Analog IC Design 12

52
Department of Electrical Engineering C ha pt e r 1 2 C ha pt e r 1 2 Switched Switched - - C a pa citor C i r cui t s C a pa ci t or C i r cui t s 

Transcript of Analog IC Design 12

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 1/52

Department of Electrical Engineering

Chapter 12 Chapter 12 Switched Switched - - Capacitor Circuits Capacitor Circuits 

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 2/52

2

Introduction Introduction “Discrete-Time” or “Sampled-Data” Systems

In many situations, we may sense the input only at periodic instants of time, ignoring itsvalue at other times

The circuit processes each “sample”, producing a valid output at the end of each

period

In this lecture, we study a common class of discrete-time systems called “switched-

capacitor (SC) circuits”

Our objective is to provide the foundation for more advanced topics such as filters,

comparators, ADCs, and DACs

Most of our study deals with switched-capacitor amplifiers but the concepts can be applied

to other discrete-time circuits as well

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 3/52

3

General Considerations General Considerations Continuous-Time Feedback Amplifier 

By the equivalent circuit, we have

Thus

Compared to the case where Rout 

= 0

the close-loop gain suffers from inaccuracies

in both the numerator and the denominator 

The input resistance of the amplifier, approximatelyequal to R1, loads the preceding stage while introducing

thermal noise

out inout 

out ininout 

v   V  R R

V V  RV 

 R R

V V  R A   =

+

−−⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ +

+

−−

21211

1

2

1

2

1

2

1 R

 R A

 R

 R

 R

 R A

 R

 R

vout 

out v

in

out 

+++

−⋅−=

Equivalent circuit

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 4/52

4

General Considerations General Considerations Continuous-Time Feedback Amplifier Using Capacitors

Such an arrangement of the circuit is indeed practical

if the circuit senses only high-frequency signals

 A large feedback RF is used to bias node X

The step response contains a step change due to theinitial amplification by the circuit consisting of  C1, C2,

and the op amp, followed by a “tail” resulting from the

loss of charge on C2 through RF

The circuit is not suited to amplify wideband signals

because it exhibits a high-pass transfer function

indicating that Vout/Vin ≈ −C1/C2 only if  ω >> (RF C2)−1

The difficulty can be remedied by increasing RF C2

But in many applications the required values of the

two components become prohibitively large

1)(

2

1

+−≈

sC  R

sC  Rs

in

out 

Using RF to define bias point

Step response

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 5/52

5

General Considerations General Considerations Switched-Capacitor Amplifier 

Charge conservation equations Q=CV

Sampling mode   Transfer of charge from C1 to C2 Amplification mode

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 6/52

6

General Considerations General Considerations General View of Switched-Capacitor Amplifier 

Discrete-time operations require switches to perform sampling as well as a high input

impedance to sense the stored quantities with no corruption

Thus, the existence of simple switches and a high input impedance has made CMOS

technology the dominant choice for sampled-data applications

In the simplest switch-capacitor amplifiers, the operation takes in two phases

sampling and amplification

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 7/52

7

Sampling Switches Sampling Switches MOSFET as Switches

Simple sampling circuit – the switch by a MOS device

Response of different input levels and initial conditions

( )( )TH  DDoxn

onV V  LW C 

 R−

=/

1

μ    ( )( )TH in DDoxn

onV V V  LW C 

 R−−

=/

1

μ 

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 8/52

8

Sampling Switches Sampling Switches Track and Hold Capabilities of a Sampling Circuit

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 9/52

9

Sampling Switches Sampling Switches Maximum Output Level in an NMOS Sampler 

Since the gate and drain of  M1 are at the same potential, the transistor is saturated

Thus

implies that as t → infinity, Vout → VDD − VTH

For  Vout ≈ Vin, the transistor must operate in deep triode region and the upper bound of 

Vin equals VDD − VTH. In practice, Vin must be quite lower than this value.

