Analysis of Optimization Algorithms via Sum-of-Squares

117
Analysis of Optimization Algorithms via Sum-of-Squares Sandra S. Y. Tan Antonios Varvitsiotis (SUTD) Vincent Y. F. Tan

Transcript of Analysis of Optimization Algorithms via Sum-of-Squares

Page 1: Analysis of Optimization Algorithms via Sum-of-Squares

Analysis of Optimization Algorithms viaSum-of-Squares

Sandra S. Y. Tan Antonios Varvitsiotis (SUTD) Vincent Y. F. Tan

Page 2: Analysis of Optimization Algorithms via Sum-of-Squares

Motivation

Page 3: Analysis of Optimization Algorithms via Sum-of-Squares

First-order optimization algorithms

Iterative algorithms using only (sub)gradient information

• Low computational complexity

• Ideal for large-scale problems with low-accuracy requirements

minx∈Rn

f (x)

GD: xk+1 = xk − γk∇f (xk) x 0

x 1

x 2

x 3 x 4

*

*

Figure 1: Gradient Descent (GD)

Vincent Y. F. Tan 1

Page 4: Analysis of Optimization Algorithms via Sum-of-Squares

First-order optimization algorithms

Iterative algorithms using only (sub)gradient information

• Low computational complexity

• Ideal for large-scale problems with low-accuracy requirements

minx∈Rn

f (x)

GD: xk+1 = xk − γk∇f (xk) x 0

x 1

x 2

x 3 x 4

*

*

Figure 1: Gradient Descent (GD)

Vincent Y. F. Tan 1

Page 5: Analysis of Optimization Algorithms via Sum-of-Squares

Worst-case convergence bounds

Convergence rate of algorithm A wrt function class F systematically

Find minimum contraction factor t ∈ (0, 1) such that

Performance Metric(xk+1) ≤ t Performance Metric(xk)

holds for all f ∈ F and all {xk}k≥1 generated by A

Performance metric

• Objective function accuracy f (xk)− f (x∗), also denoted as fk − f∗

• Squared distance to optimality ‖xk − x∗‖2

• Squared residual gradient norm ‖∇f (xk)‖2, also denoted as ‖gk‖2

Vincent Y. F. Tan 2

Page 6: Analysis of Optimization Algorithms via Sum-of-Squares

Worst-case convergence bounds

Convergence rate of algorithm A wrt function class F systematically

Find minimum contraction factor t ∈ (0, 1) such that

Performance Metric(xk+1) ≤ t Performance Metric(xk)

holds for all f ∈ F and all {xk}k≥1 generated by A

Performance metric

• Objective function accuracy f (xk)− f (x∗), also denoted as fk − f∗

• Squared distance to optimality ‖xk − x∗‖2

• Squared residual gradient norm ‖∇f (xk)‖2, also denoted as ‖gk‖2

Vincent Y. F. Tan 2

Page 7: Analysis of Optimization Algorithms via Sum-of-Squares

Worst-case convergence bounds

Convergence rate of algorithm A wrt function class F systematically

Find minimum contraction factor t ∈ (0, 1) such that

Performance Metric(xk+1) ≤ t Performance Metric(xk)

holds for all f ∈ F and all {xk}k≥1 generated by A

Performance metric

• Objective function accuracy f (xk)− f (x∗), also denoted as fk − f∗

• Squared distance to optimality ‖xk − x∗‖2

• Squared residual gradient norm ‖∇f (xk)‖2, also denoted as ‖gk‖2

Vincent Y. F. Tan 2

Page 8: Analysis of Optimization Algorithms via Sum-of-Squares

Example

L-smooth, µ-strongly convex ((µ, L)-smooth) function

• ‖∇f (x)−∇f (y)‖ ≤ L‖x− y‖ ∀ x, y ∈ Rn

• f (x)− µ2 ‖x‖

2 is convex

Theorem (de Klerk et al., 2017)Given an (µ, L)-smooth function, apply GD with exact line search:

fk+1 − f∗ ≤(L− µL + µ

)2

(fk − f∗)

A sum-of-squares (SOS) proof(L− µL + µ

)2

(fk − f∗)− (fk+1 − f∗) ≥µ

4

(‖q1‖2

1 +õ/L

+‖q2‖2

1−√µ/L

)≥ 0

where q1 and q2 are linear functions of x∗, xk , xk+1, gk , gk+1

Vincent Y. F. Tan 3

Page 9: Analysis of Optimization Algorithms via Sum-of-Squares

Example

L-smooth, µ-strongly convex ((µ, L)-smooth) function

• ‖∇f (x)−∇f (y)‖ ≤ L‖x− y‖ ∀ x, y ∈ Rn

• f (x)− µ2 ‖x‖

2 is convex

Theorem (de Klerk et al., 2017)Given an (µ, L)-smooth function, apply GD with exact line search:

fk+1 − f∗ ≤(L− µL + µ

)2

(fk − f∗)

A sum-of-squares (SOS) proof(L− µL + µ

)2

(fk − f∗)− (fk+1 − f∗) ≥µ

4

(‖q1‖2

1 +õ/L

+‖q2‖2

1−√µ/L

)≥ 0

where q1 and q2 are linear functions of x∗, xk , xk+1, gk , gk+1

Vincent Y. F. Tan 3

Page 10: Analysis of Optimization Algorithms via Sum-of-Squares

Example

L-smooth, µ-strongly convex ((µ, L)-smooth) function

• ‖∇f (x)−∇f (y)‖ ≤ L‖x− y‖ ∀ x, y ∈ Rn

• f (x)− µ2 ‖x‖

2 is convex

Theorem (de Klerk et al., 2017)Given an (µ, L)-smooth function, apply GD with exact line search:

fk+1 − f∗ ≤(L− µL + µ

)2

(fk − f∗)

A sum-of-squares (SOS) proof(L− µL + µ

)2

(fk − f∗)− (fk+1 − f∗) ≥µ

4

(‖q1‖2

1 +õ/L

+‖q2‖2

1−√µ/L

)≥ 0

where q1 and q2 are linear functions of x∗, xk , xk+1, gk , gk+1

Vincent Y. F. Tan 3

Page 11: Analysis of Optimization Algorithms via Sum-of-Squares

Example

L-smooth, µ-strongly convex ((µ, L)-smooth) function

• ‖∇f (x)−∇f (y)‖ ≤ L‖x− y‖ ∀ x, y ∈ Rn

• f (x)− µ2 ‖x‖

2 is convex

Theorem (de Klerk et al., 2017)Given an (µ, L)-smooth function, apply GD with exact line search:

fk+1 − f∗ ≤(L− µL + µ

)2

(fk − f∗)

A sum-of-squares (SOS) proof(L− µL + µ

)2

(fk − f∗)− (fk+1 − f∗) ≥µ

4

(‖q1‖2

1 +õ/L

+‖q2‖2

1−√µ/L

)≥ 0

where q1 and q2 are linear functions of x∗, xk , xk+1, gk , gk+1

Vincent Y. F. Tan 3

Page 12: Analysis of Optimization Algorithms via Sum-of-Squares

More SOS proofs

GD with constant step size, γ ∈ (0, 2L ) (Lessard et al., 2016)

ρ2‖xk − x∗‖2 − ‖xk+1 − x∗‖2

γ(2−γ(L+µ))

L−µ ‖gk − µ(xk − x∗)‖2, γ ∈(0, 2

L+µ

]γ(γ(L+µ)−2)

L−µ ‖gk − L(xk − x∗)‖2, γ ∈[

2L+µ ,

2L

)where ρ := max{|1− γµ| , |1− γL|}

GD with the Armijo rule(1− 4µε(1− ε)

ηL

)(fk − f∗)− (fk+1− f∗) ≥

2ε(1− ε)η(L− µ)

‖gk + µ(x∗ − xk)‖2,

where ε ∈ (0, 1), η > 1 are the parameters of the Armijo rule

Vincent Y. F. Tan 4

Page 13: Analysis of Optimization Algorithms via Sum-of-Squares

More SOS proofs

GD with constant step size, γ ∈ (0, 2L ) (Lessard et al., 2016)

ρ2‖xk − x∗‖2 − ‖xk+1 − x∗‖2

γ(2−γ(L+µ))

L−µ ‖gk − µ(xk − x∗)‖2, γ ∈(0, 2

L+µ

]γ(γ(L+µ)−2)

L−µ ‖gk − L(xk − x∗)‖2, γ ∈[

2L+µ ,

2L

)where ρ := max{|1− γµ| , |1− γL|}

GD with the Armijo rule(1− 4µε(1− ε)

ηL

)(fk − f∗)− (fk+1− f∗) ≥

2ε(1− ε)η(L− µ)

‖gk + µ(x∗ − xk)‖2,

where ε ∈ (0, 1), η > 1 are the parameters of the Armijo rule

Vincent Y. F. Tan 4

Page 14: Analysis of Optimization Algorithms via Sum-of-Squares

More SOS proofs: Proximal Gradient Method (PGM)

PGM with exact line search (Taylor et al., 2018)

(L− µL + µ

)2

(fk − f∗)− (fk+1 − f∗) ≥

(1z

)>Q∗

(1z

)

where z = (f∗, fk , fk+1, x∗, xk , xk+1, . . . ) and Q∗ is a PSD matrix

PGM with constant step size, γ ∈ (0, 2L ) (Taylor et al., 2018)

