Analysis of Networks Using Symmetrical Components

33
.......................................................................... Cahier technique no. 18 Analysis of three-phase networks in disturbed operating conditions using symmetrical components B. de Metz-Noblat Collection Technique Building a New Electric World

description

Analysis of three-phase networks in disturbed operating conditions using symmetrical components.

Transcript of Analysis of Networks Using Symmetrical Components

  • ..........................................................................

    Cahier technique no. 18

    Analysis of three-phase networksin disturbed operating conditionsusing symmetrical components

    B. de Metz-Noblat

    Collection Technique

    Building a New Electric World

  • "Cahiers Techniques" is a collection of documents intended for engineersand technicians, people in the industry who are looking for more in-depthinformation in order to complement that given in product catalogues.

    Furthermore, these "Cahiers Techniques" are often considered as helpful"tools" for training courses.They provide knowledge on new technical and technological developmentsin the electrotechnical field and electronics. They also provide betterunderstanding of various phenomena observed in electrical installations,systems and equipments.Each "Cahier Technique" provides an in-depth study of a precise subject inthe fields of electrical networks, protection devices, monitoring and controland industrial automation systems.

    The latest publications can be downloaded from the Schneider Electric internetweb site.Code: http://www.schneider-electric.comSection: Press

    Please contact your Schneider Electric representative if you want either a"Cahier Technique" or the list of available titles.

    The "Cahiers Techniques" collection is part of the Schneider Electrics"Collection technique".

    ForewordThe author disclaims all responsibility subsequent to incorrect use ofinformation or diagrams reproduced in this document, and cannot be heldresponsible for any errors or oversights, or for the consequences of usinginformation and diagrams contained in this document.

    Reproduction of all or part of a "Cahier Technique" is authorised with thecompulsory mention:"Extracted from Schneider Electric "Cahier Technique" no. ....." (pleasespecify).

  • no. 18Analysis of three-phasenetworks in disturbedoperating conditions usingsymmetrical components

    ECT 18 first issue, October 2005

    Benot de METZ-NOBLAT

    A graduate engineer from ESE (Ecole Suprieure dElectricit), heworked for the Saint-Gobain group before joining Merlin Gerin in1986. Currently attached to the Technology & Innovationsdepartment, he is a member of the Electrical Networks workinggroup, which is responsible for studying electrical phenomenarelating to the operation of networks and their interaction withequipment and devices.

  • Cahier Technique Schneider Electric no. 18 / p.2

  • Cahier Technique Schneider Electric no. 18 / p.3

    Analysis of three-phase networks indisturbed operating conditions usingsymmetrical components

    The dimensioning of an installation and the equipment to be used, thesettings for the protection devices, and the analysis of electricalphenomena often require calculation of the currents and voltages inelectrical networks.

    The purpose of this Cahier Technique is to set out a simple method ofcalculating all these parameters in three-phase networks subject todisturbance using the symmetrical components method, and to providespecific application examples.

    Contents1 Introduction p. 42 Brief review of vector mathematics 2.1 Vector representation of a physical phenomenon p. 5

    2.2 Basic definition p. 52.3 Vector representation p. 62.4 Symmetrical components p. 72.5 Analysis of a three-phase system into its symmetrical p. 8components2.6 Mathematical calculation of the symmetrical components p. 92.7 Conclusion: Relevance to electrical engineering p. 10

    3 Basic applications 3.1 Method of calculating unbalanced states p. 113.2 Phase-to-ground fault (zero-sequence fault) p. 123.3 Two-phase to ground fault p. 133.4 Three-phase fault p. 143.5 Network with an unbalanced load p. 153.6 Network with one open phase p. 163.7 Impedances associated with symmetrical components p. 173.8 Summary formulae p. 19

    4 Worked examples 4.1 Breaking capacity of a circuit-breaker at the supply end p. 204.2 Breaking capacity of circuit-breakers at the ends of a line p. 214.3 Settings for zero-sequence protection devices in a grounded p. 24neutral MV network4.4 Settings for a protection device with a negative-sequence p. 26current in an electrical installation4.5 Measuring the symmetrical components of a voltage p. 27and current system

    Appendix p. 29

  • Cahier Technique Schneider Electric no. 18 / p.4

    1 Introduction

    In normal, balanced, symmetrical operation, thestudy of three-phase networks can be reduced tothe study of an equivalent single-phase networkwith voltages equal to the phase to neutralvoltages of the network, currents equal to thoseof the network and impedances equal to those ofthe network, known as cyclic impedances.Asymmetrical operation can occur in a network ifthere is an unbalance in the voltage orimpedance system of the electrical elements(due to a fault or by design).If the asymmetry is significant, simplification isno longer possible because the relations in thevarious conductors cannot be determined by

    means of a cyclic impedance for each element ofthe network.The general method based on Ohms andKirchhoffs laws is possible, but it is complex andlaborious.The symmetrical components methoddescribed in this document simplifies thecalculations and provides a much easier solutionby reducing it to the superposition of threeindependent single-phase networks.After a brief review of vector concepts, thismethod is explained by reference to basicapplications on various types of short-circuit,followed by worked examples of actual cases.

  • Cahier Technique Schneider Electric no. 18 / p.5

    2 Brief review of vector mathematics

    2.1 Vector representation of a physical phenomenonA vibrating physical phenomenon is sinusoidalwhen the elongation of a vibrating point is asinusoidal time function:x = a cos(t + ).The application to electrical engineering, inwhich voltages and currents are sinusoidalphenomena, is well known.c Consider a vector OM with modulus a, rotatingin the plane (Ox, Oy) about its origin O with aconstant angular velocity (see Fig. 1 ).If at starting time t = 0, the angle (Ox, OM) hasthe value , at time t it will have the value(t + ).We can project the current vector OM onto theOx axis.

    At time t, the algebraic value of its projection is:x = a cos(t + ). Thus:v The movement of the projection of the end ofthe vector rotating about the Ox axis is asinusoidal movement with amplitude a equal tothe modulus of this vector.v The angular frequency of the sinusoidalmovement is equal to the angular velocity of therotating vector.v The initial phase is equal to the angle madeby the rotating vector with the Ox axis at startingtime t = 0.c In the same way, a rotating vector can bemade to correspond to any sine functionx = a cos(t + ).The function x is conventionally represented bythe vector OM in the position which it occupiesat starting time t = 0; the modulus of the vectorrepresents amplitude a of the sine function andthe angle (Ox, OM)represents its starting phase.c The study of a sinusoidal physicalphenomenon can therefore be reduced to thestudy of its corresponding vector. This is usefulbecause mathematical manipulation on vectorsis relatively straightforward.This applies in particular to three-phaseelectrical phenomena in which voltages andcurrents are represented by rotating vectors.

    y

    xO

    M

    x+a-a

    +

    t + a

    Fig. 1

    2.2 Basic definitionc Consider a sinusoidal vibrating electricalphenomenon represented by a rotating vector V(see Fig. 2 ).This is in principle as follows:c A reference axis Ox of unit vector x : x =1.c A direction of rotation conventionally definedas positive in the anti-clockwise direction + .c The vector Vwhose origin is reduced to O isessentially characterized by:v An amplitude V : At a given time the length ofthe vector is numerically equal to the modulus ofthe size of the phenomenon.v A phase : At a given time this is the angle(Ox, V)made by V with the reference axis Ox,taking into account the adopted direction ofrotation.v An angular frequency: This is the constantspeed of rotation of the vector in radians persecond.

    xO

    +

    V

    X

    Fig. 2

    This is commonly expressed in revolutions persecond, in which case it is the frequency of thephenomenon in Hz (1 Hz = 2 rd/s).c A three-phase system is a set of 3 vectorsV , V , V1 2 3 , with the same origin, the sameangular frequency and each with a constantamplitude.c An electrical system is linear when there is aproportionality in the relations of causes toeffects.

