. . .

:

. ,

.

Page 3: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

ORNL/ TM- 6 302 Dist. Category UC-20

Contract No. W-7405-eng-26

FUSION ENERGY DIVISION

ANALYSIS OF PARTICLE SPECIES EVOLUTION

IN NEUTR4L BEAM INJECTION LINES

J. K i m and H. H. Haselton

Date Published - July 1978

NOTICE This document contains information of a preliminary nature. I t is subject to revision or correction and therefore does not represent a final report.

Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830

operated by UNION CARBIDE CORPORATION

for the DEPARTMENT OF ENERGY

Page 4: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen
Page 5: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . 1 . INTRODUCTION . . . . . . . . . . . . 2 . BEAM SPECIES CHANGE I N CAS CELL . . 3 . CALCULATIONS OF SPECIES EVOLUTION . 4 . CALCULATIONS OF NEUTRAL BEAM POWER . 5 . CONCLUSIONS . . . . . . . . . . . . . ACKNOWLEDGMENT . . . . . . . . . . . . . REFERENCES . . . . . . . . . . . . . . .

. . . . . . . . . . . . . v

. . . . . . . . . . . . . 1

. . . . . . . . . . . . . 1

. . . . . . . . . . . . . 9

. . . . . . . . . . . . . 1.8

. . . . . . . . . . . . . 20

. . . . . . . . . . . . . 20

. . . . . . . . . . . . . 2 1

iii

Page 6: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen
Page 7: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

A n a l y t i c s o l u t i o n s t o t h e rate e q u a t i o n s d e s c r i b i n g t h e s p e c i e s

e v o l u t i o n of a i n u l t i s p e c i e s p o s i t i v e i o n beam of hydrogen due t o charge

exchange and molecular d i s s o c i a t i o n are d e r i v e d as a f u n c t i o n of t h e

background g a s (Hz) l i n e d e n s i t y i n t h e n e u t r a l i z i n g g a s c e l l and I n t h e

d r i f t t u b e . Using t h e s o l u t i o n s , c a l c u l a t i o n s are p r e s e n t e d f o r the

relat ive abundance of each s p e c i e s as a f u n c t i o n of t h e g a s c e l l t h i c k n e s s ,

t h e r e i o n i z a t i o n l o s s rates i n t h e d r i f t tube , and t h e n e u t r a l beam power

as a f u n c t i o n of t h e beam energy and t h e s p e c i e s composi t ion oE t h e

o r i g i n a l i o n beam.

V

Page 8: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen
Page 9: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

I. INTRODUCTION

In neutral beam injectors in use for heating fusion plasmas, a multi- 4 - 4 - + species hydrogen beam (i.e., M1, H 2 , and H 3 ) from a source undergoes atomic

collisio; reactions in a gas cell and then is separated magnetically or

electrostatically into charged particles and neutral particles. The

energetic neutral particles travel further downstream and to the fusion

plasma, while the charged particles are either dumped into a target or

possibly recovered in the form of current by one of several possible

techniques. Atomic processes in the gas cell involving charge transfer

and dissociation will change particles' charge state and momentum. These

processes will determine the species evolution along the gas cell down-

stream and the neutralization efficiency. The pure neutral particle beam

entering the drift tube will also encounter residual hydrogen molecules,

and similar atomic processes will determine the reionization losses.

Numerical calculations of this problem have been reported in the

literature. ' 7

in addition the functional forms of variation with the gas cell thickness

for all the species. Furthermore, the detailed information of the frac-

tions of charged particle species arriving at the species analyzer in the

ion dump became warranted for use in unfolding the species measurement

data obtained at the ion dump into the species distribution of the original

ion beam. The functional forms may also be used for the study of the

space charge propagation in the gas cell. We also present a calculation

of the neutral beam injector efficiency as a function of the beam energy

and the species composition for the fixed ion beam current.