ρ2‖rk + sk‖2 − ‖rk+1 + s̄k+1‖2

ρ2‖q1‖2 + 2−γ(L+µ)

γ(L−µ) ‖q2‖2, γ ∈(0, 2

L+µ

]ρ2‖q1‖2 + γ(L+µ)−2

γ(L−µ) ‖q3‖2, γ ∈[

2L+µ ,

2L

)where ρ := max{|1− γµ| , |1− γL|} and q1, q2 and q3 are linearfunctions of sk , s̄k+1, rk , rk+1

Vincent Y. F. Tan 5

Page 15: Analysis of Optimization Algorithms via Sum-of-Squares

More SOS proofs: Proximal Gradient Method (PGM)

PGM with exact line search (Taylor et al., 2018)

(L− µL + µ

)2

(fk − f∗)− (fk+1 − f∗) ≥

(1z

)>Q∗

(1z

)

where z = (f∗, fk , fk+1, x∗, xk , xk+1, . . . ) and Q∗ is a PSD matrix

PGM with constant step size, γ ∈ (0, 2L ) (Taylor et al., 2018)

ρ2‖rk + sk‖2 − ‖rk+1 + s̄k+1‖2

ρ2‖q1‖2 + 2−γ(L+µ)

γ(L−µ) ‖q2‖2, γ ∈(0, 2

L+µ

]ρ2‖q1‖2 + γ(L+µ)−2

γ(L−µ) ‖q3‖2, γ ∈[

2L+µ ,

2L

)where ρ := max{|1− γµ| , |1− γL|} and q1, q2 and q3 are linearfunctions of sk , s̄k+1, rk , rk+1

Vincent Y. F. Tan 5

Page 16: Analysis of Optimization Algorithms via Sum-of-Squares

Related Work

Page 17: Analysis of Optimization Algorithms via Sum-of-Squares

Performance Estimation Problem (PEP)

Framework to derive worst-case bounds (Drori and Teboulle, 2014)

max fN − f∗

s.t. f ∈ Fxk+1 = A (xk , fk , gk) , k = 0, . . . ,N − 1

f0 − f∗ ≤ R

• GD with exact line search (de Klerk et al., 2017)

• Proximal Gradient Method (PGM) with constant step size (Tayloret al., 2018)

• Proximal Point Algorithm, Conditional Gradient Method, ... (Tayloret al., 2017a); ...

• Formulated as an SDP (exact under certain conditions)

• Inspiration for our current work

Vincent Y. F. Tan 6

Page 18: Analysis of Optimization Algorithms via Sum-of-Squares

Performance Estimation Problem (PEP)

Framework to derive worst-case bounds (Drori and Teboulle, 2014)

max fN − f∗

s.t. f ∈ Fxk+1 = A (xk , fk , gk) , k = 0, . . . ,N − 1

f0 − f∗ ≤ R

• GD with exact line search (de Klerk et al., 2017)

• Proximal Gradient Method (PGM) with constant step size (Tayloret al., 2018)

• Proximal Point Algorithm, Conditional Gradient Method, ... (Tayloret al., 2017a); ...

• Formulated as an SDP (exact under certain conditions)

• Inspiration for our current work

Vincent Y. F. Tan 6

Page 19: Analysis of Optimization Algorithms via Sum-of-Squares

Performance Estimation Problem (PEP)

Framework to derive worst-case bounds (Drori and Teboulle, 2014)

max fN − f∗

s.t. f ∈ Fxk+1 = A (xk , fk , gk) , k = 0, . . . ,N − 1

f0 − f∗ ≤ R

• GD with exact line search (de Klerk et al., 2017)

• Proximal Gradient Method (PGM) with constant step size (Tayloret al., 2018)

• Proximal Point Algorithm, Conditional Gradient Method, ... (Tayloret al., 2017a); ...

• Formulated as an SDP (exact under certain conditions)

• Inspiration for our current work

Vincent Y. F. Tan 6

Page 20: Analysis of Optimization Algorithms via Sum-of-Squares

Performance Estimation Problem (PEP)

Framework to derive worst-case bounds (Drori and Teboulle, 2014)

max fN − f∗

s.t. f ∈ Fxk+1 = A (xk , fk , gk) , k = 0, . . . ,N − 1

f0 − f∗ ≤ R

• GD with exact line search (de Klerk et al., 2017)

• Proximal Gradient Method (PGM) with constant step size (Tayloret al., 2018)

• Proximal Point Algorithm, Conditional Gradient Method, ... (Tayloret al., 2017a); ...

• Formulated as an SDP (exact under certain conditions)

• Inspiration for our current work

Vincent Y. F. Tan 6

Page 21: Analysis of Optimization Algorithms via Sum-of-Squares

Integral Quadratic Constraints (IQCs)

Views optimization algorithms as linear dynamical systems (LDS) withnonlinear feedback (Lessard et al., 2016)

uk yk

φ

ξk

State: ξk+1 = Aξk + Buk

Output: yk = Cξk + Duk

Feedback: uk = φ(yk)

• For first-order methods, uk = φ(yk) := ∇f (yk)

• Convergence of algorithm ≡ stability of dynamical system

• Replace φ with quadratic constraints on all instances of (yk , uk)

Vincent Y. F. Tan 7

Page 22: Analysis of Optimization Algorithms via Sum-of-Squares

Integral Quadratic Constraints (IQCs)

Views optimization algorithms as linear dynamical systems (LDS) withnonlinear feedback (Lessard et al., 2016)

uk yk

φ

ξk

State: ξk+1 = Aξk + Buk

Output: yk = Cξk + Duk

Feedback: uk = φ(yk)

• For first-order methods, uk = φ(yk) := ∇f (yk)

• Convergence of algorithm ≡ stability of dynamical system

• Replace φ with quadratic constraints on all instances of (yk , uk)

Vincent Y. F. Tan 7

Page 23: Analysis of Optimization Algorithms via Sum-of-Squares

Integral Quadratic Constraints (IQCs)

Views optimization algorithms as linear dynamical systems (LDS) withnonlinear feedback (Lessard et al., 2016)

uk yk

φ

ξk

State: ξk+1 = Aξk + Buk

Output: yk = Cξk + Duk

Feedback: uk = φ(yk)

• For first-order methods, uk = φ(yk) := ∇f (yk)

• Convergence of algorithm ≡ stability of dynamical system

• Replace φ with quadratic constraints on all instances of (yk , uk)

Vincent Y. F. Tan 7

Page 24: Analysis of Optimization Algorithms via Sum-of-Squares

Integral Quadratic Constraints (IQCs)

Views optimization algorithms as linear dynamical systems (LDS) withnonlinear feedback (Lessard et al., 2016)

uk yk

φ

ξk

State: ξk+1 = Aξk + Buk

Output: yk = Cξk + Duk

Feedback: uk = φ(yk)

• For first-order methods, uk = φ(yk) := ∇f (yk)

• Convergence of algorithm ≡ stability of dynamical system

• Replace φ with quadratic constraints on all instances of (yk , uk)

Vincent Y. F. Tan 7

Page 25: Analysis of Optimization Algorithms via Sum-of-Squares

The Sum-of-Squares Approach

Page 26: Analysis of Optimization Algorithms via Sum-of-Squares

SDP formulation of sum-of-squares optimization

Sum-of-squares of degree-2 polynomialsFor z = (x , y) and d = 2,

p(z) = (x2 − 2)2 + (x − 3y)2

= x4 − 3x2 − 6xy + 9y2 + 4

=

1xy

x2

xy

y2

>

Q1,1 Q1,2 ...

Q2,1...

...

1xy

x2

xy

y2

where Q � 0

• Match coefficients of 1, x , y , x2, . . . , y4 =⇒ affine constraints

• Affine constraints + Q � 0 condition =⇒ SDP feasibility problem

min 0 s.t. Q � 0, affine constraints

Vincent Y. F. Tan 8

Page 27: Analysis of Optimization Algorithms via Sum-of-Squares

SDP formulation of sum-of-squares optimization

Sum-of-squares of degree-2 polynomialsFor z = (x , y) and d = 2,

p(z) = (x2 − 2)2 + (x − 3y)2

= x4 − 3x2 − 6xy + 9y2 + 4

=

1xy

x2

xy

y2

>

Q1,1 Q1,2 ...

Q2,1...

...

1xy

x2

xy

y2

where Q � 0

• Match coefficients of 1, x , y , x2, . . . , y4 =⇒ affine constraints

• Affine constraints + Q � 0 condition =⇒ SDP feasibility problem

min 0 s.t. Q � 0, affine constraints

Vincent Y. F. Tan 8

Page 28: Analysis of Optimization Algorithms via Sum-of-Squares

SDP formulation of sum-of-squares optimization

Sum-of-squares of degree-2 polynomialsFor z = (x , y) and d = 2,

p(z) = (x2 − 2)2 + (x − 3y)2

= x4 − 3x2 − 6xy + 9y2 + 4

=

1xy

x2

xy

y2

>

Q1,1 Q1,2 ...

Q2,1...

...