  • Cahier Technique Schneider Electric no. 18 / p.6

    2.3 Vector representationThe vector V is traditionally represented in asystem of rectangular coordinate axes(see Fig. 3 ).V = = + = +OM OX OY OX x OY yc Operator jTo simplify operations on the vectors, V can berepresented in an equivalent way by a complexnumber using the operator j.j is a vector operator which rotates the vector towhich the operation is applied through + /2, inother words jx y= .Thus we can see that:

    j

    j

    j

    2

    3

    4

    2

    2 2

    2

    = =

    = =

    = =

    -1 (rotation of 2

    -1 (rotation of 3

    +1 (rotation of 4 2

    )3 )

    )

    hence:

    V OX x OY jx x OX j OY= + = +( ) c Operator aa is a vector operator which rotates the vectorto which the operation is applied through + 2/3(see Fig. 4 ).Thus we can see that:v a2 rotates a vector by:

    2 23 3

    23

    4 (equivalent to - ) =

    v a3 rotates a vector by:

    3 2 23

    = (equivalent to 0)

    a j

    a j

    = +

    =

    - 0.5

    - 0.5 -

    323

    22

    so

    a0 = a3 = a6 = 1a = a4 = a7 a2 = a-2 = a-5

    a - a2 = je and 1 + a + a2 =0

    y

    xO

    + Y

    X

    M

    V

    Y

    X

    Fig. 3

    Fig. 4

    + a

    V

    V

    a2 V

    120

    120

    120

    This last relation can be verified graphically fromthe figure, where we can see that the sum of thevectors shown is zero:V aV a V+ + =2 0so V (1 + a + a2) = 0therefore 1 + a + a2 = 0

  • Cahier Technique Schneider Electric no. 18 / p.7

    2.4 Symmetrical componentsConsider a set of three sinusoidal three-phasevectors rotating at the same speed. They aretherefore fixed in relation to one another.There are three specific arrangements in whichthe vectors are symmetrical to one another andwhich are therefore known as symmetricalcomponents:c The positive-sequence system(see Fig. 5 ), in which V , V , V1 2 3v have the same amplitudev are shifted by 120v are arranged such that an observer at restsees the vectors pass by in the orderV , V , V1 2 3 ;V

    V a a

    V a

    1

    22

    3

    = =

    =

    V V

    V1 3

    1

    c The negative-sequence system (see Fig. 6 ),in which V , V , V1 2 3v have the same amplitudev are shifted by 120v are arranged such that an observer at restsees the vectors pass by in the orderV , V , V1 3 2 ;V

    V a

    V a a

    1

    2

    32

    =

    = =

    V

    V V1

    1 2

    c The zero-sequence system (see Fig. 7 ), inwhich V , V , V1 2 3v have the same amplitudev are in phase and therefore co-linear, so anobserver at rest sees them all pass by at thesame time.

    Fig. 5

    +

    V3

    V2

    V1

    120120

    120

    Fig. 6

    +

    V3

    V2

    V1

    120

    120

    120

    + V3V2

    V1

    Fig. 7

  • Cahier Technique Schneider Electric no. 18 / p.8

    2.5 Analysis of a three-phase system into its symmetrical componentsConsider any three-phase system formed fromthree vectors V , V , V1 2 3 (see basic definitions);we can show that this system is the sum of threebalanced three-phase systems:Positive-sequence, negative-sequence andzero-sequence.c Positive-sequence system: Vd Vd Vd1 2 3 , , c Negative-sequence system: Vi Vi Vi1 2 3 , , c Zero-sequence system: Vo Vo Vo1 2 3 , , This gives:V Vd Vi Vo

    V Vd Vi Vo

    V Vd Vi Vo

    1 1 1 1

    2 2 2 2

    3 3 3 3

    = + +

    = + +

    = + +

    If we choose the vectors with index 1 as originvectors and apply the operator a, we obtain the

    O

    +

    O

    O

    O

    V3

    V1

    V3

    V3

    V2

    V1

    V1

    V2

    aV2

    aV3

    V2

    V1

    V22a

    V22a

    VoVi

    Vd 120

    120

    following equations:V Vd Vi Vo

    V a Vd a Vi Vo

    V a Vd a Vi Vo

    1

    22

    32

    = + +

    = + +

    = + +

    We can calculate the symmetrical components:

    Vd V a V a V

    Vi V a V a V

    Vo V V V

    = + +( )= + +( )= + +( )

    13

    1313

    1 22

    3

    12

    2 3

    1 2 3

    Their geometric construction is easy by takinginto account the meaning of the operator a(rotation by 2/3) (see Fig. 8 ).

    Fig. 8 : Geometric construction of symmetrical components with operator a.

    Original system Vd V a V a V= + +( )13 1 2 2 3

    Vi V a V a V= + +( )13 1 2 2 3 Vo V V V= + +( )13 1 2 3

  • Cahier Technique Schneider Electric no. 18 / p.9

    More practically, we can construct thesymmetrical components directly on the figurewithout having to transfer vectors (see Fig. 9 ).Consider the points D and E such that BDCE isa rhombus composed of two equilateral trianglesBDC and BCE and with O as the barycenter of

    the triangle ABC; a simple calculation (seeparagraph below) shows that:

    Vd EA Vi DA Vo OO= = =3 3

    '

    +

    O

    C

    A

    O O

    B

    E

    D

    V3 V3

    V2

    V2

    V1

    V1

    Vo

    Vi

    Vd

    Fig. 9 : Geometric construction of symmetrical components on the three-phase system.

    Original system

    2.6 Mathematical calculation of the symmetrical componentsConsider the points D and E such that (BDCE) isa rhombus composed of two equilateral triangles(BDC) and (BCE).EA EB BA a BCEA a BC BA

    a BO a OC BO OA

    OA OB a OC

    OA a OB a OCV aV a V Vd

    = + =

    = +

    = + + +

    = + ( ) += + +

    = + + =

    , thus EB therefore

    -a -1

    2

    2

    2

    2 2

    2

    2

    1 22

    3 3

    Vd EA=3

    DA DB BA a BCDA a BC BA

    a BO a OC BO OAOA OB a OC

    = + =

    = +

    = + + +

    = + ( ) +

    , thus DB therefore

    -a -1

    DA OA a OB a OCV a V a V Vi

    = + +

    = + + =

    2

    12

    2 3 3

    Vi DA=3

    Let O be the barycenter of triangle ABC, thenO A O B O CV V V Vo

    OA OB OCOO O A OO O B OO O C

    OO O A O B O COO

    ' ' '

    ' ' ' ' ' '

    ' ' ' '

    '

    + + =

    + + =

    = + +

    = + + + + +

    = + + +

    =

    0

    3

    3

    3

    1 2 3

    Vo OO= '

  • Cahier Technique Schneider Electric no. 18 / p.10

    2.7 Conclusion: Relevance to electrical engineeringThe method described in the previous section isdirectly relevant to electricity in the case of linearthree-phase networks with a single frequency.This is because three-phase systems applied toelectrical networks can be unbalanced by load orfault asymmetries.In addition, the simplicity provided bycalculations reduced to the superposition ofthree independent systems, which are treatedseparately by reducing each to the simple single-phase case, is both practical and effective.Note that these mathematical manipulationscorrespond well to a physical reality of thephenomena: the symmetrical impedances of theelectrical equipment can be measured (seechapter 3), as can the symmetrical componentsof a voltage or current system (see chapter 4,example 4).As an illustration, Figure 10 shows the methodfor measuring the zero-sequence impedance ofan electrical element. The three input terminalsare joined together, as are the three outputterminals, the whole system is supplied with aphase to neutral voltage E and a current Io flowsin each phase; the zero-sequence impedance isthen defined by Zo = V / Io.

