Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current...

29
1 Analysis of Nanopar.cle Delivery to Tumours S. Wilhelm, A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, W. C. W. Chan. Nature Reviews Materials, 2016, 1, 1. Presented by Alexander ChaJerley 21st of May 2016 Alex Chatterley @ Wipf Group Page 1 of 29 6/19/2016

Transcript of Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current...

Page 1: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

1  

Analysis  of  Nanopar.cle  Delivery  to  Tumours  

 S.  Wilhelm,  A.  J.  Tavares,  Q.  Dai,  S.  Ohta,  J.  Audet,  H.  F.  Dvorak,  W.  C.  W.  Chan.  

 Nature  Reviews  Materials,  2016,  1,  1.    

 Presented  by  Alexander  ChaJerley  

 21st  of  May  2016  

Alex Chatterley @ Wipf Group Page 1 of 29 6/19/2016

Page 2: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

2  

What  are  Nanopar.cles?    •  Defined  as  a  parNcle  that  has  a  size  between  1-­‐100  nM.  •  Have   been   used   unknowingly   throughout   human   history.     First  

instance  being  reinforcement  of  clay  with  asbestos  more  than  4500  years  ago.    

•  More  recently  they  have  been  used  to  colour  glass  by  the  romans  in   the  4th  century  and  decorate  glaze  ceramics   in  Mesopotamia   in  the  9th  century.  

Materials  Today.  2013,  16,  7,  262.  

Alex Chatterley @ Wipf Group Page 2 of 29 6/19/2016

Page 3: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

3  

What  are  Nanopar.cles?    •  One   of   the   first  major   reports   on   nanoparNcles  was   by  Michael  

Faraday  in    “Experimental    RelaNons  of  Gold  (and  other  Metals)  to  Light”.    

•  Prepared  a  two  phase  soluNon  of  Na[AuCl4]aq  and  phosphorus   in  CS2.  Observed  a   colour   change   from  bright   yellow   to   ruby   red  –  consistent  with  colloidal  gold.  

 Philos.  Trans.  R  Soc.  Lond.,  147  (1857),  145.  

Alex Chatterley @ Wipf Group Page 3 of 29 6/19/2016

Page 4: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

4  

Synthesis  of  Nanopar.cles    •  NanoparNcles  come  in  many  forms,  popular  materials  include:  

•  Silica  •  Metal  oxides  •  Quantum  dots.  •  Organic  polymers  and  dendrimers.  

•  Silica  nanoparNcles  are  formed  by  the  hydrolyNc  condensaNon  of  tetraorthosilicate  to  form  parNcles  with  a  controlled  size  and  pore  diameters.  

•  Organic  nanoparNcles  are  formed  by  emulsion  methods.  

 Alex Chatterley @ Wipf Group Page 4 of 29 6/19/2016

Page 5: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

5  

Synthesis  of  Nanopar.cles  

Alex Chatterley @ Wipf Group Page 5 of 29 6/19/2016

Page 6: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

6  

Drug  Delivery    •  Targeted  drug  delivery  first  envision  by  Dr  Paul  Ehrlich  afer  

visiNng    Maria  von  Webers  opera  “Der  Freischütz”.  •  Opera’s  antagonist  was  the  “Freikugeln”  who  always  hit  their  

target.  •  Envisioned  a  “Zauberkugeln”  or  magic  bullet  that  would  

always  hit  its  target  within  the  body.  

•  Another  early  pioneer  was  Professor  Peter  Paul  Speiser  at  ETH  Zurich.  •  Was  able  to  encapsulate  proteins  and  viruses  in  nanospheres  

generated  from  organic  molecules  using  polymerisaNon.  

 

InternaNonal  Journal  of  PharmaceuNcs,  2007,  331,  1.  

Alex Chatterley @ Wipf Group Page 6 of 29 6/19/2016

Page 7: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

7  

Drug  delivery  and  Cancer    •  Problem:  Majority  of  cytotoxic  chemotherapeu.cs  effect  both  

healthy  and  malignant  .ssues  within  the  body.  

•  SoluNon:  Deliver  chemotherapeuNcs  directly  to  malignant  Nssues  using  a  smart  delivery  system  (magic  bullet).  

•  How?  AJach  chemotherapeuNcs  to  nanoparNcles  that  can  release  payload  under  certain  condiNons.  •  pH  •  EnzymaNc  catalysis  •  IrradiaNon  

     

Pharmacol  Rep.  2012  64(5)  1020.  

Alex Chatterley @ Wipf Group Page 7 of 29 6/19/2016

Page 8: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

8  

This  publica.on.    •  This  paper  examines  the  literature  concerning  nanoparNcle  

delivery  from  the  past  10  years.  

•  It  discusses  the  advances  in  targeted  delivery  (or  lack  thereof).  

•  Discusses  ways  of  enhancing  target  selecNvity.  

•  Proposes  a  thirty  year  plan  to  enhance  research.  

Alex Chatterley @ Wipf Group Page 8 of 29 6/19/2016

Page 9: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

9  

Methodology    •  Authors  examined  the  literature  using  the  following  criteria.  