1xy

x2

xy

y2

where Q � 0

• Match coefficients of 1, x , y , x2, . . . , y4 =⇒ affine constraints

• Affine constraints + Q � 0 condition =⇒ SDP feasibility problem

min 0 s.t. Q � 0, affine constraints

Vincent Y. F. Tan 8

Page 29: Analysis of Optimization Algorithms via Sum-of-Squares

SDP formulation of sum-of-squares optimization

Sum-of-squares of degree-2 polynomialsFor z = (x , y) and d = 2,

p(z) = (x2 − 2)2 + (x − 3y)2

= x4 − 3x2 − 6xy + 9y2 + 4

=

1xy

x2

xy

y2

>

Q1,1 Q1,2 ...

Q2,1...

...

1xy

x2

xy

y2

where Q � 0

• Match coefficients of 1, x , y , x2, . . . , y4 =⇒ affine constraints

1 : 4 = Q1,1

x : 0 = Q1,2 + Q2,1 = 2Q1,2

• Affine constraints + Q � 0 condition =⇒ SDP feasibility problem

min 0 s.t. Q � 0, affine constraints

Vincent Y. F. Tan 8

Page 30: Analysis of Optimization Algorithms via Sum-of-Squares

SDP formulation of sum-of-squares optimization

Sum-of-squares of degree-2 polynomialsFor z = (x , y) and d = 2,

p(z) = (x2 − 2)2 + (x − 3y)2

= x4 − 3x2 − 6xy + 9y2 + 4

=

1xy

x2

xy

y2

>

Q1,1 Q1,2 ...

Q2,1...

...

1xy

x2

xy

y2

where Q � 0

• Match coefficients of 1, x , y , x2, . . . , y4 =⇒ affine constraints

1 : 4 = Q1,1

x : 0 = Q1,2 + Q2,1 = 2Q1,2

• Affine constraints + Q � 0 condition =⇒ SDP feasibility problem

min 0 s.t. Q � 0, affine constraints

Vincent Y. F. Tan 8

Page 31: Analysis of Optimization Algorithms via Sum-of-Squares

SDP formulation of sum-of-squares optimization

Sum-of-squares of degree-2 polynomialsFor z = (x , y) and d = 2,

p(z) = (x2 − 2)2 + (x − 3y)2

= x4 − 3x2 − 6xy + 9y2 + 4

=

1xy

x2

xy

y2

>

Q1,1 Q1,2 ...

Q2,1...

...

1xy

x2

xy

y2

where Q � 0

• Match coefficients of 1, x , y , x2, . . . , y4 =⇒ affine constraints

• Affine constraints + Q � 0 condition =⇒ SDP feasibility problem

min 0 s.t. Q � 0, affine constraints

Vincent Y. F. Tan 8

Page 32: Analysis of Optimization Algorithms via Sum-of-Squares

Certifying constrained nonnegativity

Closed semi-algebraic set

K = {z : hi (z) ≥ 0, vj(z) = 0 ∀ i , j}

for some polynomials hi (z), vj(z)’s

“Constrained” nonnegativityTo certify that p(z) ≥ 0 for all z ∈ K (Parrilo, 2003; Lasserre, 2007),

p(z) = σ0(z) +∑i

σi (z)hi (z) +∑j

θj(z)vj(z)

• Fix degrees of the σi (z)’s and θj(z)’s

• Construct and solve the corresponding SDP feasibility problem

Vincent Y. F. Tan 9

Page 33: Analysis of Optimization Algorithms via Sum-of-Squares

Certifying constrained nonnegativity

Closed semi-algebraic set

K = {z : hi (z) ≥ 0, vj(z) = 0 ∀ i , j}

for some polynomials hi (z), vj(z)’s

“Constrained” nonnegativityTo certify that p(z) ≥ 0 for all z ∈ K (Parrilo, 2003; Lasserre, 2007),

p(z) = σ0(z) +∑i

σi (z)hi (z) +∑j

θj(z)vj(z)

• Fix degrees of the σi (z)’s and θj(z)’s

• Construct and solve the corresponding SDP feasibility problem

Vincent Y. F. Tan 9

Page 34: Analysis of Optimization Algorithms via Sum-of-Squares

Certifying constrained nonnegativity

Closed semi-algebraic set

K = {z : hi (z) ≥ 0, vj(z) = 0 ∀ i , j}

for some polynomials hi (z), vj(z)’s

“Constrained” nonnegativityTo certify that p(z) ≥ 0 for all z ∈ K (Parrilo, 2003; Lasserre, 2007),

p(z) = σ0(z)︸ ︷︷ ︸SOS

+∑i

σi (z)︸ ︷︷ ︸SOS

hi (z) +∑j

θj(z)vj(z)

where a sum-of-squares (SOS) polynomial: σ(z) =∑

k q2k(z)

• Fix degrees of the σi (z)’s and θj(z)’s

• Construct and solve the corresponding SDP feasibility problem

Vincent Y. F. Tan 9

Page 35: Analysis of Optimization Algorithms via Sum-of-Squares

Certifying constrained nonnegativity

Closed semi-algebraic set

K = {z : hi (z) ≥ 0, vj(z) = 0 ∀ i , j}

for some polynomials hi (z), vj(z)’s

“Constrained” nonnegativityTo certify that p(z) ≥ 0 for all z ∈ K (Parrilo, 2003; Lasserre, 2007),

p(z) = σ0(z)︸ ︷︷ ︸SOS

+∑i

σi (z)︸ ︷︷ ︸SOS

hi (z)︸︷︷︸≥0

+∑j

θj(z) vj(z)︸︷︷︸=0

• Fix degrees of the σi (z)’s and θj(z)’s

• Construct and solve the corresponding SDP feasibility problem

Vincent Y. F. Tan 9

Page 36: Analysis of Optimization Algorithms via Sum-of-Squares

Certifying constrained nonnegativity

Closed semi-algebraic set

K = {z : hi (z) ≥ 0, vj(z) = 0 ∀ i , j}

for some polynomials hi (z), vj(z)’s

“Constrained” nonnegativityTo certify that p(z) ≥ 0 for all z ∈ K (Parrilo, 2003; Lasserre, 2007),

p(z) = σ0(z)︸ ︷︷ ︸SOS

+∑i

σi (z)︸ ︷︷ ︸SOS

hi (z)︸︷︷︸≥0

+∑j

θj(z) vj(z)︸︷︷︸=0

• Fix degrees of the σi (z)’s and θj(z)’s

• Construct and solve the corresponding SDP feasibility problem

Vincent Y. F. Tan 9

Page 37: Analysis of Optimization Algorithms via Sum-of-Squares

Analyzing optimization algorithms

min t

s.t. t(fk − f∗)− (fk+1 − f∗) ≥ 0

t ∈ (0, 1)

f ∈ Fxk+1 = A (xk , fk , gk)

where fk = f (xk) and gk ∈ ∂f (xk) for all k

Vincent Y. F. Tan 10

Page 38: Analysis of Optimization Algorithms via Sum-of-Squares

First relaxation step

min t

s.t. t(fk − f∗)− (fk+1 − f∗) ≥ 0

t ∈ (0, 1)

f ∈ Fxk+1 = A (xk , fk , gk)

}K

where fk = f (xk) and gk ∈ ∂f (xk) for all k

1. Identify polynomial inequalities hi (z) ≥ 0 and equalities vj(z) = 0necessarily satisfied given F and A

Vincent Y. F. Tan 11

Page 39: Analysis of Optimization Algorithms via Sum-of-Squares

First relaxation step

min t

s.t. t(fk − f∗)− (fk+1 − f∗) ≥ 0

t ∈ (0, 1)

hi (z) ≥ 0, ∀ivj(z) = 0, ∀j

}K

where z = (f∗, fk , fk+1, x∗, xk , xk+1, g∗, gk , gk+1) ∈ R6n+3

1. Identify polynomial inequalities hi (z) ≥ 0 and equalities vj(z) = 0necessarily satisfied given F and A

Vincent Y. F. Tan 11

Page 40: Analysis of Optimization Algorithms via Sum-of-Squares

First relaxation step

min t

s.t. t(fk − f∗)− (fk+1 − f∗) ≥ 0

t ∈ (0, 1)

hi (z) ≥ 0, ∀ivj(z) = 0, ∀j

}K

where z = (f∗, fk , fk+1, x∗, xk , xk+1, g∗, gk , gk+1) ∈ R6n+3

1. Identify polynomial inequalities hi (z) ≥ 0 and equalities vj(z) = 0necessarily satisfied given F and A

E.g. f is L-smooth =⇒ ‖∇f (x)−∇f (y)‖ ≤ L‖x− y‖ ∀ x, y

Vincent Y. F. Tan 11

Page 41: Analysis of Optimization Algorithms via Sum-of-Squares

First relaxation step

min t

s.t. t(fk − f∗)− (fk+1 − f∗) ≥ 0

t ∈ (0, 1)

hi (z) ≥ 0, ∀ivj(z) = 0, ∀j

}K

where z = (f∗, fk , fk+1, x∗, xk , xk+1, g∗, gk , gk+1) ∈ R6n+3

1. Identify polynomial inequalities hi (z) ≥ 0 and equalities vj(z) = 0necessarily satisfied given F and A

E.g. f is L-smooth =⇒ ‖∇f (x)−∇f (y)‖ ≤ L‖x− y‖ ∀ x, y=⇒ h1(z) = L2‖xk − x∗‖2 − ‖gk − g∗‖2 ≥ 0