    Fig. 10 : Principle of measuring the zero-sequenceinput impedance of an electrical element.

    Outputs

    oEZo I/=

    Inputs

    E

    oI

    oI

    oIo3I

    Notesc In the remainder of the text, voltage andcurrent vectors are shown without arrows, for thesake of simplicity.c The symmetrical components of voltages andcurrents chosen to represent the system insimple terms are those of phase 1:Vi = Vd + Vi + Voc The residual vector Gresidual = 3 x Gocorresponds to any zero-sequence vector Go.

  • Cahier Technique Schneider Electric no. 18 / p.11

    3.1 Method of calculating unbalanced statesSuperposition principleLet us examine the behavior of a linear,symmetrical three-phase network, in other wordsone that is composed of constant, identicalimpedances for the three phases (as is the casein practice), comprising only balancedelectromotive forces but in which the currentsand voltages may be unbalanced due toconnection to an asymmetrical zone D.Electromotive forces (emf) are inherentlypositive-sequence systems, since the e.m.f. ofnegative-sequence and zero-sequence systemsare zero.The operation of the network is interpreted byconsidering the superposition of three states,corresponding to the positive-sequence,negative-sequence and zero-sequence systemsrespectively.In this linear, symmetrical network, the currentsin each system are linked solely to the voltagesin the same system and in the same way, bymeans of the impedances of the system inquestion. Note that these impedances Zd, Zi andZo depend on actual impedances, in particularmutual inductances.For a network comprising a single e.m.f., thesymmetrical components of voltage and currentbeing respectively Vd, Vi, Vo, Id, Ii, Io, at point Dof the asymmetry, the relations defining the threestates are:E = Vd + Zd Id0 = Vi + Zi Ii0 = Vo + Zo Io.They are shown in simplified form in Figure 11 .These equations remain valid for networkscomprising multiple sources, provided that E andZd, Zi, Zo are considered respectively as thee.m.f. and as the internal impedances of theThevenin-equivalent generator.

    Practical solution methodThe method summarized below is described indetail in the next section (phase-to-ground fault).c The network is divided into two zones:v An asymmetrical zone D (unbalanced network)v A symmetrical zone S (balanced network).c We write the equations linking currents andvoltages:v In zone D (actual components)v In zone S (symmetrical components)v Continuity at the D-S boundaryv Operation in zone S.c By solving the equations mathematically, wecan calculate the values of the symmetricalcomponents and the actual components of thecurrents and voltages in zones D and S.Note that we can calculate the values of thesymmetrical components directly usingrepresentative diagrams of the symmetricalsystems (see Fig. 11).

    EdI

    iI

    oI

    Zo

    Zi

    Zd

    Vd

    Vi

    Vo

    Fig. 11

    3 Basic applications

  • Cahier Technique Schneider Electric no. 18 / p.12

    Fig. 13

    E

    3Z

    Vd

    Zd

    Id

    Vi

    Zi

    Ii

    Vo

    Zo

    Io

    oid III ==

    3.2 Phase-to-ground fault (zero-sequence fault)The circuit is assumed to be a no-load circuit.

    Writing the equationsc Isolation of the asymmetrical zone (see Fig. 12 )c Equations for the actual components in (D)

    I II

    2 31 1

    0= ==

    V ZThese equations describe the case in question.They are the only ones which are specific to thisexample.c Equations for the symmetrical componentsin (S)

    I I I II I I II I I I

    1

    22

    32

    1

    22

    32

    = + +

    = + +

    = + +

    = + +

    = + +

    = + +

    d i oa d a i oa d a i o

    V Vd Vi VoV a Vd aVi VoV aVd a Vi Vo

    These equations link the actual currents and theactual voltages respectively to their symmetricalcomponents. They are the same in allcalculations for unbalanced states. They arederived from the definitions set out earlier(see chapter 2).c Continuity at the D-S boundaryBy combining the equations for the actualcomponents in (D) and the equations for thesymmetrical components in (S) we obtain:

    a d a i oa d a i oVd Vi Vo Z

    d i oVd Vi Vo Z o

    2

    2

    1

    1

    00

    33

    I I II I I

    I

    I I II

    I

    + + =

    + + =

    + + =

    = = =

    + + =

    c Equations for operation in SE Vd Zd d

    Vi Zi iVo Zo o

    = + = + = +

    II

    I00

    These three equations are found in allcalculations for unbalanced states comprisingjust one voltage source.Solving the equationsc Values of the symmetrical components of thecurrents and voltagesE + 0 + 0 = Vd + Vi + Vo + Zd Id + Zi Ii + Zo Io

    = 3Z Io + (Zd + Zi + Zo) Ioie.

    I I Io d i EZd Zi Zo Z

    = = =

    + + + 3

    Phase 1

    Phase 2

    Phase 3

    E

    aE

    Z

    Zone S

    Zone D

    E2a

    oid III ,,Vd, Vi, Vo

    3I 2I 1I

    V3 V2 V1

    Fig. 12

    Vd E Zd d E Zd EZd Zi Zo Z

    Vd E Zi Zo ZZd Zi Zo Z

    = =+ + +

    =

    + +

    + + +

    - -

    I3

    33

    Vi Zi i

    Vi Zi EZd Zi Zo Z

    =

    =

    + + +

    -

    -

    I

    3

    Vo Zo o

    Vo Zo EZd Zi Zo Z

    =

    =

    + + +

    -

    -

    I

    3c Network diagram based on symmetricalcomponents (see Fig. 13 )

  • Cahier Technique Schneider Electric no. 18 / p.13

    c Values of the actual voltages and currentsI1 = Id + Ii + Io

    I

    II

    1

    2

    3

    33

    00

    =

    + + +

    =

    =

    EZd Zi Zo Z

    V1 = Z x I1

    V Z EZd Zi Zo Z1

    33

    =

    + + +

    V a Vd aVi Vo

    E Zi a a Zo a a ZZd Zi Zo Z

    22

    2 2 21 33

    = + +

    =

    + +

    + + +

    ( - ) ( - )

    -

    here -

    V a E Zd a Zi aZoZd Zi Zo Z

    a Ek

    w k Zd a Zi aZoZd Zi Zo Z

    22

    22

    1

    12

    13

    13

    =

    + +

    + + +

    =

    =

    + +

    + + +

    V aVd a Vi Vo

    E Zi a Zo a aZZd Zi Zo Z

    32

    33

    = + +

    =

    + +

    + + +

    ( -a ) ( -1)2

    -

    Zd+aZi+a

    here -

    2V aE Zo

    Zd Zi Zo Za Ek

    w k Zd aZi a ZoZd Zi Zo Z

    32

    2

    22

    13

    13

    =

    + + +

    =

    =

    + +

    + + +

    Special casesc Bolted faultIf Z = 0, the phase-to-ground fault current takes

    the value: I1 = + +3E

    Zd Zi Zoc Impedance ground faultIf 3Z >> Zd + Zi + Zo, the phase-to-ground fault

    current is defined by the fault impedance: I1 =EZ

    NB:The terms k1 and k2 are known as ground faultfactors; their values vary between 1 and 1.8.The ground fault factor at a given point is theratio of the highest rms voltage between ahealthy phase and ground when the network isaffected by a fault, relative to the rms voltagebetween phase and ground in the absence of thefault.Figure 14 shows the overall situation in thespecial case where Z = 0 (bolted fault) andZd = Zi Xd.The range of high values for Xo/Xd correspondsto isolated or compensated neutral networks.The range of low positive values for Xo/Xdcorresponds to neutral-to-ground networks.The range of low negative values for Xo/Xd isunsuitable in practice due to the existence ofresonances.

