Analysis of Inconsistent Routing Components in Reactive ... · Analysis of Inconsistent Routing...

28
Analysis of Inconsistent Routing Components in Reactive Routing Protocols Habib-ur Rehman , Lars Wolf Institut für Betriebssysteme und Rechnerverbund Technische Universität Braunschweig WMAN 2009, 5 th March, Kassel

Transcript of Analysis of Inconsistent Routing Components in Reactive ... · Analysis of Inconsistent Routing...

Analysis of Inconsistent Routing Components in Reactive Routing

Protocols

Habib-ur Rehman, Lars Wolf

Institut für Betriebssysteme und Rechnerverbund

Technische Universität Braunschweig

WMAN 2009, 5th March, Kassel

2/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Outline

IntroductionHow to Improve Reactive Routing?

The Problem: Use of Prior-to-demand Collected Routing Data??

Analysis of AODVObjectives and Nature of Analysis

AODV-TTL

AODV-RS

Simulation Setup/Results

Conclusions

Introduction Analysis AODV-TTL AODV-RS Simulations Results ExtrasConclusions

3/17IBR, TU BraunschweigInconsistent Reactive Routing Components

How to Improve Reactive Routing?

• Reactive Routing• On-demand operations

• High Response Time• Connection set up/recovery

• Typical Approach• Use prior-to-demand collected routing data

• Share more-than-demanded routing data• route request/reply packets carry additional data

• Collect more-than-required routing data• overhear the routing packets for others

• Use in route interruptions or subsequent route discoveries

Introduction Analysis AODV-TTL AODV-RS Simulations Results ExtrasConclusions

4/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Use of Prior-to-demand Collected Routing Data

• Examples• DSR maintains alternate routes by overhearing routing packets

• AODV uses previously known hop-count in new route discoveries

• Overhearing: a common practice among multiple path protocols

• For example: AOMDV, AODV-BR

• An Inconsistent Approach• No proactive mechanism to refresh stored routing data

• Due to ever changing topology future and fortune of such acts• Totally dependent on network and topology conditions

• Unpredictable and volatile behavior/effects/benefits

Introduction Analysis AODV-TTL AODV-RS Simulations Results ExtrasConclusions

5/17IBR, TU BraunschweigInconsistent Reactive Routing Components

This Paper

• Analyze: use of prior-to-demand collected routing data• Understand the effect on

• Protocol operations

• Protocol/Network performance

• Approach• Analyze the deviation in the behavior of a reactive routing

protocol after• Increasing the use of previously collected routing data

• Decreasing the use of previously collected routing data

Introduction Analysis AODV-TTL AODV-RS Simulations Results ExtrasConclusions

6/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Analysis

• Standard AODV vs. two modified versions• AODV-TTL

• less dependent on previously collected routing data

• more reactive

• AODV-RS• shares more routing data for subsequent use

• subsequent actions: less reactive

• Compared performance metrics• MAC overhead

• Routing overhead

• Data packet delivery ratio

• Route discovery time

Introduction Analysis AODV-TTL AODV-RS Simulations Results ExtrasConclusions

7/17IBR, TU BraunschweigInconsistent Reactive Routing Components

AODV-TTL

• Expanding ring search during the route discovery• TTL field determines how many hops a RREQ will travel

• In AODV: in case of an existing entry• TTL = last known hop count + TTL_INCREMENT > TTL_START

• In AODV-TTL• TTL = TTL_START

• Route recovery or route discoveries: completely on-demand

Introduction Analysis AODV-TTL AODV-RS Simulations Results ExtrasConclusions

8/17IBR, TU BraunschweigInconsistent Reactive Routing Components

AODV-RS

• Routing messages carry the information on two nodes only• The originator and the previous hop

• Route Sharing• Include all the nodes along the path into a RREQ/RREP message

• In AODV-RS

• every intermediate node appends its previous hop

• shares ample amount of prior-to-demand routing data

• effect the subsequent actions

Introduction Analysis AODV-TTL AODV-RS Simulations Results ExtrasConclusions

9/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Simulations

• OPNET Modeler• manet_station node model

• Random way point mobility

• Simulation scenarios• Varying network size and data streams

• Varying mobility parameters

Simulation Scenarios

Nodes AreaData

StreamsActiveNodes

5 8

20 20

20 30

80 85100

2000 mX

500 m

25800 m

X800 m

Introduction Analysis AODV-TTL AODV-RS Simulations Results ExtrasConclusions

1, 2, 5, 10, 2010Packet Rate

41, 2, 5, 10, 250Node Speed

410, 30, 60, 300,900, 1800

Pause Time

Data Packet Rate(packets/second)

Node Speed(m/sec.)