Vincent Y. F. Tan 11

Page 42: Analysis of Optimization Algorithms via Sum-of-Squares

First relaxation step

min t

s.t. t(fk − f∗)− (fk+1 − f∗) ≥ 0

t ∈ (0, 1)

hi (z) ≥ 0, ∀ivj(z) = 0, ∀j

}K

where z = (f∗, fk , fk+1, x∗, xk , xk+1, g∗, gk , gk+1) ∈ R6n+3

1. Identify polynomial inequalities hi (z) ≥ 0 and equalities vj(z) = 0necessarily satisfied given F and A

Vincent Y. F. Tan 11

Page 43: Analysis of Optimization Algorithms via Sum-of-Squares

First relaxation step

min t

s.t. t(fk − f∗)− (fk+1 − f∗) ≥ 0

t ∈ (0, 1)

hi (z) ≥ 0, ∀ivj(z) = 0, ∀j

}K

where z = (f∗, fk , fk+1, x∗, xk , xk+1, g∗, gk , gk+1) ∈ R6n+3

1. Identify polynomial inequalities hi (z) ≥ 0 and equalities vj(z) = 0necessarily satisfied given F and A

Vincent Y. F. Tan 11

Page 44: Analysis of Optimization Algorithms via Sum-of-Squares

First relaxation step

min t

s.t. t(fk − f∗)− (fk+1 − f∗) ≥ 0 ∀ z ∈ K

t ∈ (0, 1)

where K = {z : hi (z) ≥ 0, vj(z) = 0 ∀ i , j}

Vincent Y. F. Tan 12

Page 45: Analysis of Optimization Algorithms via Sum-of-Squares

Second relaxation step

min t

s.t. t(fk − f∗)− (fk+1 − f∗) ≥ 0 ∀ z ∈ K

t ∈ (0, 1)

where K = {z : hi (z) ≥ 0, vj(z) = 0 ∀ i , j}

2. Relax the constraint that p(z) := t(fk − f∗)− (fk+1 − f∗) isnonnegative over K with an SOS cert

Vincent Y. F. Tan 13

Page 46: Analysis of Optimization Algorithms via Sum-of-Squares

Second relaxation step

min t

s.t. p(z) = σ0(z) +∑i

σi (z)hi (z) +∑j

θj(z)vj(z)

t ∈ (0, 1)

where K = {z : hi (z) ≥ 0, vj(z) = 0 ∀ i , j}

2. Relax the constraint that p(z) := t(fk − f∗)− (fk+1 − f∗) isnonnegative over K with an SOS cert

Vincent Y. F. Tan 13

Page 47: Analysis of Optimization Algorithms via Sum-of-Squares

Obtaining the bound

1. Identify polynomial (in)equalities necessarily satisfied given F and A

f ∈ Fxk+1 = A (xk , fk , gk)

=⇒hi (z) ≥ 0, ∀ivj(z) = 0, ∀j

2. Relax nonnegativity constraint with an SOS cert, i.e., relax

p(z) ≥ 0 ∀ z ∈ K to p(z) = σ0(z) +∑i

σi (z)hi (z) +∑j

θj(z)vj(z)

for SOS polynomials σi (z) and arbitrary polynomials θj(z)

3. Solve the SDP multiple times for the n = 1 case and ‘guess’ theanalytic expression of the optimal contraction factor

t∗ = min {t : t ∈ (0, 1), SOS constraints}

4. Generalize this to a feasible SDP solution for the multivariate case

Vincent Y. F. Tan 14

Page 48: Analysis of Optimization Algorithms via Sum-of-Squares

Obtaining the bound

1. Identify polynomial (in)equalities necessarily satisfied given F and A

f ∈ Fxk+1 = A (xk , fk , gk)

=⇒hi (z) ≥ 0, ∀ivj(z) = 0, ∀j

2. Relax nonnegativity constraint with an SOS cert, i.e., relax

p(z) ≥ 0 ∀ z ∈ K to p(z) = σ0(z) +∑i

σi (z)hi (z) +∑j

θj(z)vj(z)

for SOS polynomials σi (z) and arbitrary polynomials θj(z)

3. Solve the SDP multiple times for the n = 1 case and ‘guess’ theanalytic expression of the optimal contraction factor

t∗ = min {t : t ∈ (0, 1), SOS constraints}

4. Generalize this to a feasible SDP solution for the multivariate case

Vincent Y. F. Tan 14

Page 49: Analysis of Optimization Algorithms via Sum-of-Squares

Obtaining the bound

1. Identify polynomial (in)equalities necessarily satisfied given F and A

f ∈ Fxk+1 = A (xk , fk , gk)

=⇒hi (z) ≥ 0, ∀ivj(z) = 0, ∀j

2. Relax nonnegativity constraint with an SOS cert, i.e., relax

p(z) ≥ 0 ∀ z ∈ K to p(z) = σ0(z) +∑i

σi (z)hi (z) +∑j

θj(z)vj(z)

for SOS polynomials σi (z) and arbitrary polynomials θj(z)

3. Solve the SDP multiple times for the n = 1 case and ‘guess’ theanalytic expression of the optimal contraction factor

t∗ = min {t : t ∈ (0, 1), SOS constraints}

4. Generalize this to a feasible SDP solution for the multivariate case

Vincent Y. F. Tan 14

Page 50: Analysis of Optimization Algorithms via Sum-of-Squares

Obtaining the bound

1. Identify polynomial (in)equalities necessarily satisfied given F and A

f ∈ Fxk+1 = A (xk , fk , gk)

=⇒hi (z) ≥ 0, ∀ivj(z) = 0, ∀j

2. Relax nonnegativity constraint with an SOS cert, i.e., relax

p(z) ≥ 0 ∀ z ∈ K to p(z) = σ0(z) +∑i

σi (z)hi (z) +∑j

θj(z)vj(z)

for SOS polynomials σi (z) and arbitrary polynomials θj(z)

3. Solve the SDP multiple times for the n = 1 case and ‘guess’ theanalytic expression of the optimal contraction factor

t∗ = min {t : t ∈ (0, 1), SOS constraints}

4. Generalize this to a feasible SDP solution for the multivariate case

Vincent Y. F. Tan 14

Page 51: Analysis of Optimization Algorithms via Sum-of-Squares

Example

Page 52: Analysis of Optimization Algorithms via Sum-of-Squares

Function class

Class of (µ, L)-smooth functions (denoted Fµ,L(Rn))

Theorem (Fµ,L-interpolability (Taylor et al., 2017b))

Given a set {(xi , fi , gi )}i∈I , ∃ a (µ, L)-smooth function f wherefi = f (xi ) and gi ∈ ∂f (xi ) ∀ i iff

fi − fj − g>j (xi − xj) ≥L

2(L− µ)

[1L‖gi − gj‖2 + µ‖xi − xj‖2

− 2µ

L(gj − gi )>(xj − xi )

]∀ i 6= j

E.g. if we set i = k and j = k + 1:

fk − fk+1 − g>k+1(xk − xk+1)− L

2(L− µ)

[1L‖gk − gk+1‖2 + µ‖xk − xk+1‖2

− 2µ

L(gk+1 − gk)>(xk+1 − xk)

]≥ 0

Vincent Y. F. Tan 15

Page 53: Analysis of Optimization Algorithms via Sum-of-Squares

Function class

Class of (µ, L)-smooth functions (denoted Fµ,L(Rn))

Theorem (Fµ,L-interpolability (Taylor et al., 2017b))

Given a set {(xi , fi , gi )}i∈I , ∃ a (µ, L)-smooth function f wherefi = f (xi ) and gi ∈ ∂f (xi ) ∀ i iff

fi − fj − g>j (xi − xj) ≥L

2(L− µ)

[1L‖gi − gj‖2 + µ‖xi − xj‖2

− 2µ

L(gj − gi )>(xj − xi )

]∀ i 6= j

E.g. if we set i = k and j = k + 1:

fk − fk+1 − g>k+1(xk − xk+1)− L

2(L− µ)

[1L‖gk − gk+1‖2 + µ‖xk − xk+1‖2

− 2µ

L(gk+1 − gk)>(xk+1 − xk)

]≥ 0

Vincent Y. F. Tan 15

Page 54: Analysis of Optimization Algorithms via Sum-of-Squares

Function class

Class of (µ, L)-smooth functions (denoted Fµ,L(Rn))

Theorem (Fµ,L-interpolability (Taylor et al., 2017b))

Given a set {(xi , fi , gi )}i∈I , ∃ a (µ, L)-smooth function f wherefi = f (xi ) and gi ∈ ∂f (xi ) ∀ i iff

fi − fj − g>j (xi − xj) ≥L

2(L− µ)

[1L‖gi − gj‖2 + µ‖xi − xj‖2

− 2µ

L(gj − gi )>(xj − xi )

]∀ i 6= j

E.g. if we set i = k and j = k + 1:

fk − fk+1 − g>k+1(xk − xk+1)− L

2(L− µ)

[1L‖gk − gk+1‖2 + µ‖xk − xk+1‖2

− 2µ

L(gk+1 − gk)>(xk+1 − xk)

]≥ 0

Vincent Y. F. Tan 15

Page 55: Analysis of Optimization Algorithms via Sum-of-Squares

Algorithm

Gradient Descent (GD) with exact line search (ELS)

γk = argminγ>0

f (xk − γgk)

xk+1 = xk − γkgk

where gk = ∇f (xk)

Derived constraints

g>k+1 (xk+1 − xk) = 0

g>k+1gk = 0

Vincent Y. F. Tan 16

Page 56: Analysis of Optimization Algorithms via Sum-of-Squares

Algorithm

Gradient Descent (GD) with exact line search (ELS)