    3.3 Two-phase to ground fault (see Fig. 15 overleaf)Writing the equationsc In zone (D)

    II I

    12 3 3

    0== = +

    V V Z ( )2c In zone (S)

    I I I II I I II I I I

    1

    22

    32

    1

    22

    32

    = + +

    = + +

    = + +

    = + +

    = + +

    = + +

    d i oa d a i oa d a i o

    V Vd Vi VoV a Vd aVi VoV aVd a Vi Vo

    c Continuity at the (D) - (S) boundaryI I I

    I

    d i oVd ViVo Vd Z o

    + + ==

    = +

    0

    3c Operation in (S)

    E Vd Zd dVi Zi iVo Zo o

    = + = + = +

    II

    I00

    Fig. 14: Ground fault factor as a function of Xo/X1 forR1/X1 = 0 and R = 0 (graph according to IEC 60071-2).

    0

    0.5

    1.0

    1.5

    2.0

    2.5

    -100 -10 -8 -6 -4 -2 0 2 4 6 8 10 100

    k

    50

    5 1

    0

    IEC 1 03096

    Not suitable for practical applications

    Xo/X1

    Ro/X =01

    Ro/X =11

    3

  • Cahier Technique Schneider Electric no. 18 / p.14

    c Continuity at the (D) - (S) boundary

    I I I I1+ + = =

    = =

    = = =

    2 3

    1 2 3

    3

    0

    oVoZ

    Vd Vi

    V V V Vo

    c Operation in (S)E Vd Zd d

    Vi Zi iVo Zo o

    = + = + = +

    II

    I00

    Solving the equations

    I

    I

    I

    d EZo Z Zd Zi

    iZd Zi Zo Z

    oi

    Zd Zi Zo Z

    =

    + +

    + + +

    =

    +

    + + +

    =

    + + +

    Zi Zo 3ZZd Zi ( )( )

    -E (Zo 3Z)Zd Zi ( )( )

    -E ZZd Zi ( )( )

    3

    3

    3

    Vd Vi E ZiZd Zi i Z

    Vo E ZiZd Zi i Z

    = =

    +

    + + +

    =

    + + +

    (Zo 3Z)(Zd Z )(Zo )

    Zo(Zd Z )(Zo )

    3

    3

    I

    I

    I

    1

    2

    32

    0

    3 3

    3 3

    =

    =

    +

    + + +

    =

    +

    + + +

    -

    -

    (Zd )(Zo 3Z)

    -

    (Zd )(Zo 3Z)

    j E Zo Z aZiZd Zi Zi

    j E Zo Z a ZiZd Zi Zi

    3.4 Three-phase fault (see Fig. 17 overleaf)

    Fig. 15

    Zone S

    Phase 1

    Phase 2

    Phase 3

    Zone D

    E

    aE

    Z

    E2a

    oid III ,,Vd, Vi, Vo

    3I 2I 1I

    V3 V2 V1

    Writing the equationsc In zone (D)V V V Z1 2 3 2 3= = = + + ( )1I I Ic In zone (S)

    I I I II I I II I I I

    1

    22

    32

    1

    22

    32

    = + +

    = + +

    = + +

    = + +

    = + +

    = + +

    d i oa d a i oa d a i o

    V Vd Vi VoV a Vd aVi VoV aVd a Vi Vo

    E

    3Z

    Vd

    Zd

    Id

    Vi

    Zi

    Ii

    VoZo

    Io

    Fig. 16

    I I2 3

    1

    2 3

    3 2

    3

    + = + + +

    =

    +

    + + +

    = =

    + + +

    - 3 (Zd )(Zo 3Z)

    ( )(Zd )(Zo 3Z)

    -

    (Zd )(Zo 3Z)

    E ZiZd Zi Zi

    V E Zi Zo ZZd Zi Zi

    V V E Z ZiZd Zi Zi

    c Network diagram based on symmetricalcomponents (see Fig. 16 )Special casesc Bolted faultIf Z = 0, the phase-to-ground fault currentassumes the value:

    I I2 33

    + =

    + + -

    ZiEZd Zi Zi Zo Zd Zo

    c Two-phase faultIf Z = , the phase fault current is then:

    I I2 3= = +=

    +- E (a -a) -jE 3

    2

    Zd Zi Zd Zi

  • Cahier Technique Schneider Electric no. 18 / p.15

    Solving the equations

    I I I

    I

    d EZd

    i o

    Vd Vi VoEZd

    = = =

    = = =

    =

    and 0

    0

    1

    Fig. 17

    Zone S

    Phase 1

    Phase 2

    Phase 3

    Zone D

    E

    aE

    Z

    E2a

    oid III ,,Vd, Vi, Vo

    3I 2I 1I

    V3 V2 V1

    3.5 Network with an unbalanced load (see Fig. 19 )

    Fig. 18

    EZd

    Id

    Zi

    Zo

    Vd = 0

    I

    I

    22

    3

    1 2 3 0

    =

    =

    = = =

    aEZd

    aEZd

    V V V

    The results are independent of the values Z, Ziand Zo.c Network diagram based on symmetricalcomponents (see Fig. 18 ).

    Writing the equationsc In zone (D)

    II I

    1- Z Z=

    = =

    0

    3 2 3 2V V c c

    c In zone (S)I I I II I I II I I I

    1

    22

    32

    1

    22

    32

    = + +

    = + +

    = + +

    = + +

    = + +

    = + +

    d i oa d a i oa d a i o

    V Vd Vi VoV a Vd aVi VoV aVd a Vi Vo

    c Continuity at the (D) - (S) boundaryII I

    I

    od i

    Vd Vi Zc d

    =

    =

    =

    0

    c Operation in (S)E Vd Zd d

    Vi Zi iVo Zo o

    = + = + = +

    II

    I00

    Fig. 19

    Zone S

    Phase 1

    Phase 2

    Phase 3

    Zone D

    Zc

    E

    aE

    E2a

    oid III ,,Vd, Vi, Vo

    3I 2I 1I

    V3 V2 V1

    Solving the equations

    I

    I

    I

    d EZd Zi Zc

    i EZd Zi Zc

    o

    =

    + +

    =

    + +

    =

    -

    0

  • Cahier Technique Schneider Electric no. 18 / p.16

    c Operation in (S)

    E Vd zd dVi zi iVo zo oV d z d dV i z i iV o z o o

    Zd zd z dZi zi z iZo zo z o

    = +

    = +

    = +

    =

    =

    =

    = +

    = +

    = +

    II

    II

    II

    00000

    Fig. 21

    Vd E Zi ZcZd Zi Zc

    Vi E ZiZd Zi Zc

    Vo

    =

    +

    + +

    =

    + +

    =

    ( )

    0

    I

    I

    I

    1

    2

    3

    1

    2

    3

    0

    3

    3

    =

    =

    + +

    =

    + +

    =

    +

    + +

    =

    + +

    =

    + +

    -

    (2 )

    (a - )

    (a - )

    2

    j EZd Zi Zc

    j EZd Zi Zc

    V E Zi ZcZd Zi Zc

    V E Zc ZiZd Zi Zc

    V E Zc ZiZd Zi Zc

    c Network diagram based on symmetricalcomponents (see Fig. 20 ).Special casesc Low-power loadIf Zc then I1 and I3 0

    Fig. 20

    E

    Vd

    ZcZd

    Id

    Vi

    Zi

    Ii

    Zo

    and V1, V2, V3 tend towards the values of thesymmetrical network, in other words towards E,a2E, aE.

    c Two-phase short-circuit clear of groundIf Zc = 0 the fault current is then equal to