Pause Time(seconds)

Variationof

Simulation settings forPause Time, Node Speed and Packet Rate

10/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Results: MAC Overhead

• AODV-RS• 2-20 % higher

• AODV-TTL• 1-11 % less

MAC Ov erhead (25 nodes 5 stream s)

395.8248 388.3791 384.4953

0

80

160

240

320

400

pa

cket

s (x

10

00

)

A ODV -RS A ODV A ODV -TTL

Introduction Analysis AODV-TTL AODV-RS Simulations Results ExtrasConclusions

MAC Overhead (100 nodes 80 stream s)

2481.7781

2052.84171847.5576

0

500

1000

1500

2000

2500

3000

pa

cket

s (x

10

00

)

A ODV -RS A ODV A ODV -TTL

11/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Results: Routing Overhead

• AODV-RS• 2-20 % higher

• AODV-TTL• 1-11 % less

• Quite similar to MAC overhead• In reactive routing protocols,

Routing traffic dictates the overhead

Routing Ov erhead (25 nodes 5 stream s)

17.8699 17.5296 17.3544

0

4

8

12

16

20

pa

cket

s (x

10

00

)

A ODV -RS A ODV A ODV -TTL

Introduction Analysis AODV-TTL AODV-RS Simulations Results ExtrasConclusions

Rou t ing Ov erh ea d (100 n odes 80 st ream s)

559.4331

462.4367416.193

0

125

250

375

500

625

pa

cket

s (x

10

00

)

A ODV -RS A ODV A ODV -TTL

12/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Results: Overhead

• Why the packet overhead is high in AODV-RS?• Higher initial value of TTL

• Less controlled flooding

• Higher contribution of RREP messages

• More nodes are able to respond during route discovery

Initial value of the TTL field

AODV-RS AODV

25 nodes 5 stream 1.69 1.21

25 nodes 20 streams 2.27 1.52

100 nodes 20 streams 3.03 1.81

100 nodes 80 streams 4.77 2.56

Introduction Analysis AODV-TTL AODV-RS Simulations Results ExtrasConclusions

19.2925.34100 nodes 80 streams

18.5921.73100 nodes 20 streams

17.1018.3225 nodes 20 streams

13.5313.6625 nodes 5 stream

RREP

77.8472.69100 nodes 80 streams

78.1075.89100 nodes 20 streams

80.5377.6925 nodes 20 streams

82.4281.7325 nodes 5 stream

RREQ

AODVAODV-RS

Percentage of RREQ and RREP packets

13/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Results: Packet Delivery

• Data Packet Delivery Ratio• AODV-RS

• 1-10 % less

• AODV-TTL

• 1-8 % higher

• Higher overhead

• causes more saturation

• results in less throughput

Pa cket Deliv ery Ra t io (25 n odes 5 st rea m s)

0.9609 0.9706 0.9803

0.6

0.7

0.8

0.9

1

A ODV -RS A ODV A ODV -TTL

Introduction Analysis AODV-TTL AODV-RS Simulations Results ExtrasConclusions

Pa cket Deliv ery Ra t io (100 n odes 80 st ream s)

0.6834

0.7594

0.8277

0.6

0.7

0.8

0.9

1

A ODV -RS A ODV A ODV -TTL

14/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Results: Route Discovery

• Route Discovery Time• Inconclusive

• 802.11 is a contention-based MAC

• AODV-RS• 3 % less in (25 nodes 5 streams)

scenario

• 2-6 % higher in others

• RREP requires RTS/CTS exchange

• AODV-TTL• 1 % less in (100 nodes 20 streams)

scenario

• 0.5-3 % higher in others

• Requires more expansion steps of ring search

Rou t e Discov ery T im e (25 n odes 5 st rea m s)

0.3809

0.3929 0.3947

0.32

0.34

0.36

0.38

0.4

0.42

seco

nd

s

A ODV -RS A ODV A ODV -TTL

Introduction Analysis AODV-TTL AODV-RS Simulations Results ExtrasConclusions

Rou t e Discov ery T im e (100 n odes 20 st rea m s)

1.1587

1.09531.0831

1

1.04

1.08

1.12

1.16

1.2

seco

nd

s

A ODV -RS A ODV A ODV -TTL

15/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Conclusions

• More prior-to-demand routing data present in the network• Less RREQs but more RREPs

• AODV loses the benefit of expanding ring search

• suffers due to higher TTL

• More overhead

• AODV-RS > AODV > AODV-TTL

• Less packet delivery ratio

• Mainly due to higher overhead, contention

• Route discovery time

• unpredictable in contention based scenarios

Introduction Analysis AODV-TTL AODV-RS Simulations Results ExtrasConclusions

16/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Conclusions

• Expanding ring search without exceptions• Less overhead

• Higher route discovery time

• Sharing more routing data: Not a good approach• Higher overhead

• Collecting more routing data might work in some cases

Introduction Analysis AODV-TTL AODV-RS Simulations Results ExtrasConclusions

Thank you very much for your attention

Questions/Comments/Suggestions

Introduction Analysis AODV-TTL AODV-RS Simulations Results ExtrasConclusions

18/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Why AODV?

• Popular and well reputed

• A very simple protocol

• Based on fundamental reactive principles• Route discovery

• purely reactive

• except the TTL adjustment

• expanding ring search: a good approach to control flooding

• Presence of prior-to-demand routing data• Works the same in most of the reactive protocols

AODV TTL Simulation Parameters Results Main

19/17IBR, TU BraunschweigInconsistent Reactive Routing Components

AODV Routing Protocol

• Route Discovery• Floods RREQ, unicast RREP

• Expanding ring search approach

• start TTL with TTL_START

• step by TTL_INCREMENT on every failed attempt

• until reaches NET_DIAMETER

• in case of an existing entry, start TTL withHOP_COUNT+TTL_INCREMENT

• only RREQ_RETRIES attempts at TTL=NET_DIAMETER

• Route Interruption• Informs using RERR

• Performs local repair or source initiates a new route discovery

AODV TTL Simulation Parameters Results Main

20/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Effect of the Initial Value of TTL Field

• When destination is closer than the previously known hop count

• The destination was previously two hops away

• The shaded nodes are those which have transmitted a RREQ packet

• Left: the initial value of the TTL field is (2 + TTL_INCREMENT = 4)

• Right: The initial value of the TTL field is TTL_START i.e. 1

S

I4

I5

I6

I3

I1

I2

D

I7

I8

S

I4

I5

I6

I3

I1

I2

D

I7

I8

AODV TTL Simulation Parameters Results Main

21/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Effect of the Initial Value of TTL Field

• When destination is at the same distance as the previously known hop count

• The destination was previously two hops away

• The shaded nodes are those which have transmitted a RREQ packet

• Left: the initial value of the TTL field is (2 + TTL_INCREMENT = 4)

• Right: The initial value of the TTL field is TTL_START i.e. 1

• Requires another phase with expanded ring TTL+=TTL_INCREMENT=3

S

D

I5

I6

I3

I1

I2

I4

I7

I8

S

D

I5

I6

I3

I1

I2

I4

I7

I8

AODV TTL Simulation Parameters Results Main

22/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Simulation Parameters

• OPNET Modelere with wireless suite

• SMP machine with 2 Intel Xeon 3.0 GHz processor

• 2 GB RAM

• Microsoft Windows Server 2003

• Simulation run duration: 1800 seconds

• 1024 Bytes per packet

• Every combination of settings repeated with 5 different seeds

• Random waypoint mobility traces are first evaluated to avoid• Density wave

• Speed decay

AODV TTL Simulation Parameters Results Main

23/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Simulation Parameters

• Node coverage ≈ 250m (radius)• Transmit power = 0.04 watt

• Packet Reception-Power Threshold = 73 dBm

AODV TTL Simulation Parameters Results Main

Simulation Environment

NetworkSize

GeographicalArea

NodeDensity

(per sq. km)

NetworkDiameter(nodes)

NeighborCount

25 nodes800 m

X800 m

39.06 4.52 7.67

100 nodes2000 m

X500 m

100 8.25 19.63

24/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Simulation Parameters

• AODV settingsAODV Parameters

Parameter Value

RREQ_RETRIES 3

ACTIVE_ROUTE_TIMEOUT 3 seconds

DELETE_PERIOD 15 seconds

HELLO_INTERVAL 1 second

ALLOWED_HELLO_LOSS 2

NET_DIAMETER 20

NODE_TRAVERSAL_TIME 0.04 second

TIMEOUT_BUFFER 2

TTL_START 1

TTL_INCREMENT 2

TTL_THRESHOLD 7

LOCAL_ADD_TTL 2

AODV TTL Simulation Parameters Results Main

25/17IBR, TU BraunschweigInconsistent Reactive Routing Components

MAC Overhead

AODV TTL Simulation Parameters Results Main

26/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Routing Overhead

AODV TTL Simulation Parameters Results Main

27/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Data Packet Delivery Ratio

AODV TTL Simulation Parameters Results Main

28/17IBR, TU BraunschweigInconsistent Reactive Routing Components

Route Discovery Time

AODV TTL Simulation Parameters Results Main