γk = argminγ>0

f (xk − γgk)

xk+1 = xk − γkgk

where gk = ∇f (xk)

Derived constraints

g>k+1 (xk+1 − xk) = 0

g>k+1gk = 0

Vincent Y. F. Tan 16

Page 57: Analysis of Optimization Algorithms via Sum-of-Squares

Applying the SOS approach

Necessary constraints

• 6 Fµ,L-interpolability constraints corresponding to k, k + 1, ∗(hi (z) ≥ 0)

• 2 algorithmic constraints (vj(z) = 0)

g>k+1 (xk+1 − xk) = 0

g>k+1gk = 0

The SDP

min t

s.t. p(z) = σ0(z) +∑i

σi (z)hi (z) +∑j

θj(z)vj(z)

t ∈ (0, 1)

σ0(z) : SOS of linear polynomials

σi (z), i ≥ 1 : SOS of degree 0, θj(z) : degree 0

Vincent Y. F. Tan 17

Page 58: Analysis of Optimization Algorithms via Sum-of-Squares

Applying the SOS approach

Necessary constraints

• 6 Fµ,L-interpolability constraints corresponding to k, k + 1, ∗(hi (z) ≥ 0)

• 2 algorithmic constraints (vj(z) = 0)

The SDP

min t

s.t. p(z) = σ0(z) +∑i

σi (z)hi (z) +∑j

θj(z)vj(z)

t ∈ (0, 1)

σ0(z) : SOS of linear polynomials

σi (z), i ≥ 1 : SOS of degree 0, θj(z) : degree 0

Vincent Y. F. Tan 17

Page 59: Analysis of Optimization Algorithms via Sum-of-Squares

Applying the SOS approach

Necessary constraints

• 6 Fµ,L-interpolability constraints corresponding to k, k + 1, ∗(hi (z) ≥ 0)

• 2 algorithmic constraints (vj(z) = 0)

The SDP

min t

s.t. p(z) = σ0(z) +∑i

σi (z)hi (z) +∑j

θj(z)vj(z)

t ∈ (0, 1)

σ0(z) : SOS of linear polynomials

σi (z), i ≥ 1 : SOS of degree 0, θj(z) : degree 0

Vincent Y. F. Tan 17

Page 60: Analysis of Optimization Algorithms via Sum-of-Squares

Applying the SOS approach

Necessary constraints

• 6 Fµ,L-interpolability constraints corresponding to k, k + 1, ∗(hi (z) ≥ 0)

• 2 algorithmic constraints (vj(z) = 0)

The SDP

min t

s.t. p(z) =

(1z

)>Q

(1z

)+∑i

σi (z)hi (z) +∑j

θj(z)vj(z)

t ∈ (0, 1)

Q � 0

σi (z), i ≥ 1 : SOS of degree 0, θj(z) : degree 0

Vincent Y. F. Tan 17

Page 61: Analysis of Optimization Algorithms via Sum-of-Squares

Applying the SOS approach

Necessary constraints

• 6 Fµ,L-interpolability constraints corresponding to k, k + 1, ∗(hi (z) ≥ 0)

• 2 algorithmic constraints (vj(z) = 0)

The SDP

min t

s.t. p(z) =

(1z

)>Q

(1z

)+∑i

σi (z)hi (z) +∑j

θj(z)vj(z)

t ∈ (0, 1)

Q � 0

σi (z), i ≥ 1 : SOS of degree 0, θj(z) : degree 0

Vincent Y. F. Tan 17

Page 62: Analysis of Optimization Algorithms via Sum-of-Squares

Applying the SOS approach

Necessary constraints

• 6 Fµ,L-interpolability constraints corresponding to k, k + 1, ∗(hi (z) ≥ 0)

• 2 algorithmic constraints (vj(z) = 0)

The SDP

min t

s.t. p(z) =

(1z

)>Q

(1z

)+∑i

σihi (z) +∑j

θj(z)vj(z)

t ∈ (0, 1)

Q � 0

σi ≥ 0, i ≥ 1, θj(z) : degree 0

Vincent Y. F. Tan 17

Page 63: Analysis of Optimization Algorithms via Sum-of-Squares

Applying the SOS approach

Necessary constraints

• 6 Fµ,L-interpolability constraints corresponding to k, k + 1, ∗(hi (z) ≥ 0)

• 2 algorithmic constraints (vj(z) = 0)

The SDP

min t

s.t. p(z) =

(1z

)>Q

(1z

)+∑i

σihi (z) +∑j

θj(z)vj(z)

t ∈ (0, 1)

Q � 0

σi ≥ 0, i ≥ 1, θj(z) : degree 0

Vincent Y. F. Tan 17

Page 64: Analysis of Optimization Algorithms via Sum-of-Squares

Applying the SOS approach

Necessary constraints

• 6 Fµ,L-interpolability constraints corresponding to k, k + 1, ∗(hi (z) ≥ 0)

• 2 algorithmic constraints (vj(z) = 0)

The SDP

min t

s.t. p(z) =

(1z

)>Q

(1z

)+∑i

σihi (z) +∑j

θjvj(z)

t ∈ (0, 1)

Q � 0

σi ≥ 0, i ≥ 1, θj ∈ R

Vincent Y. F. Tan 17

Page 65: Analysis of Optimization Algorithms via Sum-of-Squares

Deriving the affine constraints

t(fk − f∗)− (fk+1 − f∗)

=

1f∗...

>

Q1,1 Q1,2 . . .

Q2,1. . .

...

1f∗...

+∑i

σihi (z) +∑j

θjvj(z)

Matching coefficients for e.g. f∗ term:

1− t = 2Q1,2 − σ2 − σ4 + σ5 + σ6

Constraint h2(z) ≥ 0:

fk − f∗ −L

2(L− µ)

[1L‖gk‖2 + µ‖xk − x∗‖2 + 2

µ

Lg>k (x∗ − xk)

]≥ 0

Vincent Y. F. Tan 18

Page 66: Analysis of Optimization Algorithms via Sum-of-Squares

Deriving the affine constraints

t(fk − f∗)− (fk+1 − f∗)

=

1f∗...

>

Q1,1 Q1,2 . . .

Q2,1. . .

...

1f∗...

+∑i

σihi (z) +∑j

θjvj(z)

Matching coefficients for e.g. f∗ term:

1− t = 2Q1,2 − σ2 − σ4 + σ5 + σ6

Constraint h2(z) ≥ 0:

fk − f∗ −L

2(L− µ)

[1L‖gk‖2 + µ‖xk − x∗‖2 + 2

µ

Lg>k (x∗ − xk)

]≥ 0

Vincent Y. F. Tan 18

Page 67: Analysis of Optimization Algorithms via Sum-of-Squares

Deriving the affine constraints

t(fk − f∗)− (fk+1 − f∗)

=

1f∗...

>

Q1,1 Q1,2 . . .

Q2,1. . .

...

1f∗...

+∑i

σihi (z) +∑j

θjvj(z)

Matching coefficients for e.g. f∗ term:

1− t =

2Q1,2 − σ2 − σ4 + σ5 + σ6

Constraint h2(z) ≥ 0:

fk − f∗ −L

2(L− µ)

[1L‖gk‖2 + µ‖xk − x∗‖2 + 2

µ

Lg>k (x∗ − xk)

]≥ 0

Vincent Y. F. Tan 18

Page 68: Analysis of Optimization Algorithms via Sum-of-Squares

Deriving the affine constraints

t(fk − f∗)− (fk+1 − f∗)

=

1f∗...

>

Q1,1 Q1,2 . . .

Q2,1. . .

...

1f∗...

+∑i

σihi (z) +∑j

θjvj(z)

Matching coefficients for e.g. f∗ term:

1− t = 2Q1,2

− σ2 − σ4 + σ5 + σ6

Constraint h2(z) ≥ 0:

fk − f∗ −L

2(L− µ)

[1L‖gk‖2 + µ‖xk − x∗‖2 + 2

µ

Lg>k (x∗ − xk)

]≥ 0

Vincent Y. F. Tan 18

Page 69: Analysis of Optimization Algorithms via Sum-of-Squares

Deriving the affine constraints

t(fk − f∗)− (fk+1 − f∗)

=

1f∗...

>

Q1,1 Q1,2 . . .

Q2,1. . .

...

1f∗...

+∑i

σihi (z) +∑j

θjvj(z)

Matching coefficients for e.g. f∗ term:

1− t = 2Q1,2 − σ2

− σ4 + σ5 + σ6

Constraint h2(z) ≥ 0:

fk − f∗ −L

2(L− µ)

[1L‖gk‖2 + µ‖xk − x∗‖2 + 2

µ

Lg>k (x∗ − xk)

]≥ 0

Vincent Y. F. Tan 18

Page 70: Analysis of Optimization Algorithms via Sum-of-Squares

Deriving the affine constraints

t(fk − f∗)− (fk+1 − f∗)

=

1f∗...

>

Q1,1 Q1,2 . . .

Q2,1. . .

...

1f∗...

+∑i

σihi (z) +∑j

θjvj(z)

Matching coefficients for e.g. f∗ term:

1− t = 2Q1,2 − σ2 − σ4 + σ5 + σ6

Constraint h2(z) ≥ 0:

fk − f∗ −L

2(L− µ)

[1L‖gk‖2 + µ‖xk − x∗‖2 + 2

µ

Lg>k (x∗ − xk)

]≥ 0

Vincent Y. F. Tan 18

Page 71: Analysis of Optimization Algorithms via Sum-of-Squares

Deriving the affine constraints

t(fk − f∗)− (fk+1 − f∗) =

(1z

)>Q

(1z

)+∑i

σihi (z) +∑j

θjvj(z)

1 : 0 = Q1,1

f∗ : 1− t = 2Q1,2 − σ2 − σ4 + σ5 + σ6

fk : t = 2Q1,3 + σ1 + σ2 − σ3 − σ5

fk+1 : −1 = 2Q1,4 − σ1 + σ3 + σ4 − σ6

...

Vincent Y. F. Tan 19

Page 72: Analysis of Optimization Algorithms via Sum-of-Squares

Solving the SDP

min t

s.t. p(z) =

(1z

)>Q

(1z

)+∑i

σihi (z) +∑j

θjvj(z)

t ∈ (0, 1)

Q � 0

σi ≥ 0, θj ∈ R

Guessing the optimal solution

t∗ =

(L− µ

L+ µ

)2, Q∗ =

(04×4 04×5

05×4 Q∗5×5

), σ∗

1 =L− µ

L+ µ, . . .

Q∗5×5 =

2L2µ2(L+µ)2(L−µ)

− Lµ2(L+µ)2

− Lµ2(L+µ)(L−µ)

(L+µ)2Lµ

(L+µ)(L−µ)Lµ(L+3µ)2(L+µ)2

− Lµ2(L+µ) −µ(3L+µ)

2(L+µ)2− µ

2(L+µ)Lµ

2(L−µ)µ

2(L+µ) − µ2(L−µ)

L+3µ2(L+µ)2

12(L+µ)

12(L−µ)

Vincent Y. F. Tan 20

Page 73: Analysis of Optimization Algorithms via Sum-of-Squares

Solving the SDP

min t

s.t. p(z) =

(1z

)>Q

(1z

)+∑i

σihi (z) +∑j

θjvj(z)

t ∈ (0, 1)

Q � 0

σi ≥ 0, θj ∈ R

Guessing the optimal solution

t∗ =

(L− µ

L+ µ

)2, Q∗ =

(04×4 04×5

05×4 Q∗5×5

), σ∗

1 =L− µ

L+ µ, . . .

Q∗5×5 =

2L2µ2(L+µ)2(L−µ)

− Lµ2(L+µ)2

− Lµ2(L+µ)(L−µ)

(L+µ)2Lµ

(L+µ)(L−µ)Lµ(L+3µ)2(L+µ)2

− Lµ2(L+µ) −µ(3L+µ)

2(L+µ)2− µ

2(L+µ)Lµ

2(L−µ)µ

2(L+µ) − µ2(L−µ)

L+3µ2(L+µ)2

12(L+µ)

12(L−µ)

Vincent Y. F. Tan 20

Page 74: Analysis of Optimization Algorithms via Sum-of-Squares

Multivariate case

Recall z = (f∗, fk , fk+1, x∗, xk , xk+1, g∗, gk , gk+1)

Let z = (z0, z1, . . . , zn) where

z0 = (f∗, fk , fk+1) and z` = (x∗(`), xk(`), xk+1(`), g∗(`), gk(`), gk+1(`))

Require polynomials p(z), hi (z) and vj(z) satisfy

pol(z) = pol0(z0) +n∑`=1

pol1(z`)

• Fulfilled when polynomials are linear in f ’s and in the inner productsof x’s and g’s e.g.

fk−f∗−L

2(L− µ)

[1L‖gk‖2 + µ‖xk − x∗‖2 + 2

µ

Lg>k (xk+1 − xk)

]≥ 0

Vincent Y. F. Tan 21

Page 75: Analysis of Optimization Algorithms via Sum-of-Squares

Multivariate case

Recall z = (f∗, fk , fk+1, x∗, xk , xk+1, g∗, gk , gk+1)

Let z = (z0, z1, . . . , zn) where

z0 = (f∗, fk , fk+1) and z` = (x∗(`), xk(`), xk+1(`), g∗(`), gk(`), gk+1(`))

Require polynomials p(z), hi (z) and vj(z) satisfy

pol(z) = pol0(z0) +n∑`=1

pol1(z`)

• Fulfilled when polynomials are linear in f ’s and in the inner productsof x’s and g’s e.g.

fk−f∗−L

2(L− µ)

[1L‖gk‖2 + µ‖xk − x∗‖2 + 2

µ

Lg>k (xk+1 − xk)

]≥ 0

Vincent Y. F. Tan 21

Page 76: Analysis of Optimization Algorithms via Sum-of-Squares

Multivariate case

Recall z = (f∗, fk , fk+1, x∗, xk , xk+1, g∗, gk , gk+1)

Let z = (z0, z1, . . . , zn) where

z0 = (f∗, fk , fk+1) and z` = (x∗(`), xk(`), xk+1(`), g∗(`), gk(`), gk+1(`))

Require polynomials p(z), hi (z) and vj(z) satisfy

pol(z) = pol0(z0) +n∑`=1

pol1(z`)

• Fulfilled when polynomials are linear in f ’s and in the inner productsof x’s and g’s e.g.

fk−f∗−L

2(L− µ)

[1L‖gk‖2 + µ‖xk − x∗‖2 + 2

µ

Lg>k (xk+1 − xk)

]≥ 0

Vincent Y. F. Tan 21

Page 77: Analysis of Optimization Algorithms via Sum-of-Squares

Multivariate case

Univariate case

p(z) =

1z0

z1

>0

Q0

Q1

1z0

z1

+∑i

σihi (z) +∑j

θjvj(z)

Multivariate case

p(z) =

1z0

z1...

zn

>0Q0

Q1 ⊗ In

1z0

z1...

zn

+∑i

σihi (z) +∑j

θjvj(z)

SOS cert for univariate case =⇒ SOS cert for multivariate case

Vincent Y. F. Tan 22

Page 78: Analysis of Optimization Algorithms via Sum-of-Squares

Multivariate case

Univariate case

p(z) =

1z0

z1

>0

Q0

Q1

1z0

z1

+∑i

σihi (z) +∑j

θjvj(z)

Multivariate case

p(z) =

1z0

z1...

zn

>0Q0

Q1 ⊗ In

1z0

z1...

zn

+∑i

σihi (z) +∑j

θjvj(z)

SOS cert for univariate case =⇒ SOS cert for multivariate case

Vincent Y. F. Tan 22

Page 79: Analysis of Optimization Algorithms via Sum-of-Squares

Multivariate case

Univariate case

p(z) =

1z0

z1

>0

Q0

Q1

1z0

z1

+∑i

σihi (z) +∑j

θjvj(z)

Multivariate case

p(z) =

1z0

z1...

zn

>0Q0

Q1 ⊗ In

1z0

z1...

zn

+∑i

σihi (z) +∑j

θjvj(z)

SOS cert for univariate case =⇒ SOS cert for multivariate case

Vincent Y. F. Tan 22

Page 80: Analysis of Optimization Algorithms via Sum-of-Squares

Obtaining the SOS certificate

t∗(fk − f∗)− (fk+1 − f∗)(1)=

(1z

)>Q∗

(1z

)+∑i

σ∗i hi (z) +∑j

θ∗j vj(z)

(2)≥

(1z

)>Q∗

(1z

)(3)=µ

4

(‖q1‖2

1 +õ/L

+‖q2‖2

1−√µ/L

)

1. Verifying the solution to be feasible

2. Since σ∗i , hi (z) ≥ 0 and vj(z) = 0

3. Expanding the quadratic term into its SOS decomposition

Vincent Y. F. Tan 23

Page 81: Analysis of Optimization Algorithms via Sum-of-Squares

Obtaining the SOS certificate

t∗(fk − f∗)− (fk+1 − f∗)(1)=

(1z

)>Q∗

(1z

)+∑i

σ∗i hi (z) +∑j

θ∗j vj(z)

(2)≥

(1z

)>Q∗

(1z

)

(3)=µ

4

(‖q1‖2

1 +õ/L

+‖q2‖2

1−√µ/L

)

1. Verifying the solution to be feasible

2. Since σ∗i , hi (z) ≥ 0 and vj(z) = 0

3. Expanding the quadratic term into its SOS decomposition

Vincent Y. F. Tan 23

Page 82: Analysis of Optimization Algorithms via Sum-of-Squares

Obtaining the SOS certificate

t∗(fk − f∗)− (fk+1 − f∗)(1)=

(1z

)>Q∗

(1z

)+∑i

σ∗i hi (z) +∑j

θ∗j vj(z)

(2)≥

(1z

)>Q∗

(1z

)(3)=µ

4

(‖q1‖2

1 +õ/L

+‖q2‖2

1−√µ/L

)