    I I3 33

    = =

    +- j E

    Zd Zi

    3.6 Network with one open phase (see Fig. 21 )

    Zone D

    E Phase 1

    Phase 2

    Phase 3

    Zone S

    aE

    E2a

    3I

    2I

    1I

    V3

    V2

    V1

    V'3

    V'2

    V'1

    Writing the equationsc In zone (D)

    I12 2

    3

    =

    =

    =

    0

    3

    V VV V

    c In zone (S)I I I I

    I I I I

    I I I I

    1

    22

    32

    1

    22

    32

    1

    22

    32

    = + +

    = + +

    = + +

    = + +

    = + +

    = + +

    = + +

    = + +

    = + +

    d i o

    a d a i o

    a d a i oV Vd Vi Vo

    V a Vd aVi Vo

    V aVd a Vi VoV V d V i V o

    V a V d aV i V o

    V aV d a V i V oo

    c Continuity at the (D) - (S) boundaryI I Id i oVd V d Vi V i+ + =

    =

    0

  • Cahier Technique Schneider Electric no. 18 / p.17

    Solving the equations

    I

    I

    I

    d E Zi ZoZd Zi Zd Zo Zi Zo

    i ZoZd Zi Zd Zo Zi Zo

    oZi

    Zd Zi Zd Zo Zi Zo

    Vd E z Zi ZoZd Zi Zd Zo Zi Zo

    and V d E z dZd Zi Zd Zo Zi Zo

    Vi E Zo ziZd

    =

    +

    + +

    =

    + +

    =

    + +

    =

    + [ ] + +

    =

    + +

    =

    -E

    -E

    d ( )+ Zi Zo

    (Zi+ Zo)

    ZiZi Zd Zo Zi Zo

    and V i E Zo zZd Zi Zd Zo Zi Zo

    Vo E Zi zoZd Zi Zd Zo Zi Zo

    and V o E Zi zZd Zi Zd Zo Zi Zo

    E Zi ZoZd Zi Zd Zo Zi Zo

    E

    + +

    =

    + +

    =

    + +

    =

    + +

    =

    =

    + +

    =

    I

    I

    I

    -

    i

    -

    o

    (a - )- j

    21

    2

    3

    0

    1 3

    ZiZi ZoZd Zi Zd Zo Zi Zo

    V E z Zi ZoZd Zi Zd Zo Zi Zo

    and V E z z zZd Zi Zd Zo Zi Zo

    (a - )+ j

    d ( )+ Zi Zo+ zi Zo+ Zi zo

    d (Zi+ Zo)- Zo i- Zi o

    2 1 3

    1

    1

    + +

    = +

    + +

    =

    + +

    V V E z Zi Zo a Zo zi Zi zoZd Zi Zd Zo Zi Zo3 3

    = = + [ ]+ +

    + +

    a d ( )+ Zi Zo 2

    c Network diagram based on symmetricalcomponents (see Fig. 22 ).Special casesc If the load is isolated, the zero-sequenceimpedance of the system is very high.The current in the non-open phases is:

    I I2 33

    = =

    +- - jE

    Zd Zi

    The voltage in the open phase is:

    V V E ZiZd Zi1 1

    3- =+

    Fig. 22

    E

    Vd Vd

    zd

    zi

    zo zo

    zi

    zdId

    Vi Vi

    Ii

    Vo Vo

    Io

    3.7 Impedances associated with symmetrical componentsIn this section we consider the main elementswhich can be involved in an electrical network.For rotating machines and transformers, theorders of magnitude of the impedances areshown as percentages:

    z % =

    100 2 Z

    SU

    n

    n

    where:Un = rated voltage,Sn = rated apparent power,Z = cyclic impedance.Synchronous machinesGenerators generate the positive-sequencecomponent of the power. Faults produce the

    negative-sequence and zero-sequencecomponents, which move from the location ofthe fault towards the balanced elements,gradually weakening as they do so.c When disturbance occurs, the positive-sequence reactance of a machine varies from itssubtransient value to its synchronous value. In afault calculation, the following percentage valuescan be used:

    Reactance % Salient poles Constant air gapSubtransient 30 20Transient 40 25Synchronous 120 200

    ie

    V V E Zi ZoZd Zi Zd Zo Zi Zo

    V V E z Zi Zo aZo zi Zi zoZd Zi Zd Zo Zi Zo

    .

    1 1

    2 2

    3-

    a d ( )+ Zi Zo2 =

    + +

    = = + [ ]+ +

    + +

  • Cahier Technique Schneider Electric no. 18 / p.18

    c The negative-sequence reactance is less thanthe transient positive-sequence reactance, ataround 20%.

    c The zero-sequence reactance is only takeninto account if the neutral of the alternator isconnected to ground directly or via a coil/resistor.Its value is around half that of the subtransientreactance, at around 10%.

    Asynchronous machinesIn motors the positive-sequence componentgenerates rotating fields in the positive direction(useful torque).The negative-sequence component producesrotating fields which generate braking torques.c The positive-sequence reactance cangenerally be considered as a passiveimpedance: U2 / (P- jQ).c The negative-sequence reactance variesbetween 15% and 30%.

    It is approximately equal to the startingreactance.c The zero-sequence reactance is very low.

    TransformersThe circulation of a zero-sequence current in thewindings of a transformer requires a connectionwhose neutral point is connected to ground or toa neutral conductor.c In positive-sequence and negative-sequencesystems they give currents an impedance equalto their short-circuit impedance of around 4% to15%.c The zero-sequence reactance depends on theway in which the windings are connected and onthe nature of the magnetic circuit.The table in Figure 23 sets out the orders ofmagnitude of this reactance and shows variouspossible connections. A table in the Appendixshows the value or the method of calculating Xofor each connection mode.

    Transformer Zero-sequence(seen from secondary) reactanceNo neutral Yyn or Zyn Free flux

    Forced flux 10 to 15 XdDyn or YNyn XdPrimary zn 0.1 to 0.2 Xd

    Fig. 23

    A connection is designated by a set of twosymbols:c The first (upper-case) is assigned to the highestvoltage.c The second (lower-case) is assigned to thelowest voltage.The designation also includes the phase anglevalue (vector group). For economic reasons and toobtain an adequate tolerance of the load unbalancebetween phases, the usual connections in HV/LVdistribution are as follows:c Yzn 11 for 50 kVA,c Dyn 11 from 100 to 3150 kVA. Where:D : Delta connection in HVd : Delta connection in LVY : Star connection in HVy : Star connection in LVZ : Zigzag connection in HVz : Zigzag connection in LVN : External neutral in HVn : External neutral in LV11: Vector group defining the phase anglebetween HV and LV.Zigzag connections are only used on the

    secondary side of distribution transformers.

    A

    BC

    A

    BC

    A

    BC

    Star connection(symbol )

    Delta connection(symbol )

    Zig-zag connection (symbol Z)

  • Cahier Technique Schneider Electric no. 18 / p.19

    Overhead linesLet us consider transposed lines:c The positive-sequence or negative-sequenceimpedance and capacity depend on thegeometry of the line.c The zero-sequence impedance is roughlythree times the positive-sequence impedance.The zero-sequence capacity is around 0.6 timesthe positive-sequence capacity.

    Cablesc The positive-sequence and negative-sequencereactance and capacity depend on the geometryof the cables.c The zero-sequence characteristics of a cablecannot easily be deduced from the positive-sequence and negative-sequencecharacteristics. They are generally negligible incomparison with those of the transformers theyare supplying.

    3.8 Summary formulaeNotationc rms phase-to-phase voltage = Uc rms phase-to-neutral voltage V = U/ec Short-circuit current in module = Iscc Ground fault current in module = Iground

    c Symmetrical impedances = Zd, Zi, Zoc Short-circuit impedance = Zcc Ground impedance = ZThe table below summarizes the currents in themodule in various asymmetries.