( )2

12

1TH out  DDoxn D

out  H    V V V 

 L

W C  I 

dt 

dV C    −−==   μ 

 H 

oxn

TH out  DD

t  L

V V V 

out 

002

11μ =

−−( )  dt 

 L

V V V 

dV 

 H 

oxn

TH out  DD

out  μ 2

12 =

−−

TH  DD H 

oxn

TH  DDout 

V V t 

 LW 

C C 

V V V 

−+

−−=1

21

1

μ 

(neglecting channel-length modulation)

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 10/52

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 11/52

11

Sampling Switches Sampling Switches Definition of Speed in a Sampling Circuit

ΔV/Vin0 = 0.1%

note that after  t = tS, we can consider the source and drain voltages be approximately

equal

The sampling speed is given by two factors

the on-resistance of the switch

the value of the sampling capacitor

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 12/52

12

Sampling Switches Sampling Switches On-Resistance of MOS Devices

On-resistance of NMOS/PMOS devices as a function of input voltage

If we restrict the variation of Ron to a range of 4 to 1, then the maximum input level is given

by

This value falls around VDD/2, translating to severe swing limitations

Note that the device threshold voltage directly limits the voltage swings

( )   ( )TH  DDoxnTH in DDoxn

  V V  L

W C V V V 

 L

W C    −

=−−   μ μ 

41

max,

( )TH  DDin   V V V    −=

4

3max,

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 13/52

13

Sampling Switches Sampling Switches Complementary Switch

Equivalent resistance

If  μ nCox(W/L)N = μ PCox(W/L)P

then Ron,eq is independent of the input level

( )   ( )

( )   THPP

ox pinP

ox p N 

oxnTHN  DD N 

oxn

THPin

P

ox pTHN in DD

 N 

oxn

Pon N oneqon

V  L

W C V 

 L

W C 

 L

W C V V 

 L

W C 

V V  L

W C V V V 

 L

W C 

 R R R

⎟ ⎠

 ⎞

⎜⎝ 

⎛ −⎥⎦

⎢⎣

⎟ ⎠

 ⎞

⎜⎝ 

⎛ −⎟ ⎠

 ⎞

⎜⎝ 

⎛ −−⎟ ⎠

 ⎞

⎜⎝ 

⎛ =

−⎟ ⎠ ⎞

⎜⎝ ⎛ −−⎟

 ⎠ ⎞

⎜⎝ ⎛ ==

μ μ μ μ 

μ μ 

1

11,,,

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 14/52

14

Sampling Switches Sampling Switches Complementary Switch

Distortion generated if complementary switches do not turn off simultaneously

Simple circuit generating complementary clocks

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 15/52

15

Sampling Switches Sampling Switches Channel Charge Injection

Charge injection when a switch turns off 

 Assuming Vin ≈ Vout, the total charge in the inversion layer is

Qch = WLCox(VDD − Vin − VTH)

When the switch turns off , Qch exits through the source anddrain terminals, a phenomenon called “channel charge injection”

Effect of charge injection

For example, if half of  Qch is injected onto CH the resulting error equals

The error is directly proportional to WLCox

and inversely proportional to CH

( )

 H 

TH in DDox

V V V WLC V 

2

−−=Δ

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 16/52

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 17/52

17

Sampling Switches Sampling Switches Body Effect

Since and VSB ≈ Vin, we have

It follows that the nonlinear dependence of  VTH upon Vin introduces nonlinearity in the

input/output characteristic

In summary, charge injection contributes three types of errors in MOS sampling circuits

gain error 

dc offsets

Nonlinearity

In many applications, the first two can be tolerated or corrected whereas the last cannot

) BSB BTH TH    V V V    φ φ γ  220   −++=

( )

( ) BTH  DD

 H 

oxin B

 H 

ox

 H 

oxin

 Bin BTH in DD

 H 

oxinout 

V V C 

WLC V C 

WLC C 

WLC V 

V V V V C 

WLC V V 

φ γ φ γ 

φ γ φ γ 

221

22

0

0

+−−++⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ +=

++−−−−=

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 18/52

18

Sampling Switches Sampling Switches Channel Charge Injection

It is instructive to consider the speed-precision trade-off resulting from charge injection

Representing the speed by a simple time constant τ and the precision by the error  ΔV due

to charge injection, we define a figure of merit as F = (τ  ΔV)−1

The trade-off is independent of the switch width and the sampling capacitor 

2LF   nμ =

( )( )

( )THinDDH

ox

HTHinDDoxn

Hon

VVVC

WLCV

CVVVLWC

CR

−−=Δ

−−==

/μ τ 

1

S li S it h

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 19/52

19

Sampling Switches Sampling Switches Clock Feedthrough

 Assuming the overlap capacitance is constant, we express the error as

where Cov is the overlap capacitance per unit width

The error  ΔV is independent of the input level

manifesting itself as a constant offset in the input/output characteristic

 As with charge injection, clock feedthrough leads to a trade-off between speed andprecision as well

 H ov

ovCK 

C WC 

WC V V 

+=Δ

S li S i hS li S it h

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 20/52

20

Sampling Switches Sampling Switches kT/C Noise

The on-resistance of the switch introduces thermal noise at the outputwhen the switch turns off , this noise is stored on the capacitor along with the instantaneous

value of the input voltage

The rms voltage of the sampled noise is approximately equal to

The problem of  kT/C noise limits the performance in many high-precision applications

In order to achieve a low noise, the sampling capacitor must be sufficiently large, thus

loading other circuits and degrading the speed

C kT /

S li S it hS li S it h

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 21/52

21

Sampling Switches Sampling Switches Charge Injection Cancellation

 Addition of dummy device to reduce charge injection and clock feedthrough A “dummy” switch, M2, driven by is added to the circuit

such that after  M1 turns off and M2 turns on, the channel charge deposited by the former on C  H 

is absorbed by the latter to create a channel

Suppose half of the channel charge of  M1 is injected onto CH, i.e.,

Since Δq2 = W2L2Cox(VCK − Vin − VTH2), if we choose

W2 = 0.5W1 and L2 = L1, then Δq2 = Δq1

Unfortunately, the assumption of equal splitting of charge

between source and drain is generally invalid, making this

approach less attractive

CK 

( )111

12

  TH inCK ox V V V 

C  LW q   −−=Δ

S li S it hS li S it h

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 22/52

22

Sampling Switches Sampling Switches Clock Feedthrough Suppression by Dummy Switch

With the choice W2 = 0.5W1 and L2 = L1, the effect of clock feedthrough is suppressedThe total charge in Vout is zero because

02

2

221

2

21

1 =++

+++

−ov H ov

ov

CK 

ov H ov

ov

CK C W C C W 

C W V 

C W C C W 

C W V 

S li S it hS li S it h

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 23/52

23

Sampling Switches Sampling Switches Use of Complementary Switches to Reduce Charge Injection

The approach to lowering the effect of charge injection incorporates both PMOS andNMOS devices

such that the opposite charge packets injected by the two cancel each other 

For Δq1 to cancel Δq2, we must have W1L1Cox(VCK − Vin − VTHN) = W2L2Cox(Vin − |VTHP|)Thus, the cancellation occurs for only one input level

Even for clock feedthrough, the circuit does not provide complete cancellation

because the gate-drain overlap capacitance of NFETs is not equal to that of PFETs

S li S it hSampling Switches

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 24/52

24

Sampling Switches Sampling Switches Differential Sampling Circuit

The charge injection as a common-mode disturbanceWriting Δq1 = WLCox(VCK − Vin1 − VTH1) and Δq2 = WLCox(VCK − Vin2 − VTH2)

we recognize that Δq1 = Δq2 only if Vin1 = Vin2

The overall error is not suppressed for differential signals

The differential technique both removes the constant offset and lowers the nonlinearcomponent

Since for  Vin1 = Vin2, Δq1 − Δq2 = 0, the characteristic

exhibits no offset

 Also, the nonlinearity of body effect appears in

both square-root terms of (A), leading to only

odd-order distortion

( ) ( )[ ]

( )[ ]1212

121221

22inF inF ininox

TH TH ininox

V V V V WLC 

V V V V WLC qq

+−++−=

−+−=Δ−Δ

φ φ γ  ---- (A)

S itchedSwitched Capacitor AmplifierCapacitor Amplifier

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 25/52

25

Switched Switched - - Capacitor Amplifier Capacitor Amplifier Simple Capacitor Structure

The “top plate” is realized by a polysilicon layer and the “bottom plate” by a heavily doped

n+ region

The dielectric is the thin oxide layer used in MOS device

 An important concern in using this structure is the parasitic capacitance between each

plate and the substrateIn particular, the bottom plate suffers from substantial junction capacitance to the

underlying p region – typically about 10 ~ 20% of the oxide capacitance

Parasitic capacitance to the substrate

SwitchedSwitched Capacitor AmplifierCapacitor Amplifier

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 26/52

26

Switched Switched - - Capacitor Amplifier Capacitor Amplifier Unity-Gain Buffer 

Unity-Gain Sampler 

for continuous-time application for discrete-time application

  The input-independent charge injected by S1 onto CH limit the accuracy

In sampling mode

In amplification mode

S2 turns off slightly

before S1 does

independent of the input level

because node X is a virtual ground

Δq2 = WLCox(VCK − VTH − VX)

 Although body effect makes VTH afunction of VX, Δq2 is relatively

constant (offset) because VX is quite

independent of Vin

SwitchedSwitched Capacitor AmplifierCapacitor Amplifier

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 27/52

27

Switched Switched - - Capacitor Amplifier Capacitor Amplifier Operation of Unit-Gain Sampler in Slow Motion

The effect of the charge injected by S1

 Assuming the total charge at node X is zero

C  XV  X 

 − (V out 

 − V  X 

)C  H 

= 0, and V  X 

= −V out 

/ Av1

⇒ −(C  X 

+ C  H 

)V out 

/ Av1 − V 

out C  H 

= 0, i.e., V out 

= 0

This result is independent of  Δq1, capacitor

values, or the gain of the op amp

thereby revealing that the charge injection by S1 introduces no error if  S2 turns off first

finite op amp input capacitance

Transition of circuit to amplification mode

SwitchedSwitched Capacitor AmplifierCapacitor Amplifier

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 28/52

28

Switched Switched - - Capacitor Amplifier Capacitor Amplifier Operation of Unit-Gain Sampler in Slow Motion

The effect of the charge injected by S3

In order to turn on, S3 must establish an inversion layer at its oxide interface

However, after the feedback circuit has settled, the charge on CH equal V0CH,

unaffected by S3. The channel charge of this switch is therefore entirely supplied by

the op amp, introducing no error 

Generation of proper clock edges for unity-gain sampler 

With proper timing, the charge injected by S1 and S3 is unimportant

The channel charge of  S2 results in a constant offset voltage

We must ensure S1 turns off after  S2 does

SwitchedSwitched Capacitor AmplifierCapacitor Amplifier

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 29/52

29

Switched Switched - - Capacitor Amplifier Capacitor Amplifier Differential Realization of Unity-Gain Sampler 

The charge injected by S2 and S2′ appears as a common-mode disturbance at nodes X

and Y

In reality, S2 and S2′ exhibit a finite charge injection mismatch

an issue resolved by adding another switch, Seq, that turns off slightly after  S2 and S2′(and before S1 and S1′)thereby equalizing the charge at nodes X and Y

SwitchedSwitched Capacitor AmplifierCapacitor Amplifier

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 30/52

30

Switched Switched - - Capacitor Amplifier Capacitor Amplifier Precision Consideration

Equivalent circuit for accuracy calculations

In amplification mode

The circuit suffers from a gain error of approximately −(Cin/CH +1)/ Av1, suggesting that

the input capacitance must be minimized even if speed is not criticalIf  Cin/CH << 1, then Vout≈V0/(1+ Av1

−1)

To increase Av1

, we may choose a large width for the input transistors of the op amp,

but at the cost of higher input capacitance

 An optimum device size must therefore yield minimum gain error rather than maximum Av1

sampling mode amplification mode

V  X = 0, QCH = C  HV 0, QCin = 0   V  X  ≠ 0, QCH = C  HV 0 + C inV  X , QCin ≠ 0

 X  H 

 X in H out    V C 

V C V C V    =+− 0

1v

out  X 

 A

V V    −=

⎥⎦⎤⎢

⎣⎡ ⎟⎟

 ⎠ ⎞⎜⎜

⎝ ⎛  +−≈

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ++

= 111

11

1 10

1

0

 H 

in

v

 H 

in

v

out C C 

 AV 

 A

V V 

SwitchedSwitched-Capacitor AmplifierCapacitor Amplifier

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 31/52

31

Switched Switched - - Capacitor Amplifier Capacitor Amplifier Speed Consideration

Unity-gain sampler in sampling mode

( I  X 

 − Gm

 V  X 

) R0

+ I  X 

 Ron2

= V  X 

  ⇒

Since typically Ron2 << R0 and GmR0 >>1, we have RX ≈ 1/Gm

For example, in a telescopic op amp employing differential to single-ended conversion

Gm equals the transconductance of each input transistor 

The time constant in the sampling mode is equal

0

20

1   RG

 R R R

m

on

 X  +

+=

 H 

m

onsam   C G

 R ⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ +=

11τ 

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 32/52

SwitchedSwitched--Capacitor AmplifierCapacitor Amplifier

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 33/52

33

Switched Switched -  Capacitor Amplifier Capacitor Amplifier Speed Consideration

Equivalent circuit of unity-gain circuit in amplification modeWe represent the charge on CH by an explicit series voltage source, VS, that goes from

zero to V0 at t = t0 while CH carries no charge itself 

s = 0,

where Av1 = Gm R0

GmR0CH >> CH and Cin

The response is characterized by a time constant equal toThe response is independent of the op amp output resistance

This is because a higher  R0 leads to a greater loop gain, eventually yielding a constant

close-loop speed

If  Cin

<< CL

and CH

, then τ amp

= CL

/Gm

gain error 

( )   sC V V V V GsC  R

V   H out  X S  X m Lout    −+=+⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ +

0

1

out S  X  H 

in X    V V V 

sC 

sC V    =++

( )  ( )

( )   in H  H m L H  H inin L

 H inm

out C C C  RGsC C C C C C  R

C sC G RsV 

++++++

=00

0

( ) ⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ +−≈ 1

11

1   H 

in

vin

out 

 As

( )  ( )

( )   H m L H  H inin L

 H inm

out 

C GsC C C C C C 

C sC Gs

++++

=

 H m

 L H  H inin L

amp C G

C C C C C C    ++

=τ 

SwitchedSwitched--Capacitor AmplifierCapacitor Amplifier

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 34/52

34

Switched Switched   Capacitor Amplifier Capacitor Amplifier Speed Consideration

Unity-gain sampler during slewingThe tail current of the op amp’s input differential pair is steered to one side and its

mirror current charges the capacitance seen at the output

Since M2 is off during slewing

Cin

is negligible and the slew rate is approximately equal to ISS

/CL

The slewing continues until VX is sufficiently close

to the gate voltage of  M1

after which point the settling progresses with

the time constant

 H m

 L H  H inin Lamp

C G

C C C C C C    ++=τ 

SwitchedSwitched--Capacitor AmplifierCapacitor Amplifier

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 35/52

35

Switched Switched   Capacitor Amplifier Capacitor Amplifier Bottom-Plate Sampling

Connection of capacitor to the unit-gain sampler 

Our foregoing studies reveal that the input capacitance of the op amp degrades both the

speed and the precision of the unity-gain sampler/buffer 

For this reason, the bottom plate of  CH is usually driven by the input signal or the

output of the op amp and the top plate is connected to the node X, minimizing the

parasitic capacitance seen from node X to ground

Driving the bottom plate by the input or the output also avoids the injection of substratenoise of node X

SwitchedSwitched--Capacitor AmplifierCapacitor Amplifier

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 36/52

36

Switched Switched   Capacitor Amplifier Capacitor Amplifier Noninverting Amplifier 

In the sampling mode, S1

and S2

are on and S3

is off , creating a virtual ground at X and

allowing the voltage across C1 to track the input voltage

 At the end of the sampling mode, S2 turns off first, injecting a const charge, Δq2, onto node

X

Subsequently, S1 turns off and S3 turns on

Since VP goes from Vin0 to 0, the output voltage changes from 0 to approximately

Vin0(C1/C2), providing a voltage gain equal to C1/C2

sampling modeschematic amplification mode

SwitchedSwitched--Capacitor AmplifierCapacitor Amplifier

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 37/52

37

Switched Switched   Capacitor Amplifier Capacitor Amplifier Noninverting Amplifier 

Transition of noninverting amplifier to amplification mode

The noninverting amplifier avoids input-dependent charge injection by proper timing,

turning S2 off before S1

SwitchedSwitched--Capacitor AmplifierCapacitor Amplifier

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 38/52

38

Switched Switched   Capacitor Amplifier Capacitor Amplifier Noninverting Amplifier 

Effect of charge injected by S1

The charge injected by S1

, Δq1

, change the

voltage at node P by approximately ΔVP = Δq1/C1

the output voltage by −Δq1/C2

 After S3 turn on, VP drops to zero

Thus, the overall change in VP is equal to 0 − Vin0 = −Vin0, producing an overall change

in the output equal to Vin0C1/C2

VP goes from a fixed voltage, Vin0, to another, 0, with an intermediate perturbation due

to S1

Since the output voltage is measured after node P is connected to ground, the charge injected

by S1 does not affect the final output

−Δq1/C 2

SwitchedSwitched -- Capacitor AmplifierCapacitor Amplifier 

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 39/52

39

Switched  Capacitor Amplifier p pNoninverting Amplifier 

Charge redistribution in noninverting amplifier (another perspective)

The charge on the right plate of  C1 at the instant S2 turns off is approximately equal to

−Vin0C1

 Also, the total charge at node X must remain constant after  S2 turns off 

Thus, when node P is connected to ground and the circuit settles, the voltage across

C1

Hence its charge are nearly zero, and the charge −Vin0C1 must reside on the left plate

of C2.

In other words, the output voltage is approximately equal to Vin0C1/C2 regardless of the

intermediate excursions at node P

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 40/52

Switched Switched - - Capacitor Amplifier Capacitor Amplifier 

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 41/52

41

p pp pNoninverting Amplifier 

In summary, proper timing ensures that node X is

perturbed by only the charge injection of S2,

making the final value of Vout free errors due to S1 and S3

The constant offset due to S2 can be suppressed by differential operation

The noninverting amplifier can operate with a relatively high close-loop gain

but it suffers from speed and precision degradation due to the low feedback factor 

Switched Switched - - Capacitor Amplifier Capacitor Amplifier 

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 42/52

42

p pp pPrecision Consideration

Equivalent circuit of noninverting during amplification(Vout − VX)C2s = VXCins +(VX − Vin)C1s and Vout = − Av1VX,

we have

For large Av1

implying that the amplifier suffers from a gain error of (C2 + C1 + Cin)/(C2 Av1)

Note that the gain error increases with the nominal gain C1/C2

With CH = C2 and for a nominal gain of unity, the noninverting amplifier exhibits greater gain error than does the unity-gain sampler (P.30)

1

122

1

v

inin

out 

 A

C C C C 

+++

=

⎟⎟

 ⎠

 ⎞⎜⎜

⎝ 

⎛ ⋅

++−≈

12

12

2

1 11

v

in

in

out 

 AC 

C C C 

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 43/52

Switched Switched - - Capacitor Amplifier Capacitor Amplifier 

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 44/52

44

p pp pPrecision Multiply-by-Two Circuit

The charge injected by S1 and S2 and absorbed

by S4 and S5 is unimportant

The charge injected by S3 introduces a constant offset

The offset can be suppressed by differential operation

sampling mode

amplification mode

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 45/52

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 46/52

Switched Switched - - Capacitor Integrator Capacitor Integrator 

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 47/52

47

Discrete-Time Integrator 

The final value of Vout after every clock cycle is

The input-dependent charge injection of S1 introduces nonlinearity in the charge

stored on C1 and hence the output voltage

The nonlinear capacitance at node P resulting from the source/drain junctions of S1

and S2 leads to a nonlinear charge-to-voltage conversion when C1 is switched to X

Vin is constant

[ ] [ ] 2

1

)1()1()( C 

T k V T k V kT V  CK inCK out CK out    ⋅−−−=

Switched Switched - - Capacitor Integrator Capacitor Integrator 

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 48/52

48

Effect of Junction Capacitance Nonlinearity in SC Integrator 

The charge stored on the total junction capacitance, C j, is not equal to Vin0C j, but rather

equal to

Since C j is a function of voltage, qcj exhibits a nonlinear dependence on Vin0

thereby creating a nonlinear component at the output after the charge is transferred to

the integration capacitor 

∫= 0

0

Vin

 jcj   dV C q

Switched Switched - - Capacitor Integrator Capacitor Integrator 

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 49/52

49

Parasitic-Insensitive Integrator 

In the sampling mode

S1 and S3 are on and S2 and S4 are off 

allowing the voltage across C1 to track Vin while the op amp

and C2 hold the previous value

In the transition of the integration mode

S3 turns off first, injecting a constant charge onto C1

S1 turns off next, and subsequently S2 and S4 turn on

The charge stored on C1 is therefore transferred to C2 through the virtual ground node

sampling mode

integration mode

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 50/52

Switched Switched - - Capacitor Common Capacitor Common - - Mode Feedback Mode Feedback 

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 51/52

51

Definition of the voltage across C1 and C2

In the sampling (or reset) mode, the voltage (VX)across C1 and C2 is defined

During CM level definition, the amplifier differential

input is zero and S1

is on

Transistors M6 and M7 operate as a linear

sense circuit because their gate voltages are

nominally equal

Thus, the circuit settles such that the output CM level is equal to VGS6,7 + VGS5

 At the end of the sampling mode

S1 turns off , leaving a voltage equal to VGS6,7 across C1 and C2

In the amplification mode, M6 and M7 may experience a large nonlinearity but they do notimpact the performance of the main circuit because S1 is off 

Switched Switched - - Capacitor Common Capacitor Common - - Mode Feedback Mode Feedback 

8/12/2019 Analog IC Design 12

http://slidepdf.com/reader/full/analog-ic-design-12 52/52

52

 Alternative Topology for Definition of Output CM Level

In the reset mode

One plate of C1 and C2 is switched to VCM while the other is connected to the gate of

M6

Each capacitor therefore sustains a voltage equal to VCM − VGS6

In amplification modeS2 and S3 are on and the others switches off 

yielding an output CM level equal to VCM − VGS6 + VGS5

Proper definition of ID3 and ID4 with respect to IREF can guarantee that VGS5 = VGS6 and

hence the output CM level is equal to VCM