1. Verifying the solution to be feasible

2. Since σ∗i , hi (z) ≥ 0 and vj(z) = 0

3. Expanding the quadratic term into its SOS decomposition

Vincent Y. F. Tan 23

Page 83: Analysis of Optimization Algorithms via Sum-of-Squares

Revisiting the PEP

Page 84: Analysis of Optimization Algorithms via Sum-of-Squares

The PEP as an SDP

max fN − f∗

s.t. f ∈ Fxk+1 = A (xk , fk , gk) , k = 0, . . . ,N − 1

f0 − f∗ ≤ R

• Assume black-box model using oracle Of

• Identify polynomial inequalities hi (z) ≥ 0 and equalities vj(z) = 0necessarily satisfied given F and A• Linear in f ’s and in the inner products of x’s and g’s =⇒ Gram

matrices

• Formulated as an SDP

Vincent Y. F. Tan 24

Page 85: Analysis of Optimization Algorithms via Sum-of-Squares

The PEP as an SDP

max fN − f∗

s.t. f ∈ Fxk+1 = A (xk , fk , gk) , k = 0, . . . ,N − 1

f0 − f∗ ≤ R

• Assume black-box model using oracle Of

• Identify polynomial inequalities hi (z) ≥ 0 and equalities vj(z) = 0necessarily satisfied given F and A• Linear in f ’s and in the inner products of x’s and g’s =⇒ Gram

matrices

• Formulated as an SDP

Vincent Y. F. Tan 24

Page 86: Analysis of Optimization Algorithms via Sum-of-Squares

The PEP as an SDP

max fN − f∗

s.t. ∃f ∈ F s.t. Of (xi ) = {fi , gi} ∀ i

xk+1 = A (xk , fk , gk) , k = 0, . . . ,N − 1

f0 − f∗ ≤ R

• Assume black-box model using oracle Of

• Identify polynomial inequalities hi (z) ≥ 0 and equalities vj(z) = 0necessarily satisfied given F and A• Linear in f ’s and in the inner products of x’s and g’s =⇒ Gram

matrices

• Formulated as an SDP

Vincent Y. F. Tan 24

Page 87: Analysis of Optimization Algorithms via Sum-of-Squares

The PEP as an SDP

max fN − f∗

s.t. ∃f ∈ F s.t. Of (xi ) = {fi , gi} ∀ i

xk+1 = A (xk , fk , gk) , k = 0, . . . ,N − 1

f0 − f∗ ≤ R

• Assume black-box model using oracle Of

• Identify polynomial inequalities hi (z) ≥ 0 and equalities vj(z) = 0necessarily satisfied given F and A

• Linear in f ’s and in the inner products of x’s and g’s =⇒ Grammatrices

• Formulated as an SDP

Vincent Y. F. Tan 24

Page 88: Analysis of Optimization Algorithms via Sum-of-Squares

The PEP as an SDP

max fN − f∗

s.t. hi (z) ≥ 0, ∀ivj(z) = 0, ∀jf0 − f∗ ≤ R

• Assume black-box model using oracle Of

• Identify polynomial inequalities hi (z) ≥ 0 and equalities vj(z) = 0necessarily satisfied given F and A

• Linear in f ’s and in the inner products of x’s and g’s =⇒ Grammatrices

• Formulated as an SDP

Vincent Y. F. Tan 24

Page 89: Analysis of Optimization Algorithms via Sum-of-Squares

The PEP as an SDP

max fN − f∗

s.t. hi (z) ≥ 0, ∀ivj(z) = 0, ∀jf0 − f∗ ≤ R

• Assume black-box model using oracle Of

• Identify polynomial inequalities hi (z) ≥ 0 and equalities vj(z) = 0necessarily satisfied given F and A• Linear in f ’s and in the inner products of x’s and g’s =⇒ Gram

matrices

• Formulated as an SDP

Vincent Y. F. Tan 24

Page 90: Analysis of Optimization Algorithms via Sum-of-Squares

The PEP as an SDP

max fN − f∗

s.t. hi (z) ≥ 0, ∀ivj(z) = 0, ∀jf0 − f∗ ≤ R

• Assume black-box model using oracle Of

• Identify polynomial inequalities hi (z) ≥ 0 and equalities vj(z) = 0necessarily satisfied given F and A• Linear in f ’s and in the inner products of x’s and g’s =⇒ Gram

matrices

• Formulated as an SDP

Vincent Y. F. Tan 24

Page 91: Analysis of Optimization Algorithms via Sum-of-Squares

Relation between PEP and SOS

max fN − f∗

s.t. {xi} generated by Af ∈ Ff0 − f∗ ≤ R

(PEP)

N-step PEP-SDP

1-step PEP-SDP

min t

s.t. t(fk − f∗)− (fk+1 − f∗) ≥ 0,

∀ {xi} generated by A and

f ∈ F(SOS)

Deg-d SOS-SDP

⇐= Dual =⇒

Deg-1 SOS-SDP

Vincent Y. F. Tan 25

Page 92: Analysis of Optimization Algorithms via Sum-of-Squares

Relation between PEP and SOS

max fN − f∗

s.t. {xi} generated by Af ∈ Ff0 − f∗ ≤ R

(PEP)

N-step PEP-SDP

1-step PEP-SDP

min t

s.t. t(fk − f∗)− (fk+1 − f∗) ≥ 0,

∀ {xi} generated by A and

f ∈ F(SOS)

Deg-d SOS-SDP

⇐= Dual =⇒

Deg-1 SOS-SDP

Vincent Y. F. Tan 25

Page 93: Analysis of Optimization Algorithms via Sum-of-Squares

Relation between PEP and SOS

max fN − f∗

s.t. {xi} generated by Af ∈ Ff0 − f∗ ≤ R

(PEP)

N-step PEP-SDP

1-step PEP-SDP

min t

s.t. t(fk − f∗)− (fk+1 − f∗) ≥ 0,

∀ {xi} generated by A and

f ∈ F(SOS)

Deg-d SOS-SDP

⇐= Dual =⇒

Deg-1 SOS-SDP

Vincent Y. F. Tan 25

Page 94: Analysis of Optimization Algorithms via Sum-of-Squares

Relation between PEP and SOS

max fN − f∗

s.t. {xi} generated by Af ∈ Ff0 − f∗ ≤ R

(PEP)

N-step PEP-SDP

1-step PEP-SDP

min t

s.t. t(fk − f∗)− (fk+1 − f∗) ≥ 0,

∀ {xi} generated by A and

f ∈ F(SOS)

Deg-d SOS-SDP

⇐= Dual =⇒

Deg-1 SOS-SDP

Vincent Y. F. Tan 25

Page 95: Analysis of Optimization Algorithms via Sum-of-Squares

Relation between PEP and SOS

max fN − f∗

s.t. {xi} generated by Af ∈ Ff0 − f∗ ≤ R

(PEP)

N-step PEP-SDP

1-step PEP-SDP

min t

s.t. t(fk − f∗)− (fk+1 − f∗) ≥ 0,

∀ {xi} generated by A and

f ∈ F(SOS)

Deg-d SOS-SDP

⇐= Dual =⇒

Deg-1 SOS-SDP

Vincent Y. F. Tan 25

Page 96: Analysis of Optimization Algorithms via Sum-of-Squares

Relation between PEP and SOS

max fN − f∗

s.t. {xi} generated by Af ∈ Ff0 − f∗ ≤ R

(PEP)

N-step PEP-SDP

1-step PEP-SDP

min t

s.t. t(fk − f∗)− (fk+1 − f∗) ≥ 0,

∀ {xi} generated by A and

f ∈ F(SOS)

Deg-d SOS-SDP

⇐= Dual =⇒

Deg-1 SOS-SDP

Vincent Y. F. Tan 25

Page 97: Analysis of Optimization Algorithms via Sum-of-Squares

Relation between PEP and SOS

max fN − f∗

s.t. {xi} generated by Af ∈ Ff0 − f∗ ≤ R

(PEP)

N-step PEP-SDP

1-step PEP-SDP

min t

s.t. t(fk − f∗)− (fk+1 − f∗) ≥ 0,

∀ {xi} generated by A and

f ∈ F(SOS)

Deg-d SOS-SDP

⇐= Dual =⇒ Deg-1 SOS-SDP

Vincent Y. F. Tan 25

Page 98: Analysis of Optimization Algorithms via Sum-of-Squares

Results

Page 99: Analysis of Optimization Algorithms via Sum-of-Squares

Summary of Results

Form of bounds: Performance metric(xk+1) ≤ t∗ Performance metric(xk)

Set ε and η to be parameters related to the Armijo rule, and

ργ := max{|1− γµ| , |1− γL|}

Method Step size γ Metric Rate t∗ Known?

GD ELS fk − f∗(

L−µL+µ

)2 de Klerk et al.

(2017)

γ ∈ (0, 2L ) ‖xk − x∗‖2 ρ2

γ

Lessard et al.

(2016)

Armijo rule fk − f∗ 1− 4µε(1−ε)ηL New

Vincent Y. F. Tan 26

Page 100: Analysis of Optimization Algorithms via Sum-of-Squares

Summary of Results

Form of bounds: Performance metric(xk+1) ≤ t∗ Performance metric(xk)

Set ε and η to be parameters related to the Armijo rule, and

ργ := max{|1− γµ| , |1− γL|}

Method Step size γ Metric Rate t∗ Known?

GD ELS fk − f∗(

L−µL+µ

)2 de Klerk et al.

(2017)

γ ∈ (0, 2L ) ‖xk − x∗‖2 ρ2

γ

Lessard et al.

(2016)

Armijo rule fk − f∗ 1− 4µε(1−ε)ηL New

Vincent Y. F. Tan 26

Page 101: Analysis of Optimization Algorithms via Sum-of-Squares

Summary of Results

Form of bounds: Performance metric(xk+1) ≤ t∗ Performance metric(xk)

Set ε and η to be parameters related to the Armijo rule, and

ργ := max{|1− γµ| , |1− γL|}

Method Step size γ Metric Rate t∗ Known?

GD ELS fk − f∗(

L−µL+µ

)2 de Klerk et al.

(2017)

γ ∈ (0, 2L ) ‖xk − x∗‖2 ρ2

γ

Lessard et al.

(2016)

Armijo rule fk − f∗ 1− 4µε(1−ε)ηL New

Vincent Y. F. Tan 26

Page 102: Analysis of Optimization Algorithms via Sum-of-Squares

GD with Armijo-terminated Line Search

Our result tnew vs. known contraction factors tLY (Luenberger and Ye,2016) and tnemi (Nemirovski, 1999):

tnew = 1− 4ε(1− ε)ηκ

tLY = 1− 2εηκ

tnemi =κ− (2− ε−1)(1− ε)η−1

κ+ (ε−1 − 1)η−1

2 4 6 8 10

Condition number,

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Con

trac

tion

fact

or, t

tnew, = 1.001

tLY, = 1.001

Figure 2: tnew and tLY for ε = 0.25

2 4 6 8 10

Condition number,

0

0.2

0.4

0.6

0.8

1

Con

trac

tion

fact

or, t

tnew, = 1.001

tnemi, = 1.001

Figure 3: tnew and tnemi for ε = 0.5

Condition number, κ = L/µ

Vincent Y. F. Tan 27

Page 103: Analysis of Optimization Algorithms via Sum-of-Squares

GD with Armijo-terminated Line Search

Our result tnew vs. known contraction factors tLY (Luenberger and Ye,2016) and tnemi (Nemirovski, 1999):

tnew = 1− 4ε(1− ε)ηκ

tLY = 1− 2εηκ

tnemi =κ− (2− ε−1)(1− ε)η−1

κ+ (ε−1 − 1)η−1

2 4 6 8 10

Condition number,

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Con

trac

tion

fact

or, t

tnew, = 1.001

tLY, = 1.001

Figure 2: tnew and tLY for ε = 0.25

2 4 6 8 10

Condition number,

0

0.2

0.4

0.6

0.8

1

Con

trac

tion

fact

or, t

tnew, = 1.001

tnemi, = 1.001

Figure 3: tnew and tnemi for ε = 0.5

Condition number, κ = L/µ

Vincent Y. F. Tan 27

Page 104: Analysis of Optimization Algorithms via Sum-of-Squares

GD with Armijo-terminated Line Search

Our result tnew vs. known contraction factors tLY (Luenberger and Ye,2016) and tnemi (Nemirovski, 1999):

tnew = 1− 4ε(1− ε)ηκ

tLY = 1− 2εηκ

tnemi =κ− (2− ε−1)(1− ε)η−1

κ+ (ε−1 − 1)η−1

2 4 6 8 10

Condition number,

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Con

trac

tion

fact

or, t

tnew, = 1.001

tLY, = 1.001

Figure 2: tnew and tLY for ε = 0.25

2 4 6 8 10

Condition number,

0

0.2

0.4

0.6

0.8

1

Con

trac

tion

fact

or, t

tnew, = 1.001

tnemi, = 1.001

Figure 3: tnew and tnemi for ε = 0.5

Condition number, κ = L/µ

Vincent Y. F. Tan 27

Page 105: Analysis of Optimization Algorithms via Sum-of-Squares

A new function class: Composite functions

Composite convex minimization problem

minx∈Rn{f (x) := a(x) + b(x)} ,

where a ∈ Fµ,L and b is closed, convex and proper.

Further assumptionsAssume that the proximal operator of b,

proxγb(x) := arg miny∈Rn

{γb(y) +

12‖x− y‖2

},

exists at every x

Vincent Y. F. Tan 28

Page 106: Analysis of Optimization Algorithms via Sum-of-Squares

A new function class: Composite functions

Composite convex minimization problem

minx∈Rn{f (x) := a(x) + b(x)} ,

where a ∈ Fµ,L and b is closed, convex and proper.

Further assumptionsAssume that the proximal operator of b,

proxγb(x) := arg miny∈Rn

{γb(y) +

12‖x− y‖2

},

exists at every x

Vincent Y. F. Tan 28

Page 107: Analysis of Optimization Algorithms via Sum-of-Squares

Algorithm

Proximal gradient method (PGM) with constant step size γ > 0

xk+1 = proxγb (xk − γ∇a(xk)) ,

where 0 ≤ γ ≤ 2L

PGM with exact line search

γk = argminγ>0

f[proxγb (xk − γ∇a(xk))

]xk+1 = proxγb (xk − γk∇a(xk))

Vincent Y. F. Tan 29

Page 108: Analysis of Optimization Algorithms via Sum-of-Squares

Algorithm

Proximal gradient method (PGM) with constant step size γ > 0

xk+1 = proxγb (xk − γ∇a(xk)) ,

where 0 ≤ γ ≤ 2L

PGM with exact line search

γk = argminγ>0

f[proxγb (xk − γ∇a(xk))

]xk+1 = proxγb (xk − γk∇a(xk))

Vincent Y. F. Tan 29

Page 109: Analysis of Optimization Algorithms via Sum-of-Squares

Summary of Results

Form of bounds: Performance metric(xk+1) ≤ t∗ Performance metric(xk)

Let gk denotes a (sub)gradient of f at xk , and

ργ := max{|1− γµ| , |1− γL|}

Method Step size γ Metric Rate t∗ Known?

PGM γ ∈ (0, 2L ) ‖gk‖2 ρ2

γ

Taylor et al.

(2018)

ELS fk − f∗(

L−µL+µ

)2 Taylor et al.

(2018)

Vincent Y. F. Tan 30

Page 110: Analysis of Optimization Algorithms via Sum-of-Squares

Summary of Results

Form of bounds: Performance metric(xk+1) ≤ t∗ Performance metric(xk)

Let gk denotes a (sub)gradient of f at xk , and

ργ := max{|1− γµ| , |1− γL|}

Method Step size γ Metric Rate t∗ Known?

PGM γ ∈ (0, 2L ) ‖gk‖2 ρ2

γ

Taylor et al.

(2018)

ELS fk − f∗(

L−µL+µ

)2 Taylor et al.

(2018)

Vincent Y. F. Tan 30

Page 111: Analysis of Optimization Algorithms via Sum-of-Squares

Conclusion

Page 112: Analysis of Optimization Algorithms via Sum-of-Squares

Conclusion

Introduced an SDP hierarchy for bounding convergence rates via SOScertificates⇒ First level coincides with the PEP

Future work

• Other function classes

• Other algorithms

• Understanding when SOS certificates cannot be found

Links

arXiv paper: http://arxiv.org/abs/1906.04648github codes: https://github.com/sandratsy/SumsOfSquares

Vincent Y. F. Tan 31

Page 113: Analysis of Optimization Algorithms via Sum-of-Squares

Conclusion

Introduced an SDP hierarchy for bounding convergence rates via SOScertificates⇒ First level coincides with the PEP

Future work

• Other function classes

• Other algorithms

• Understanding when SOS certificates cannot be found

Links

arXiv paper: http://arxiv.org/abs/1906.04648github codes: https://github.com/sandratsy/SumsOfSquares

Vincent Y. F. Tan 31

Page 114: Analysis of Optimization Algorithms via Sum-of-Squares

Thank you!

Vincent Y. F. Tan 31

Page 115: Analysis of Optimization Algorithms via Sum-of-Squares

References I

References

de Klerk, E., Glineur, F., and Taylor, A. B. (2017). On the worst-casecomplexity of the gradient method with exact line search for smoothstrongly convex functions. Optimization Letters, 11(7):1185–1199.

Drori, Y. and Teboulle, M. (2014). Performance of first-order methodsfor smooth convex minimization: A novel approach. MathematicalProgramming, 145(1):451–482.

Lasserre, J. (2007). A sum of squares approximation of nonnegativepolynomials. SIAM Review, 49(4):651–669.

Lessard, L., Recht, B., and Packard, A. (2016). Analysis and design ofoptimization algorithms via integral quadratic constraints. SIAMJournal on Optimization, 26(1):57–95.

Page 116: Analysis of Optimization Algorithms via Sum-of-Squares

References II

Luenberger, D. G. and Ye, Y. (2016). Linear and NonlinearProgramming. Springer International Publishing, 4th edition.

Nemirovski, A. (1999). Optimization II: Numerical methods for nonlinearcontinuous optimization.https://www2.isye.gatech.edu/~nemirovs/Lect_OptII.pdf.

Parrilo, P. A. (2003). Semidefinite programming relaxations forsemialgebraic problems. Mathematical Programming, 96(2):293–320.

Taylor, A., Hendrickx, J., and Glineur, F. (2017a). Exact worst-caseperformance of first-order methods for composite convex optimization.SIAM Journal on Optimization, 27(3):1283–1313.

Taylor, A. B., Hendrickx, J. M., and Glineur, F. (2017b). Smoothstrongly convex interpolation and exact worst-case performance offirst-order methods. Mathematical Programming, 161(1):307–345.

Page 117: Analysis of Optimization Algorithms via Sum-of-Squares

References III

Taylor, A. B., Hendrickx, J. M., and Glineur, F. (2018). Exact worst-caseconvergence rates of the proximal gradient method for compositeconvex minimization. Journal of Optimization Theory andApplications, 178(2):455–476.