    Type of asymmetry Impedance asymmetry Solid asymmetry(Z = 0 and/or Zc = 0)

    Single-phase Isc

    =

    + + +=

    + +

    UZd Zi Zo Z

    VZd Zi Zo

    33

    3 Is

    cU

    Zd Zi ZoV

    Zd Zi Zo=

    + +=

    + +

    3 3short-circuit

    Two-phase short- IgroundU Zi

    Zd x Zi Zi Z=

    + +

    33

    (Zd )(Zo ) IgroundU Zi

    Zd x Zi Zi x Zo Zd x Zo=

    + +

    3

    circuit to ground (Zc = 0)

    Two-phase short-Isc

    =

    + +=

    + +

    UZd Zi Zc

    VZd Zi Zo

    3 Is

    cU

    Zd ZiV

    Zd Zi=

    +=

    +

    3circuit clear of ground(Z = )

    Three-phase short-circuit Is

    cU

    Zd ZcV

    Zd Zc=

    +=

    +3Is

    cU

    ZdVZd

    = =

    3(any Z)

    Cable LV MV HVRd = Ri /km 0.12 to 0.16 0.08 to 0.16 0.02 to 0.05Xd = Xi /km 0.06 to 0.10 0.08 to 0.12 0.1 to 0.2Cd = Ci F/km 1 0.1 to 0.6 0.2

    mS/km 0.3 0.03 to 0.2 0.07Ro /km 1 0.1Xo /km 0.12 to 0.2 0.16Co F/km 2 0.1 to 0.6 0.1 to 0.6

    mS/km 0.6 0.03 to 0.2 0.03 to 0.2

    Line LV MV HVRd = Ri /km 0.3 0.7 0.02 to 0.12Xd = Xi /km 0.3 0.4 0.2 to 0.4Cd = Ci nF/km 10 9 to 13

    S/km 3.3 3 to 4Ro /km 0.25Xo /km 1.8 0.75 to 1.5Co nF/km 5 4.5 to 9

    S/km 1.5 to 3

  • Cahier Technique Schneider Electric no. 18 / p.20

    4 Worked examples

    4.1 Breaking capacity of a circuit-breaker at the supply end (see Fig. 24 )

    ProblemWhat should be the breaking power of thecircuit-breaker?

    SolutionWhen the circuit-breaker is tripped, the aperiodiccomponent is switched off inside the network butnot inside the windings of the alternator.c Impedancesv of the alternator reduced to the secondarytransformer:

    Positive - sequence . Za j= =35100

    362500

    0 182

    Negative - sequence . Za j= =25100

    362500

    0 132

    Zero-sequence Za = disregardedv of the transformer reduced to the secondarytransformer:

    Positive - sequence . 4 Zt j= =8100

    36100

    1 02

    Negative-sequence Zt = j1.04 Zero-sequence Zt = j1.04

    Fig. 24

    v Total impedances:Positive-sequence Z = j1.22 Negative-sequence Z = j1.17 Zero-sequence Zt = j1.04 c Short-circuit currentsv Three-phase

    Is Zd 1.22

    kAc

    U

    = = =3

    363 17

    v Single-phase

    Is Zd

    1.22 1.17 1.0 kA

    cU

    Zi Zo=

    + +

    =

    + +=

    3

    36 3 18

    v Two-phase clear of ground

    Is Zd 1.22 1.17

    kAc UZi

    =

    +=

    +=

    36 15

    v Two-phase-to-ground

    Is Zo-a Zi Zd Zi Zo

    1.9153.91

    17.6 kA

    cU

    Zi Zo Zd=

    + +

    =

    =

    36

    c The circuit-breaker must therefore break ashort-circuit current of 18 kA, giving a breakingcapacity of:18 x 36 e = 1122 MVA

  • Cahier Technique Schneider Electric no. 18 / p.21

    4.2 Breaking capacity of circuit-breakers at the ends of a line (see Fig. 25 )For a 60 kV line, the reactance is:c 0.40 /km in a positive-sequence or negative-sequence state,c 3 0.40 /km in a zero-sequence state.The power station units have a positive-sequenceor negative-sequence reactance of 25%.The active power loads P have an estimatedequivalent reactance of j 0.6U2/P.

    ProblemIn a 60 kV network, determine the breakingcapacity of the circuit-breakers at substations Cand E supplying the 15 km line.The short-circuit reactance of the power stationunit and network transformers is 10% and that ofthe other transformers is 8%.

    40 MVA

    40 MVA

    A

    40 km 60 km

    15 MVA

    10 MWB

    10 MW

    C

    15 MVA

    40 km 50 km

    D

    12 MVA8 MW

    20 MVA

    20 MVA

    50 MVA

    1500 MVA

    150 kV network

    30 MW

    40 MVA

    20 MVA 14 MW15 km

    E

    Fig. 25

  • Cahier Technique Schneider Electric no. 18 / p.22

    Fig. 26

    Solutionc Global positive-sequence or negative-sequencediagram (reduction to 60 kV) (see Fig. 26 )

    a j j

    b j j

    = = =

    = = =

    UPsc

    22.5

    Usc UPsc

    9

    2

    2

    25100

    6040

    25100

    10100

    60400

    2

    2

    C1 = j 0.40 60 = j 24 C2 = j 0.40 50 = j 20 C3 = j 0.40 40 = j 16 C4 = j 0.40 40 = j 16

    d j j

    e j j

    f j j

    g j j

    = = =

    = = =

    = = =

    = = =

    Usc UPsc

    19.2

    UP

    0.6 0.6 216

    Usc UPsc

    24

    UP

    0.6 0.6 270

    2

    2

    2

    2

    8100

    6015

    60108

    1006012

    608

    2

    2

    2

    2

    h j j

    i j j

    j j j

    k j j

    l j j

    m j

    = = =

    = = =

    = = =

    = = =

    = = =

    =

    Usc UPsc

    19.2

    UP

    0.6 0.6 216

    Usc UPsc

    18

    UPsc

    2 2 45

    Usc UPsc

    7.2

    UP

    0,6

    2

    2

    2

    2

    2

    2

    8100

    6015

    601010100

    6020

    5100

    6020

    5100

    8100

    6040

    2

    2

    2

    2

    2

    == =

    = = =

    = = =

    = =

    = = =

    = = =

    6030

    10100

    6050

    601500

    8100

    6020

    6014

    2

    2

    2

    2

    2

    0.6 72

    Usc UPsc

    7.2

    UPsc

    2.4

    0.4 15 2.4

    Usc UPsc

    14.4

    UP

    0.6 0.6 154

    2

    2

    2

    2

    j

    n j j

    o j jp j j

    q j j

    r j j

  • Cahier Technique Schneider Electric no. 18 / p.23

    c Global zero-sequence diagram (reduction to60 kV) (see Fig. 27 )The substation transformers stop zero-sequencecurrents in the delta windings.b = b = j 9 c1 = 3c1 = j 72 c2 = 3c2 = j 60 c3 = 3c3 = j 48 c4 = 3c4 = j 48 d = f = h = j = j = j 18 l = n = n = j 7,2 p = 3p = j 18 q = c Reduced diagramsFor the study with which we are concerned, wecan reduce the diagrams to focus on C and Eonly (see Fig. 28 ).

    c Dimensioning of the line circuit-breaker at CCase 1: Busbar fault (see Fig. 29 )Zd = j 6 + j 168.4 = j 174.4 Zo = v Three-phase Isc is equal to:

    U Zd

    0.195 kA3

    60174 4 3

    = =

    .

    so Psc = UI e = 20.7 MVAv Single-phase Isc is equal to:

    UZi Zo

    Zd 3 0

    + +=

    so Psc = 0Case 2: Line fault (see Fig. 30 overleaf)Zd = j 6.45 Zo = j 6.09 v Three-phase Isc is equal to:

    U Zd .45

    5.37 kA3

    606 3

    = =

    so Psc = UI e = 558.1 MVA

    Fig. 27

    j168.4 j6 C E

    j6.45

    Positive-sequence/negative-sequence diagram

    j18 C E

    j6.09

    Zero-sequence diagram

    Fig. 28

    j168.4 j6 C EPositive-sequence diagram

    j18 C E

    Zero-sequence diagram

    Fig. 29

  • Cahier Technique Schneider Electric no. 18 / p.24

    v Single-phase Isc is equal to:U

    Zi Zo

    Zd

    18.995.47 kA3 60 3

    + += =

    so Psc = UI e = 568.7 MVAThe line circuit-breaker at point C must thereforebe dimensioned to 570 MVA.c Dimensioning of the line circuit-breaker at ECase 1: Busbar fault (see Fig. 31 )Zd = j 6 + j 6.45 = j12.45 Zo = j 18 + j 6.09 = j 24.09 v Three-phase Isc is equal to:

    U Zd 12.45

    2.782 kA3

    603

    = =

    so Psc = UI e = 289.2 MVAv Single-phase Isc is equal to:

    UZi Zo

    Zd

    48.992.121 kA3 60 3

    + += =

    so Psc = UI e = 220.5 MVACase 2: Line fault (see Fig. 32 )Zd = j168.4 Zo =

    C

    j6.45

    Positive-sequence diagram

    line open

    C

    j6.09

    Zero-sequence diagram

    line open

    Fig. 30 Fig. 31

    j6 C E

    j6.45

    Positive-sequence diagram

    j18 C E

    j6.09

    Zero-sequence diagram

    E

    Zero-sequence diagram

    Fig. 32

    v Three-phase Isc is equal to:U

    Zd 168.4 0.206 kA

    360

    3= =

    so Psc = UI e = 21.4 MVAv Single-phase Isc is equal to:

    UZi Zo

    Zd 3 0

    + +=

    so Psc = 0The line circuit-breaker at point E must thereforebe dimensioned to 290 MVA.

    4.3 Settings for zero-sequence protection devices in a grounded neutral MV network(see Fig. 33 overleaf)

    ProblemWhat should the intensity setting be for the zero-sequence relays on the various feeders?SolutionWe start from the formulae in the section onphase-to-ground faults; in addition, we note thatthe ground impedance Rn is equivalent to three

    impedances of value 3Rn, each placed on onephase of the network connected directly toground. The zero-sequence current at the pointof the ground fault splits into two parallelchannels:c The first corresponds to the neutral impedance3Rn in series with the zero-sequence impedance

    j168,4 EPositive-sequence diagram

  • Cahier Technique Schneider Electric no. 18 / p.25

    Fig. 33

    of the transformer and of the section ofconductor between the fault and the transformer.ie. 3Rn + ZOT + ZOL.c The second corresponds to the parallelconnection of the conductor capacitive circuits:

    -jC oi

    1

    n

    Strictly speaking, we should take the transformerand line impedances into account. They are,however, negligible in comparison with thecapacitive impedances.Ground fault current I1 (see 3.2):

    I

    I

    1

    1

    33

    3

    3

    1 3

    3 3

    =

    + + +

    = + +( )

    =

    + +

    + + +( )

    =

    + +( )

    EZd Zi Zo Z

    Rn Z Z

    Zo Rn Z Z

    j Rn Z Z

    E Rn Z Z

    OT OL

    OT OL

    OT OL

    OT OL

    where:Zoin parallel with

    -jC

    so

    C

    By substitution:

    1+ j C

    oi1

    n

    oi1

    n

    oi1

    n

    ( ) + + +( )

    + + +( )Zd+ Zi+3Z C oi1

    n

    1 3 3 3j Rn Z Z Rn Z ZOT OL OT OL

    If, as is often the case, Zd, Zi, ZOT, ZOL arenegligible in comparison with 3Rn and the fault isbolted (Z = 0) then:

    I1 3 +

    ERn

    j EC oi1

    n

    The contribution of each healthy feeder to theground current is therefore 3 Coi E (in module).The setting for the zero-sequence relay for eachof these feeders must therefore be greater thanthis capacitive current, to prevent unintentionaltripping. This current depends on the type andlength of the conductors.For example:v For a 15 kV line the zero-sequence capacity isaround 5 nF/km, giving a current of:3 x 5 x 10-9 . 314 x 15000/e = 0.04 A/km or 4 Aper 100 km.

    v For a 15 kV three-core cable the zero-sequence capacity is around 200 nF/km, giving acurrent of:3 x 200 . 10-9 x 314 x 15000/e =1.63 A/km oralmost 2 A per km.v It is worth comparing these capacitive currentvalues with those for the current crossing theneutral impedance, which currently amount toseveral tens to several hundreds of amps.

    Numerical application and graphicalrepresentation (see Fig. 34 overleaf)Consider a bolted fault on a 5500 V - 50 Hzimpedant neutral power system, where:Rn = 100 Co = 1 FZ = Zd = Zi = ZOT = ZOL = 0

    n

    iHV / MV

    Rn

    2

    1

    Z fault

    Con

    C 2o

    C 1o1I

  • Cahier Technique Schneider Electric no. 18 / p.26

    Fig. 34

    E

    Rnj

    = =

    =

    +

    55003

    3175

    31

    V

    Zo3Rn C o

    I

    I I

    16

    1

    2

    3

    3175100

    3 3175 10 314

    00

    32

    32

    = +

    +

    = =

    =

    = = +

    = ( ) = +

    j

    V

    V j j

    V j

    -

    2 3

    (32 j3) amps

    a E 3 -3175 1.5 volts

    E a -1 -3175 -1.5 volts

    4.4 Settings for a protection device with a negative-sequence current in an electricalinstallation

    ProblemWhat should be the setting for the protectiondevice with a negative-sequence current(ANSI 46) on an electrical switchboard supplyingPassive Loads and Motors (see Fig. 35 ) when aphase is opened?

    SolutionLet us start from the simplified formulae insection 3.6 (Network with one open phase), withungrounded loads and hence a high zero-sequence impedance.In addition, the network impedances aredisregarded because they are lower than theload impedances.

    Zd Zi Z= = loadso

    .

    .

    I I

    I I

    I I I I

    2 3 2

    32

    0 87

    20 50

    = =

    =

    = = =

    UZ

    d i

    load

    load load

    loadload

    c Motors caseConsider as motor characteristic data theimpedance Zmot with a rated current Zmot and astarting current Istart such that:Istart = k ImotImot = U / e ZmotWhere for a standard motor k 5.v In normal operation or no-load operation, theslip is low, Zd = Zmot and Zi = Zstart = Zmot / kso

    I I I2 3 3 1= =

    +( ) = +( )U

    Zd Zik

    kmot

    as k 5 then:

    .

    .

    I I I

    I I I I

    1 2 1 44

    10 83

    =

    = = +( )

    mot

    mot motd ik

    kv During load increase, the slip is high,Zd = Zi = Zstart = Zmot / kso

    I I I1 2 3 2= =

    +( ) = U

    Zd Zik

    mot

    (5500 V) (3175 V)

    (3175 V)

    (3175 V)

    (3175 V)(5500 V)

    V3 E3

    V2 E2

    E1

    VoVd120

    120

    120120

    Fig. 35

    M PL

    Protection device

    c Passive loads caseConsider as characteristic data the impedanceload Zload with a rated current Iload such that:

    I

    loadload

    =

    UZ3

  • Cahier Technique Schneider Electric no. 18 / p.27

    Fig. 36

    as k 5 then: .

    .