•  Arrived  a  117  publicaNons  suitable  for  examinaNon  in  this  arNcle.  •  Found  that,  on  average,  0.7%  of  injected  dose  (ID)  reached  the  

tumour.  

   

 

Alex Chatterley @ Wipf Group Page 9 of 29 6/19/2016

Page 10: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

10  

Data  trends    

     •  This  average  has  not  significantly  changed  in  the  past  ten  years.  

•  Inorganic  materials  provide  a  higher  delivery  efficiency  than  organic  (0.8%  vs    

0.6%  ID).      

   

 

Alex Chatterley @ Wipf Group Page 10 of 29 6/19/2016

Page 11: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

Data  trends                

 •  ParNcles  between  10-­‐100  nM  performed  beJer  than  larger  parNcles  (0.7%  vs  

0.6%  ID).  

•  Neutral  parNcles  tended  to  have  a  beJer  efficiency  than  negaNve  or  posiNve    ones  (0.7%,  0.6%  and  0.5%  ID  respecNvely).  

•  Rod  shaped  parNcles  performed  the  best  when  compared  to  spheres,  flakes  and  other  shapes.  (1.1%,  0.7%,  0.6%  and  0.9%  ID  respecNvely).  

 

         

 

   

11  

Alex Chatterley @ Wipf Group Page 11 of 29 6/19/2016

Page 12: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

12  

Data  trends      

•  AcNve  targeNng  methods  performed  outperformed  passive  targeNng  methods  (0.9%  vs  0.6%  ID).  

•  Orthotopic  allo-­‐  and  xenografs    performed  beJer  than  other  methods.  

•  Higher  levels  of  efficiency  shown  against  cervical,  ovarian,  pancreaNc  and  skin  cancers.  

Alex Chatterley @ Wipf Group Page 12 of 29 6/19/2016

Page 13: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

13  

Consequences  of  low  delivery  efficiency      •  EvaluaNon  for  human  dose  for  both  an  drug  encapsulated  in  a  nanoparNcle  

and  loaded  onto  the  surface.  

•  AssumpNons:  •  60  nM  diameter.  •  Drug  has  a  MW  of  500  g/mol-­‐1  •  IC50  1μM  •  1%  delivery  efficiency  •  Tumor  volume:  0.5  cm3  of  a  20g  mouse.  

•  EncapsulaNon:  20%  wt  of  drug  encapsulated  •  1.2  x  1012  nanoparNcles  or  6.5  mg  kg-­‐1  

•  Surface  loading:  1  drug/nm2    •  2.8  x  1012  or  15.7  mg  kg-­‐1  

Alex Chatterley @ Wipf Group Page 13 of 29 6/19/2016

Page 14: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

14  

Consequences  of  low  delivery  efficiency  cont.      

Applying  this  to  an  average  human  using  a  body  surface-­‐area  based  dosing  strategy:      •  EncapsulaNon:  20%  wt  of  drug  encapsulated  

•  InjecNon  volume  of  90  mL  

•  Surface  loading:  1  drug/nm2    •  InjecNon  volume  of  213  mL  •  Assuming  nanoparNcle  concentraNon  of  5  nM.  

•  This  causes  serious  problems  •  Problems  synthesising  that  amount  of  nanoparNcles.  •  ProhibiNve  cost.  •  Technical  difficulNes  due  to  injecNon  volume  –  higher  concentraNons  can  

impact  parNcle  stability.  •  Large  quanNty  of  nanoparNcles  may  result  in  toxicity.  •  Possible  that  higher  volumes  than  calculated  will  be  required  as    

nanoparNcles  may  interact  with  other  components  in  tumour  matrix.  

Alex Chatterley @ Wipf Group Page 14 of 29 6/19/2016

Page 15: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

15  

The  Solu.on!    The  authors  propose  a  soluNon  to  all  of  these  concerns  –  raising  the  average  ID  efficiency  from  1%  to  10%.      How  to  do  this?    •  A  greater  focus  on  targeted  delivery  by  elucidaNng  tumour  targeNng  

mechanisms.  

•  Increase  mechanisms  to  evade  nanoparNcle  clearance.  

•  Implement  a  30  year  development  plan.  

Alex Chatterley @ Wipf Group Page 15 of 29 6/19/2016

Page 16: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

16  

Nanopar.cle  Extravasa.on  

Alex Chatterley @ Wipf Group Page 16 of 29 6/19/2016

Page 17: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

17  

Nanopar.cle  Extravasa.on      •  NanoparNcles  are  most  likely  to  enter  a  tumour  through  the  mother  vessels  via  

either  intercellular  extravasaNon  or  transcellular  extravasaNon.  

•  Mother  vessels  leak  both  plasma  and  proteins  into  the  tumour  through  intercellular  gaps.    

•  This  results  in  a  very  low  blood  flow,  allowing  nanoparNcles  to  cross  over  due  to  prolong  residence  Nme  by  seeping  through  the  gaps.  

•  Other   transport   mechanisms  exist   such   as   acNve   transport  through   cells.   If   one   could  t a r g e t   t h e   t r a n s p o r t  transcellular   mechanisms,   it  would   allow   targeted   delivery  to   the   tumour.   This   represents  an   aJracNve   ta rget   fo r  i n c rea s i ng   t he   de l i ve r y  efficiency.  

Alex Chatterley @ Wipf Group Page 17 of 29 6/19/2016

Page 18: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

18  

Intratumoral  Targe.ng  Once   parNcles   have   crossed   into   the   tumour   matrix   they   then   need   to   cross   into  tumour  cells.    •  Problem:  Tumour  matrix  is  highly  dependent  on  the  type  of  tumour.  

•  Solid   tumours   have   a   rigid  matrix   supported   by   collagen,   fibronecNn,   fibirin,  etc.  

•  Tumours   can   have   a   internal   pressure   10-­‐40   Nmes   greater   than   normal   cells  due   to   poor   lymphaNc   drainage.   This   can   greatly   effect   the   transport   of  chemotherapeuNcs  within  the  matrix.  

•  General  consensus  is  that  smaller  parNcles  penetrate  deeper  than  larger  ones.  

•  Solu.on:  A  complete  and  through  study  of  different  tumour  types  and  matrices.  

•  Currently   only   2D   images   are   used,   full   3D   imaging   and   elucidaNon   of  nanoparNcle  fate  is  required  for  further  development.  

Alex Chatterley @ Wipf Group Page 18 of 29 6/19/2016

Page 19: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

19  

Nanopar.cle  Clearance    

 

NanoparNcles  are  primarily  cleared  by  the  mononuclear  phagocyNc  system  (MPS)  and  kidneys.    

•  The  MPS  system  comprises  of  the  following  organs:  •  Liver  •  Spleen  •  LymphaNc  system  •  Skin  •  Bone  marrow  

Further   improvements   to   delivery   efficiency   can  be  made  by   reducing   the   clearance  ability  of  these  two  systems.  

Alex Chatterley @ Wipf Group Page 19 of 29 6/19/2016

Page 20: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

20  

MPS  System  Macrophagic   cells   in   the   liver   and   spleen   engulf   nanoparNcles   (primarily   by  phagocytosis)  removing  them  from  system  circulaNon  (similar  to  first  pass  metabolism  of  drugs).    

•  Large  inorganic  nanoparNcles  can  reside  in  macrophages  for  extended  periods  of  Nme  (possible  tox  issue?)  

•  Smaller  and  organic  nanoparNcles  are  rapidly  broken  down.      

•  Larger   nanoparNcles   are  sequestered  more  rapidly.  

•  C a N o n i c   p a r N c l e s   a r e  sequestered   the   fastest   follow  by  anionic  parNcles.  

•  Smaller   nanoparNcles   circulate  through   the   body   more   than  larger  parNcles.  

•  Possible   to   overcome   these  problems   using   PEG   coa.ngs  to  hide  the  par.cles.  

Alex Chatterley @ Wipf Group Page 20 of 29 6/19/2016

Page 21: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

21  

Renal  clearance    NanoparNcles  are  also  filtered  by  the  renal  system.    •  ParNcles   smaller   than   4-­‐6   nM   are   filtered   out   of   the   blood   and   are   eventually  

passed  in  the  urine.  

Alex Chatterley @ Wipf Group Page 21 of 29 6/19/2016

Page 22: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

22  

Thirty  year  plan  Despite   more   than   a   decade   of   research   and   $1   billion,   there   has   been   very   liJle  progress   in   this   field.   Many   regard   a   1%   delivery   efficiency   to   be   a   nonspecific  interacNon  rather  than  specific  targeNng.    •  Only  a  few  nanoparNcle  formulaNons  have  been  approved  –  Abraxane  and  Doxil  for  

example.    

Authors   propose   a   thirty   year   plan   to   further   develop   nanotechnology   into   a   useful  force  for  the  treatment  of  cancer  and  other  disease  states.    

Alex Chatterley @ Wipf Group Page 22 of 29 6/19/2016

Page 23: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

23  

Conclusion  

Alex Chatterley @ Wipf Group Page 23 of 29 6/19/2016

Page 24: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

24  

Ques.ons?  

Alex Chatterley @ Wipf Group Page 24 of 29 6/19/2016

Page 25: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

25  

Alex Chatterley @ Wipf Group Page 25 of 29 6/19/2016

Page 26: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

26  

Datasets      

Alex Chatterley @ Wipf Group Page 26 of 29 6/19/2016

Page 27: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

27  

Alex Chatterley @ Wipf Group Page 27 of 29 6/19/2016

Page 28: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

28  

Alex Chatterley @ Wipf Group Page 28 of 29 6/19/2016

Page 29: Analysis of Nanoparticle Delivery to Tumors - Wilhelm et. al.ccc.chem.pitt.edu/wipf/Current Literature/AlexC_3.pdf · 19-06-2016  · 20 MPSSystem Macrophagic" cells in the liver

29  

Alex Chatterley @ Wipf Group Page 29 of 29 6/19/2016