Although the same problem is considered here, we o f f e r

2. BEAM SPECIES CHANGE IN GAS CELL

Reactions responsible for changing the abundance of each beam species c c are illustrated in Fig. 1 for three different original ion species, H I , H2,

and H3. In evolution these species are independent of each other. The ti- +

species is included in the atomic ion ( H I ) family but neglected in the

evolution of molecular ion families f o r simplicity of analysis (justified

by its small net production rate in comparison with other species). We

then write the rate equations for the particle densities of species normal-

ized to the one of the original ion species of each family as follows:

+

1

Page 10: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

2

ORNL/DWG/FED 78-230

Fig. 1. Reactions altering charge states and momenta of particles f o r + + -k

each family originating from H I , H 2 , and H3.

energy, and Ccd denotes the r eac t ion cross section involving a mass change

from a to b and a charge state change from c to d.

E is t h e original i o n beam ab

Page 11: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

3

+ H I family

+ H2 family

2 1 2 1 11 11 + + C o o Y 2 0 + cloy+ - COlYO

d x

y+ = 2 - Yo - 2(y20 + Y2+) a

f H 3 family

- = dY3+ -S3Y3+ d X

dY20 22 -- - c 3 3 + + C I 0 Y 2 + - sly20 ax

- 2y20 - 2y2+ - 3y3.t y, = 3 - YO

Page 12: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

where

x = t h e l i n e d e n s i t y (cm-2) ; x /-'P (R1d.R 0

p ( R ) = t h e background gas (W,) d e n s i t y , which is a f u n c t i o n of t h e

d i s t a n c e i n t o t h e gas c e l l , R .

22 @ 2 E / 3 1 21 1 2 1 s1 ?*I + 2 0 0 + C o 1

1 21 1 21 2 11

s4 z -c + p10 4- c;;

y 5 t h e r a t i o of a species number d e n s i t y t o t h e one of each

f a m i l y a t x = 0, t h e numeral s u b s c r i p t i n d i c a t i n g t h e number

of atoms i n a iuolecular s p e c i e s , and ( 0 , +, -) charge states.

Cab = r e a c t i o n c r o s s s e c t i o n i n v o l v i n g a m a s s change from a t o b cd and a charge s t a t e change from c t o d.

The las t e q u a t i o n of each faiiiily i s s imply f rom the c o n s e r v a t i o n of

monientum. The boundary c o n d i t i o n for- each group i s t h a t t h e o r i g i n a l

i o n f r a c t i o n s (y+, y2+, and y3 ) are u n i t y a t x = 0 and a l l t h e o t h e r s

are z e r o a t x = 0. -i-

With t h e boundary condi.Ci.on, yo(0) = 1, E q . (1) al-so d e s c r i b e s t h e

problem of a p u r e n e u t r a l beam of 1 O O X a tomic p a r t i c l e s t r a v e l i n g a d r i f t

tube . If t h e s i t u a t i o n i s such t h a t any charged s p e c i e s are d e f l e c t e d

o u t of t h e beam passage and dumped t o t h e d r i f t tube wall by the i n f l u e n c e

of the magnet ic f i e l d s o f a pl.asina confinement d e v i c e , t h e n y and y- w i l l

b e z e r o everywhere. +

The sol.ut.ions t o t h e s imul taneous d i f f e r e n t i a l e q u a t i o n s of each

f a m i l y are given below.

H ' f a m i l y A

Page 13: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

5

where

- a l B 3 c10 B2 =

"1 - "2

+ H2 fami ly

Page 14: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

6

y (x) = 2(1. - Y 2 0 - Y2+) - Y o + where

-s 3x y 3 + w = e

Page 15: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

7

- 2y20 - 2Y2+ - 3y3+ y+(x) = 3 - Yo

where

(1.5)

Page 16: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

8

T r a v e l i n g f u r t h e r downstream, t h e charged p a r t i c l e s of t h e beam are

swept away from the n e u t r a l p a r t i c l e s by a def lec tLon magnet: a f t e r a gas

ce l l . I f t h e gas c e l l l i n e d e n s i t y i s h i g h enough t o provide t h e equiI. ib-

riuin, e s s e n t i a l l y all. t h e n e u t r a l s e n t e r i n g i n t o a d r i f t r e g i o n ( i . e . , t h e

r e g i o n between t h e d e f l e c t i o n magnet and t h e plasma device) wi l l - b e mono-

a tomic p a r t i c l e s i n t h r e e d i s c r e t e energy groups ( i . e . , E , E / 2 , E / 3 ) .

The i n i t i a l c o n d i t i o n s are then set by t h e asymptot ic v a l u e s o f yo f o r

each group (yo ) .

produced along t h e d r i f t t u b e arc t o t rave l t o g e t h e r with t h e n e u t r a l

p a r t i c l e s , t h e s o l u t i o n s are i n t e r m s of t h e d r i f t tube l i n e d e n s i t y , x,

W For t h e case where the e n e r g e t i c charged par t ic les

where

“2B3 - (32 I- eo1 + co-1 .- Ti =

“1 - 012

00

Y o = t h e e q u i l i b r i u m f r a c t i o n of n e u t r a l s e n t e r i n g t h e d r i f t t u b e .

I n t h e case when t h e charged p a r t i c l e s are l o s t t o t h e w a l l a t t h e

l o c a t i o n where t h e y are born, i . e . > i f they do n o t c o n v e r t themselves

i n t o n e u t r a l s , t h e s o l u t i o n s are

Page 17: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

9

3 . CALCULATIONS OF SPECIES EVOLUTION

Using the solutions Eqs . ( 4 ) - ( 1 5 ) , the fractional power of each

species is calculated as a function of the line density for different beam

energies (see Figs. 2-7). The fractional powers carried by the species of

molecular ion families are estimated from the number fractions (y's)

weighted by their fractional energies. The equilibrium fractions calculat-

ed herein are in fair agreement with the measured data.3 Appropriate cross

sections are tabulated in Table 1. Most cross section values are taken

from Ref. 3 and they differ! only slightly from the ones compiled by

Stearns et a1.2

In Fig. 8 the surviving fraction of the neutral beam in the drift m

tube, yo(x')/yo, is shown as a function of both the line density of the

drift tube and the neutral beam energy, where yo is the equilibrium frac-

tion of the neutral beam after the gas cell. It can be seen from Fig. 8

m

that about 10% l o s s of neutral beams occurs in the drift tube due to ioniz-

ing collisions at the line density of 1015 cm-2 (or 3 x

runaway situation could exist if the gas line density increases rapidly due

to "boil-off'' of gas by energetic particles lost to the drift tube wall.4

The conversion efficiency of ion beam power into neutral beam power is then

given by the following expression,

torr-m) . A

where fk is the fraction of the ion component, k, in the original ion beam,

k being 1, 2, and 3 for H i , H 2 , and H3 family, respectively. Y0,k (xg) is

the fraction of energetic atoms originated from the k family, evaluated at

a gas cell line density of xo.

+ + +

The line density of the entire

Page 18: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

10

ORNL/DWG/FED-78-224 i o

0 8

0 6

71

c-- V .zl Iy

9

IA.

0 4

0.2

0 0.01

E = 2 0 k e V H o ( E / 3 :

'/

G 4 ?

LINE DENSITY ( x IOt6 cm-* )

Fig. 2. V a r i a t i o n of I r a c t i o n a l powers c a r r i e d by p a r t i c l e species as a f u n c t i o n of the doimstrc-arn l i n e d e n s i t y of H2 (or D 2 ) f o r hydrogen energy of 20 keV (or 40 keV f o r deuterium beams).

Page 19: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

11

ORNL/OWG/ FED-78-225 f .O

0.8

0.6

z t- V U E IL

0

0 .4

0.2

0

I I l l 1 I1-n-T

0.oi O . ! I

LINE DENSITY ( x ioi6 ~ r n - ~ )

i o

Fig. 3. Variation of fractional powers carried by particle species as a function of the downstream line density of H2 (or D 2 ) for hydrogen energy of 30 keV (or 60 keV for deuterium beams).

Page 20: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

12

10

0 8

0 6

z I- V 4 rK IL

21

0 4

0.2

0

0 01

ORNL/ DWG/ FED- 78- 226

01 f

LINE DENSITY ( x toi6 c,-2 i 40

Fig. 4 . Variation of fractional powers carried by particle species as a function of the downstream line density of IT2 (or D 2 ) for hydrogen energy of 40 keV (or 80 keV f o r deuterium beams),

Page 21: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

13

ORNL/DWG/FED-78-227

4 .O

0.8

0.6

z I-

Lz LL

0 ::

0.4

0.2

0 0.04 0.i 1.0

LINE DENSITY ~ r n - ~ ) 40

Fig. 5. Variation of fractional powers carried by particle species as a function of the downstream line density of H 2 (or De) for hydrogen energy of 60 keV (or 120 keV for deuterium beams).

Page 22: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

14

4 .O

0.8

0.6

21

I- u Q E LL

0

0.4

0.2

0 0.04

\ -.

\ .. '. E.80 keV -

" = ' - \ '*\

0.1 1 .O

LINE DENSITY (~40'~ ~ r n - ~ 1 10

Fig. 6. Variation of fractional powers carried by particle species as a function of the downstream li-ne density of Hz (or D z ) f o r hydrogen energy of 80 keV (or 160 keV for deuterium beams),

Page 23: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

15

ORNL/DWG/FED-70-229

4.0

0.8

0.6

z 2 V Q LL a

0.4

0.2

0

---------

#*-----------

0.4 1.0 IO 0.01 LINE DENSITY (xio’6 cm-2)

Fig . 7. V a r i a t i o n of f r a c t i o n a l powers c a r r i e d by p a r t i c l e species as a f u n c t i o n of the downstream l i n e d e n s i t y of H2 (or D2) f o r hydrogen energy of 80 keV ( o r 200 keV f o r deuterium beams).

Page 24: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

T a b l e 1. Cross s e c t i o n s ( i n units of cm’) used f o r t h e s p e c i e s c a l c u l a t i o n s compi led from Ref. 3

10 8.5 3 . 4 2

20 6 . 0 1 .3

30 4.0 1.6

40 2 . 6 1.6

60 1.: 1 . 5

90 0.56 1 . 2

100 0 . 2 8 1.1

120 0.15 0.95

0 . 0 4 7

0 . 1 0.062

0 . 0 2 5

0. (3022

0.0005

0.OOOP

0 . 0 0 0 0 3

0 . 2 2

0.19

0 . 1 2

3 . 0 9 5

0 . 3 5 3

0.029

0 . 0 2 1

0 . 0 0 8

0 . 4 1 0 . 0 4.6 0 . 6 7 0 . 3 8

0 . 4 4 8 .7 3.6 1 . 2 0 .43

0 . 4 4 7.4 2 . 8 1 .5 0 . 6

0 . 4 3 6 . 7 2 . 1 1 . 7 0.67

0 . 4 5 . 4 1 . 2 1.8 3.67

0.31 4.7 0 . 7 2.0 0.49

0 . 3 0 4 .0 0 . 4 5 2 .0 0 .3

0 . 2 5 3.6 0 . 3 2 . 0 0 . 3

2.4

1 .98

1 . 6 3

1 . 2 8

1.0

0 .85

0.75

0 . 6 7

2.4

2 . 1

1 .9

1.9

2.2

2 .4

2 . 3

2.25

7.7 1.1. 3 . 4 0 . 8 6

8 . 5 1 . 2 5 4 . 1 1 . 6 5

8 . 2 1 . 3 4 . 3 1.8

7 . 7 l . 2 5 4 . 1 1 . 9 5

6 . 1 1 .15 3.15 2 .15

4.6 1.i 2 . 4 2 . 3

3 .6 0.99 1 .9 2 . 3

2 . 5 0 . 9 2 1 .6 2 . 3

6 .2

8 .8

9 . 6

9 .6 ? .C cn

P

7 . 9

6 . 7

5 . 2

U C o n s i d e r a b l e d e v l a t l o n s o j s e r v e d between R e f . 2 and Ref . 3 .

bTaken from R e f . 2 .

Page 25: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

17

O R N L /DWG/ FED- 78-2 19 1 .o

0.8

0.6 0 I- o Q LT LL 0.4

0.2

0

\ L i 2 0 keL 1\40

1 2 0 40

0 0.2 0.4 0.6 0.8 4.0 H, LINE DENSITY ( x ~ r n - ~ )

4.2

0 1 2 TORR-METER ( x

Fig. 8. The s u r v i v i n g f r a c t i o n of atomic hydrogen beam as a f u n c t i o n of the d r i f t t u b e l i n e d e n s i t y (H2) and t h e n e u t r a l bsam energy.

Page 26: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

d r i f t t u b e i s denoted by x'. The gas c e l l l i n e d m s i t y , xo, is u s u a l l y set

less t h a n t h e e q u i l i b r i u m l i n e d e n s i t y i n a n e u t r a l beam i n j e c t i o n system,

s i n c e t h e f r a c t i o n of n e u t r a l s i s a s low f u n c t i o n O F t h e l i n e d e n s i t y n e a r

t h e e q u i l i b r i u m , and a c h i e v i n g t h e e q u i l i h r i m u l i n e d e n s i t y i s a t t h e ex-

pense of l a r g e vacuum pumping power.

0

4 . CALCULATIONS OF NEUTRAL REAM POWER

P o s i t i v e hydrogen i o n beams are p o t e n t i a l l y i n e f f i c i e n t a t h i g h energy

s i n c e t h e n e u t r a l i z a t i o n e f f i c i e n c y d e c r e a s e s wi.th t h e benin energy. 'l'he

convers ion e f f i c i e n c y given by Eq . ( 2 2 ) and F i g s . 2-7 a t a g iven gas c e l l

and d r i f t t u b e c o n d i t i o n provides t h e informat ion needed f o r n e u t r a l beam

i n j e c t i o n systems des ign .

Another useful . way t o p r e s e n t t h e problem of n e u t r a l i z a t i o n i s t o p l o t

t h e n e u t r a l power as a f u n c t i o n of beam energy f o r a f i x e d beam c u r r e n t .

S i n c e t:he e x t r a c t a b l e i o n beam c u r r e n t i s l i m i t e d due t o c o n s i d e r a t i o n s of

o p t i c s and breakdown v o l t a g e , t h e r e i s a p r a c t i c a l upper l . i i1l i t on t he ex-

t r a c t i o n c u r r e n t d e n s i t y . Thus f a r , al.1 t h e neut ra l . beam i n j e c t o r s o u r c e s

have y i e l d e d avera.ge c u r r e n t d e n s i t i e s i n t h e range between 0.3 and 0.4 A I cm2. The t o t a l c u r r e n t f rom a s o u r c e has been s imply s c a l e d cp by t h e in-

crease of t h e e m i t t i n g area. However, t h e r e wou1.d b e a 1i.mi.t on t h e si-ze

of a n i o n s o u r c e due t o t h e d i f f i c u l t y of m a i n t a i n i n g t h e s o u r c e gas p r e s -

s u r e d i f f e r e n t i a l and t h e s o u r c e p l a s m a u n i f o r m i t y . Consequentl.y, i t i s

w e l l j u s t i f i e d t o assuine t h a t an i o n s o u r c e as p r e s e n t l y designed i s cur-

r e n t l i m i t e d .

I n t h i s r e s p e c t , F ig . 9 shows t h e n e u t r a l beam power p e r ampere of i o n

beam as a f u n c t i o n of bo th t h e beam energy and t h e s p e c i e s d i s t r i b u t i o n .

(The 113 component i s n e g l e c t e d f o r s i m p l i c i t y . ) The gas c e l l l i n e d e n s i t y

i s chosen such t h a t 90% of t h e e q u i l i b r i u m f r a c t i o n i s t o be achieved f o r

H l ( E ) . For s impl . ic i ty , t h e l o s s a l o n g t h e d r i . f t t u b e i s n e g l e c t e d . The

ac tua l . power r e a l i z e d a t t h e f u s i o n p l a s m a p e r a m p e r e o f i o n c u r r e n t i s t h e

product of illre n e u t r a l power shown i n Pig. 9 , t h e o v e r a l l geometr ic trsans-

m i s s i o n e f f i c i e n c y (due t o beam d i v e r g e n c e ) , and t h e surviv.bng f r a c t i o n of

t h e n e u t r a l beam i n p a s s i n g through t h e d r i f t t u b e ( F i g " 8 ) . The power

c a r r i e d by t h e h a l f energy cornporient i s t h e suiii of I30 ( E / ? ) and H o ( E ) ,

a l t h o u g h above 80 keV, t h e HF (E) component becomes negligib1.e.

-t

4-

1 2

Page 27: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

19

ORNL/DWG/F&Q 78- 220

40

3 Y v

W

Q E 30 2 a

or w 0 3 a

20 5 W lI3

10

0

I I I BEAM COMPOSITION a IOO% H: b 80Y0 M t - 20% H i c 60Y0 H i - 4 0 % H$

d 4070 HT-60% H; e 20% H,-80% H$

-

/ J

/ /

I I I I e ----

/’ /

/

d ,,----- /

/ /

0 20 40 60 80 100 120 140 ACCELERATION ENERGY (keV)

Fig . 9. N e u t r a l beam powers p e r ampere of t h e o r i g i n a l i o n beam

For each energy t h e l i n e d e n s i t y for t h e 90%

c u r r e n t as a f u n c t i o n of t h e beam energy f o r d i f f e r e n t s p e c i e s d i s t r i b u -

t i o n s (HI and H2 o n l y ) .

e q u i l i b r i u m f o r H (E) i s used.

f + +

Page 28: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

O n e can n o t i c e froin F i g . 9 t h a t t h e n e u t r a l beam power c a r r i e d by t h e

f u l l energy p a r t i c l e s h a s a n a p p a r e n t maximum wi th r e s p e c t t o t h e beam

energy. A maximum p l a t e a u appears in t h e energy range between 40 and 80

keV. The c u r r e n t n e u t r a l beam program i s i n t h i s energy range , e . g , , 40

keV Ho EOK PLT, 120 keV D o (60 keV Ho e q u i v a l e n t ) f o r TFTR, and o t h e r s .

One a l s o n o t i c e s t h a t i n t h i s energy range t h e e f f i c i e n c y varies as the

i n v e r s e of t h e energy. The beam energy, a t which t h e t o t a l n e u t r a l power

(botli ha1.f- and f u l l - e n e r g y p a r t i c l e s ) i s maximurn, varies accord ing t o t h e

s p e c i e s composi t ion, f rom ~ 7 0 keV f o r 100% H:, $80 keV f o r 60% H1-40% 1-12,

t o ~ 1 0 0 key f o r 20% H1-8Q% H2.

+ -I-

+ 4

5. CONCLlJS I O N S

W e have p r e s e n t e d a n a l y t i c sol .utions t o t h e ra te e q u a t i o n s f o r ion-

molecule i n t e r a c t i o n s i n a gas c e l l and a d r i f t tube . Evolu t ion of species

a.s a f u n c t i o n of l ine d e n s i t y w a s g iven fo r a wide range of energy of

i n t e r e s t t o n e u t r a l beam in jec t : ion lieatling of f u s i o n p l a s m a (20-100 keV p e r

nuc leon) . It should b e noted t h a t t h e comy:i.l.ed c r o s s s e c t i o n s t y p i c a l l y

have s t a n d a r d deviati . i ius of i20-40%, The n e u t r a l beam power p e r u n i t i o n

beam c u r r e n t w a s a l s o c a l c u l a t e d as a f u n c t i o n of t h e io11 bemi energy,

e l u c i d a t i n g t h e maximum obtainab1.e n e u t r a l beam powers I The n e u t r a l beam

power p e r ampere of i o n c u r r e n t i s more o r I .ess c o n s t a n t i n lie energy

range between 40 and 80 keV f o r a tomic hydrogen io i i s .

ACKNOVLEDGMENT

We g r a t e f u l l y acknowledge L. D , Stewart and J . W. Whealton f o r u s e f u l

s u g g e s t i o n s and d i s c u s s i o n s .

Page 29: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

2 1

RE FERENCES

1. K. H. Berkner, R. V. Pyle, and J. W. Stearns, Nucl. Fusion I_ 1 5 ,

249 (1975).

2. J. W. Steams, K. H. Berkner, and R. V. Pyle, Proc. 2nd Topical Meeting

on t h e Technology of Controlled Nucleaz? Fusion, V o l . IV, p . 1 2 2 1

(19 7 6 ) .

3. C. F. Barnett et al., Atomic Data f o r Controlled Fusion Research,

ORNL-5206 and OWL-5207, Oak Ridge; Tennessee (1.977).

4 . A. C. Riviere and J. Sheffield, Nucl. Fusion 15, 944 (1975); L. D. Stewart, private communication; W. K. Dagenhart et al.,

ORNL/TM-6374, Oak Ridge, Tennessee (1978).

5. J. Kim and J. H. Whealton, Nucl. Instrum. Methods 141, 187 (1977).

Page 30: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen
Page 31: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

23

1. 2 . 3 . 4 . 5 . 6 . 7 .

9 . 10. 11. 12. 13. 1 4 .

3 6 . 37. 3 8 . 39 .

a .

15-35

6 0 .

6 1 .

6 2 .

6 3 .

6 4 .

6 5 .

6 6 .

6 7 .

6 8 .

6 9 .

7 0 .

7 1 .

7 2 .

C. W. L. C. J. w . R. R. C. W. H. T. G. H. J. M. M. A. S.

F. Barnett R. Becraft A. Berry W. Blue D. Callen K. Dagenhart A. Dandl C. Davis A. Foster L. Gardner H. Haselton C. Jernigan G. Kelley J. K i m Kim S . Lube11 M. Menon T. Mense L. Milora

ORNL/ TM- 6302 Dist. Category UC-20

INTERNAL DISTRIBUTION

40. 41 . 4 2 . 4 3 . 4 4 . 45 . 4 6 . 4 7 . 4 8 . 49 .

50-51. 5 2 .

53-54 1 5 5 . 5 6 .

57-58. ' 5 9 .

0. B. Morgan M. W. Rosenthal P. M. Ryan D. E. Schechter S. W. Schwenterly J. Sheffield D. Steiner W . L. Stirling C. Tsai J. H. Whealton Central Research Library Document Reference Section Laboratory Records Laboratory Records, OWL-KC OKNL Patent Office Fusion Energy Division Library Fusion Energy Division Communications Center

EXTERNAL DISTRIBUTION

C. C. Baker, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 K. H. Berkner, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720 Director, Centre d'Etudes Nuclgaires, B.P. No. 6 , Fontenay-aux- Roses, France J. F. Clarke, Office of Fusion Energy, Department of Energy, Washington, DC 20545 F. Coffman, Office of Fusion Energy, Department o f Energy, Washington, DC 20545 A. Colleraine, General Atomic Go., P.O. Box 6 0 8 , San Diego, CA 92112 S . 0 . Dean, Office of Fusion Energy, Department of Energy, Washington, DC 20545 H. Eubank, Plasma Physics Laboratory, Princeton University, P.O. Box 4 5 1 , Princeton, NJ 08540 J. A. Fasolo, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 T. K. Fowler, Lawrence Livermore Laboratory, University of California, P.O. Box 8 0 8 , Livermore, CA 94551 H. P. Furth, Plasma Physics Laboratory, Princeton University, P.O. Box 4 5 1 , Princeton, NJ 08540 M. Gottlieb, Plasma Physics Laboratory, Princeton University, P.O. Box 4 5 1 , Princeton, NJ 08540 L. R. Grisham, Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, NJ 08540

Page 32: Analysis of Particle Species Evolution in Neutral Beam Injection … · 2017. 2. 3. · In neutral beam injectors in use for heating fusion plasmas, a multi- 4-4- + species hydrogen

24

73.

7 4 .

7 5 .

7 b .

7 7 .

7 8 .

7 9 .

80.

81.. 82.

83.

8 4 .

85.

8 6 .

8 7 . 8 8 .

89.

9 0 .

91.

9 2 .

9 3 .

9 4 .

95-212.

E. B. Hooper, Lawrence Livermore Labora tory , U n i v e r s i t y of C a l i f o r n i a , P.0, Box 808, Livermore, CA 9 4 5 5 1 R.ay Huse , Chairman, EPKX Fusion Program Comxittee, P u b l i c Service Elec t r ic 6 Gas Company, 80 Park Place, Newark, N J 07101. E. K i n t n e r , O f f i c e of Frisioii Energy, Department of Energy, Washington, DC 20545 W. Kuiikel, Lawrence Berliel.ey T,aboratory, U n i v e r s i t y of C a l i f o r n i a , Berkeley, CA 94720 A. K. Mar t in , Culharn Labora tory , Abingdon, Oxfordshi re , United Kingdom S. Matsuda, Japan Atomic Energy Research I n s t i t u t e , Tokai, I b a r a k i , Japan Tdbrary, Max Planck I n s t i t u t f u r Plasmaphysik, Garching b e i Munchen, FRG G . H. Miley, Nuclear Engineer ing Program, U n i v e r s i t y of I l l i n o i s , Urbana, I L 61801 T. Ohkawa, General Atomic Co., P .O. Box 6 0 8 , San Diego, CA 927.12 J. Osher, Lawrence Livermore Labora tory , Universi . ty of C a l i f o r n i a , P.O. Box 808, Livermore, CA 3 4 5 5 1 K. P r e l e c , Brookhaven N a t i o n a l Labora tory , Upton, Long I s l a n d , NY 11973 L i b r a r y , Plasma Phys ics l a b o r a t o r y , P r i n c e t o n U n i v e r s i t y , P.O. Box 4.51., Princeton. , N J 08540 R. V. P y l e , Lawrence Berkeley Labora tory , U n i v e r s i t y of C a l i f o r n i a , Berkeley, CA 94720 G . S c h i l l i n g , Plasma Phys ics Labora tory , P r i n c e t o n U n i v e r s i t y , P.O. BOX 4.51, Princeto-cl, N J 08540 N. N . Sernasko, Kurchatov Atomic Energy I n s t i t u t e , MOSCOW, U.S.S.R. T . S l u y t e r s , Brookhaven N a t i o n a l I ,ahoratory, Uptori, Long I s l a n d , NY 11973 S. S t a t e n , O f f i c e of Fusion Energy, Department of .Energy, Washington, :OC 20545 L. D. S t e w a r t , P l a s m a Phys ics Labora tory , P r i n c e t o n U n i v e r s i t y , P.O. Box 4 5 1 , P r i n c e t o n , N J 0 8 5 4 0 D. R. Sweetman, Culham Labora tory , Abingdon, Oxfordshi re , United Kingdom E. Thompson, Culham Labora tory , Abingdon, Oxfordshi re , United Kingdom , F. Valcx, Centre d 'Etudes Nucl&ires , B.P. No. 6 , Fontenay-aux- Roses, France D i r e c t o r , Kesearch & Teclvnical Support D i v i s i o n , Department of Energy, Oak Ridge Opera t ions , P.O. Box E , Oak Ridge, TN 37830 Given d i s t r i b u t i o n as shown i n TID-6500, Magnetic Fus ion Energy ( D i s t r i b u t i o n Category UC--2 0)