    I I I

    I I I I

    1 2 4 33

    22 5

    =

    = =

    mot

    mot motd ik

    c Settings for the protection device relayThe setting for the incoming circuit-breaker musttake the following constraints into consideration:v Ithreshold > Iimax (maximum negative-sequencecurrent in normal operation)v Ithreshold < Iimin (minimum negative-sequencecurrent on faulty feeder, ie. with an open phase)

    Assuming a supply voltage unbalance of lessthan 2% (Vimax = 0.02 V), the value of theminimum negative-sequence current in normaloperation is:v For a passive load:Iimax = 0.02 Iloadv For a motor:Iimax = Vimax / Zimin = Vimax / Zstart = 0.02 k ImotWhere k 5, Iimax 0.1 ImotThe table below shows the threshold settinglimits for the line protection devices.

    4.5 Measuring the symmetrical components of a voltage and current systemVoltage systemc The zero-sequence component is measuredusing three voltage transformers (VT), theprimary windings connected between phase andneutral and the secondary windings connected inseries to supply a voltmeter (see Fig. 36 ).V = 3 Vo k where k = transformation ratio.c The positive-sequence component is measuredusing two voltage transformers installed betweenV1 and V2 and between V2 and V3 (see Fig. 37 ).

    Protection device Individual passive Individual Electrical switchboardsetting load motor for motors + passive loadsIthreshold greater than ... 0.02 Iload 0.1 Imotor Inegative-sequence in normal operation

    = 0.1 Imotor + 0.02 IloadIthreshold less than ... 0.5 Iload 0.83 Imotor 0.5 Iload for the smallest load or

    0.83 Imot for the smallest motor

    The first voltage transformer is loaded by aresistor R. The second voltage transformer isloaded by an inductance and by a resistancesuch that:Z R

    j= =-a R e2

    3

    Z comprises a resistance R2

    and a reactance

    R 32

    in series.

    Fig. 37

    V

    Voltage transformer ratio k

    kVkVkV kVo3V321 ==++

    V3

    V3

    V2

    V2

    V1

    V1

    kV3 kV2 kV1

  • Cahier Technique Schneider Electric no. 18 / p.28

    The two circuits are connected in parallel to anammeter which measures a current proportionalto:

    V V V a a V

    V aV a V Vd

    1 2 12 2

    3

    1 22

    3

    1

    3

    - V -a - V - V22

    3 2( ) + ( )[ ] = +( ) += + + =

    c The negative-sequence component ismeasured in the same way as the positive-sequence component but by inverting terminals2 and 3.

    V V V a V a

    V a V aV Vi

    1 3 12

    22

    12

    2 3

    1

    3

    - V -a - V - V32

    2 3( ) + ( )[ ] = + +( )= + + =

    Current systemc The positive-sequence component ismeasured using three current transformers (CT)installed as shown in Figure 38 .Auxiliary transformer T2 supplies a currentproportional to (I3-I2) across R.Auxiliary transformer T1 supplies a currentproportional to (I1-I3) across Z, which is equal to-a2 R.The voltage at the terminals of the voltmeter isproportional to:

    I I I I I I I I

    I I I I

    3 1 3 1 3

    1 2 323

    - - -a - -a a

    -a a a

    2 32

    22 2

    2 2

    ( ) + ( )( ) = += + +( ) = a d

    c The negative-sequence component is alsomeasured using three current transformers, butinstalled as shown in Figure 39 . Identicalreasoning to that for the previous case showsthat the voltage at the terminals of the voltmeteris proportional to

    I I I I I I I

    I I I I

    1 3 12

    32

    1 2 3

    1

    3

    - - -a -

    a a

    3 22

    2

    2

    ( ) + ( )( ) = + +( )= + + =

    a a

    i

    c The zero-sequence component is equal toone-third of the neutral current flowing directlyinto the ground connection (distributed neutral).Three current transformers connected in parallelcan be used to measure the component atammeter A:I1 + I2 + I3 = Ih (see Fig. 40 ).A toroidal transformer surrounding all the activeconductors can also be used to measure it bythe vector sum of the phase currents.

    Fig. 38

    Fig. 39

    Fig. 40

    V

    RZ

    R/2

    V3

    T2T1

    V2

    V1

    3I

    2I1I

    31 II - 23 II -

    3/2R

    RZ

    VR/2

    T2T1

    V3

    V2

    V1

    3I

    2I1I

    31 II - 23 II -

    3/2R

    1

    2

    3

    A

    3I

    2I1I

  • Cahier Technique Schneider Electric no. 18 / p.29

    12

    1 2

    1 2

    2

    1

    1

    1 2

    2

    2

    1 2

    21

    1

    12

    1 2

    1 2

    1 x11 2

    1 2

    1 2

    1 2

    x12

    1 2

    x22

    1 2

    1 x11 2

    1 2Note:Fr.L.: Free fluxF.F.: Forced flux

    Appendix: Zero-sequence reactance of transformers

    Group Equivalent single-line diagram Value of the zero-sequence reactanceof the transformer, seen from the

    Primary Secondary primary secondarywinding winding terminals 1 terminals 2

    Infinite Infinite

    Infinite Infinite

    Fr. L.: infinite Fr. L.: infinite

    F. F.: F. F.: infiniteX11 = 10 to15 times Xsc

    X12 = Xsc X12 = Xsc

    Infinite Infinite

    X12 = Xsc Infinite

    Infinite Infinite

    Infinite X22 = 1% of Sn

    F. L.: infinite F. L.: infinite

    F. F. : F. F.: infiniteX11 = 10 to15 times Xsc

  • Cahier Technique Schneider Electric no. 18 / p.30

    Group Equivalent single-line Value of the zero-sequence reactancediagram of the transformer, seen from the

    Primary Secondary Tertiary primary secondary tertiaryterminals 1 terminals 2 terminals 3

    Infinite X22 = 1% of Xn

    Fr. L. : infinite Fr. L.:X22 = 1% of Xn

    F. F.:X11 = 10 to F. F.:15 times Xsc X22 = 1% of Xn

    Infinite Infinite

    Fr. L.: infinite Infinite Infinite

    F. F.:X11 = 10 to15 times Xsc

    Infinite Infinite

    Infinite

    X1 + X2 = X12 Infinite X33 = 1% of Xn

    1

    1

    2

    21

    2

    1

    1

    1

    1

    1

    2 3

    2 3

    2 3

    2

    2

    3

    3

    x22

    1 2

    1x11 x22

    2

    1 2

    x22

    1 2

    x11

    12

    3

    x1

    x2

    x3

    x01

    x02

    x03

    1

    2

    3

    x1

    x2

    x3

    1

    2

    3

    x3 x033

    x1x01

    x2

    1

    2

    x33 3

    x1

    x2

    1

    2

    XX X X XX X X X1

    2 02 3 03

    2 02 3 03+

    +( ) +( )+ + +

    XX X X XX X X X3

    1 01 2 02

    1 01 2 02+

    +( ) +( )+ + +

    XX X X XX X X X2

    1 01 3 03

    1 01 3 03+

    +( ) +( )+ + +

    X X XX X1

    2 3

    2 3+

    +

    XX X XX X X1

    2 3 03

    2 3 03+

    +( )+ +

    XX X XX X X3

    2 1 01

    1 2 01+

    +( )+ +

    Note:Fr.L.: Free fluxF.F.: Forced flux

  • 20

    05 S

    chne

    ider

    Elec

    tr ic

    10-05

    Schneider Electric Direction Scientifique et Technique,Service Communication TechniqueF-38050 Grenoble cedex 9E-mail : [email protected]

    DTP: Axess Valence.Transl.: Lloyd International - Tarportey - Cheshire - GBEditor: Schneider Electric

    Lien Web: