ANALOG CIRCUITS ANPEC - S. Grad Components Note: ANPEC lead-free products contain molding...

206
ANALOG CIRCUITS ANPEC TABLE OF CONTENTS 1.SWITCHING REGULATOR 1.1 APW 7137 1 MHz, High Efficiency, Step-Up Converter with Internal FET Switch 19 1.2 APW 7075 Step-Up Converter and LDO Combo 25 1.3 APW 7077/A PWM Step-Up DC-DC-Converter 23 1.4 APW 7078 Single Step-Up DC-DC-Converter 19 1.5 APW 7079 Low Supply-Current Synchronous Step-Up DC-DC-Converter 2.VOLTAGE REFERENCE Pos. Series Description Pages 2.1 APL 431 Adjustable Precision Shunt Regulator 18 2.2 APL 431L Low Voltage Adjustable Precision Shunt Regulator 16 2.3 APL 1431 Adjustable Precision Shunt Regulator 15 2.4 APL 1431L Low Voltage Adjustable Precision Shunt Regulator 12 3.OPERATIONAL AMPLIFIER Pos. Series Description Pages 3.1 APC 209 4 Channel Rail to Rail Output Operating Rectifier 12 3.2 APC 308 Rail to Rail Output CMOS Operating Amplifier 15 3.3 APC 558 DUAL Operational Amplifier 8 3.4 APC 4558 DUAL Operational Amplifier 8

Transcript of ANALOG CIRCUITS ANPEC - S. Grad Components Note: ANPEC lead-free products contain molding...

  • ANALOG CIRCUITS

    ANPEC

    TABLE OF CONTENTS 1.SWITCHING REGULATOR

    1.1 APW 7137 1 MHz, High Efficiency, Step-Up Converter with Internal FET Switch

    19

    1.2 APW 7075 Step-Up Converter and LDO Combo 25 1.3 APW 7077/A PWM Step-Up DC-DC-Converter 23 1.4 APW 7078 Single Step-Up DC-DC-Converter 19 1.5 APW 7079 Low Supply-Current Synchronous Step-Up DC-DC-Converter

    2.VOLTAGE REFERENCE Pos. Series Description Pages

    2.1 APL 431 Adjustable Precision Shunt Regulator 18 2.2 APL 431L Low Voltage Adjustable Precision Shunt Regulator 16 2.3 APL 1431 Adjustable Precision Shunt Regulator 15 2.4 APL 1431L Low Voltage Adjustable Precision Shunt Regulator 12

    3.OPERATIONAL AMPLIFIER Pos. Series Description Pages

    3.1 APC 209 4 Channel Rail to Rail Output Operating Rectifier 12 3.2 APC 308 Rail to Rail Output CMOS Operating Amplifier 15 3.3 APC 558 DUAL Operational Amplifier 8 3.4 APC 4558 DUAL Operational Amplifier 8

  • Copyright ANPEC Electronics Corp.Rev. A.4 - Oct., 2008

    APW7137

    www.anpec.com.tw1

    ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, andadvise customers to obtain the latest version of relevant information to verify before placing orders.

    1MHz, High Efficiency, Step-Up Converter with Internal FET Switch

    Features

    • Wide 2.5V to 6V Input Voltage Range• Built-in 0.6Ω N-Channel MOSFET• Built-in Soft-Start• High Efficiency up to 90%•

  • Copyright ANPEC Electronics Corp.Rev. A.4 - Oct., 2008

    APW7137

    www.anpec.com.tw2

    Symbol Parameter Rating Unit

    VIN VIN Pin to GND -0.3 to 7 V

    VLX LX Pin to GND -0.3 to 36 V

    VEN EN Pin to GND -0.3 to VIN V

    TJ Maximum Junction Temperature 150 °C

    TSTG Storage Temperature Range -65 to 150 °C

    TSDR Maximum Lead Soldering Temperature, 10 Seconds 260 °C

    Note 1: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

    Absolute Maximum Ratings (Note 1)

    Thermal Characteristics

    Symbol Parameter Typical Value Unit

    θJA Junction to Ambient Thermal Resistance (Note 2)

    SOT-23-5 260 °C/W

    Note 2: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. The exposed pad of package is soldered directly on the PCB.

    Recommended Operating Conditions (Note 3)Symbol Parameter Range Unit

    VIN VIN Input Voltage 2.5 ~ 6 V

    VLX LX to GND Voltage -0.3 ~ 32 V

    VOUT Converter Output Voltage VIN ~ 30 V

    CIN Input Capacitor 2.2 ~ µF

    COUT Output Capacitor 2.2 ~ µF

    TA Ambient Temperature -40 ~ 85 °C

    TJ Junction Temperature -40 ~ 125 °C

    Note 3: Refer to the application circuit for further information

    Ordering and Marking Information

    Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; whichare fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C forMSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogenfree (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm byweight).

    APW7137

    Handling CodeTemperature RangePackage Code

    Package Code B : SOT-23-5Operating Ambient Temperature Range I : -40 to 85 oCHandling Code TR : Tape & ReelAssembly Material L : Lead Free Device G : Halogen and Lead Free Device

    Assembly Material

    APW7137 B : W37X X - Date Code

  • Copyright ANPEC Electronics Corp.Rev. A.4 - Oct., 2008

    APW7137

    www.anpec.com.tw3

    Electrical CharacteristicsRefer to the typical application circuits. These specifications apply over VIN = 3.6V, IOUT = 0mA, TA = -40°C to 85°C, unless otherwise noted. Typical values are at TA = 25°C.

    APW7137 Symbol Parameter Test Conditions

    Min. Typ. Max. Unit

    SUPPLY VOLTAGE AND CURRENT

    VIN Input Voltage Range TA = -40 ~ 85°C, TJ = -40 ~ 125°C 2.5 - 6 V

    IDD VFB = 1.0V, switching - 1 2 mA

    ISD Input DC Bias Current

    EN = GND - 0.1 1 µA

    UNDER-VOLTAGE LOCKOUT

    UVLO Threshold Voltage VIN Rising 2.0 2.2 2.4 V

    UVLO Hysteresis Voltage 50 100 150 mV

    REFERENCE AND OUTPUT VOLTAGES

    TA = 25°C 1.212 1.23 1.248 VREF Regulated Feedback Voltage

    TA = -40 ~ 85°C 1.205 - 1.255 V

    IFB FB Input Current -50 - 50 nA

    INTERNAL POWER SWITCH

    FSW Switching Frequency VFB=1.1V 0.8 1.0 1.2 MHz

    RON Power Switch On Resistance - 0.6 - Ω

    ILIM Power Switch Current Limit 1 1.3 1.6 A

    LX Leakage Current VEN=0V, VLX=0V or 5V, VIN = 5V -1 - 1 µA

    DMAX LX Maximum Duty Cycle 92 95 98 %

    SOFT-START AND SHUTDOWN

    TSS Soft-Start Duration (Note 4) - 2 3 ms

    VTEN EN Voltage Threshold VEN Rising 0.4 0.7 1 V

    EN Voltage Hysteresis - 0.1 - V

    ILEN EN Leakage Current VEN=5V, VIN = 5V -1 ±0.5 1 µA

    OVER-TEMPERATURE PROTECTION

    TOTP Over-Temperature Protection (Note 4) TJ Rising - 150 - °C

    Over-Temperature Protection Hysteresis (Note 4) - 40 - °C

    Note 4: Guaranteed by design, not production tested.

  • Copyright ANPEC Electronics Corp.Rev. A.4 - Oct., 2008

    APW7137

    www.anpec.com.tw4

    (Refer to Fig 1. in the section “Typical Application Circuits”, VIN=3.6V, TA=25oC, unless otherwise specified)

    Switching Current vs. Supply Voltage Reference Voltage vs.Junction Temperature

    Switch ON Resistance vs.Junction temperature

    Maximum Duty Cycle vs. Supply Voltage

    Switching Frequency vs.Supply Voltage

    Typical Operating Characteristics

    Switching Frequency vs.Junction Temperature

    Switching Current, IDD (mA)

    Supply Voltage, VIN (V)

    02.5 3 3.5 4 4.5 5 5.5 6

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    VFB=1.0V Reference Voltage, VREF (%)

    Junction Temperature, TJ (°C)

    -50 -25 0 25 50 75 100 1251.18

    1.19

    1.20

    1.21

    1.22

    1.23

    1.24

    1.25

    1.26

    1.27

    1.28

    Switch ON Resistance, RON (Ω)

    Junction Temperature, TJ (°C)

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    -50 -25 0 25 50 75 100 125

    VIN=2.7V

    VIN=3.6V

    VIN=5V Maximum Duty Cycle, DMAX (%)

    Supply Voltage, VIN (V)

    40

    50

    60

    70

    80

    90

    100

    2.5 3 3.5 4 4.5 5 5.5 6

    Switching Frequency, FSW (MHz)

    Supply Voltage, VIN (V)2.5 3 3.5 4 4.5 5 5.5 6

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    Junction Temperature, TJ (°C)

    Switching Frequency, FSW (MHz)

    -50 -25 0 25 50 75 100 1250.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

  • Copyright ANPEC Electronics Corp.Rev. A.4 - Oct., 2008

    APW7137

    www.anpec.com.tw5

    Efficiency vs. Output Current Output Voltage vs. Output Current

    Output Voltage vs. Supply Voltage

    Typical Operating Characteristics (Cont.)

    Output Voltage, VOUT(V)

    Output Current, IOUT (mA)0.1 1 10 100 1000

    11.80

    11.85

    11.90

    11.95

    12.00

    12.05

    12.10

    12.15

    12.20

    VIN=5V

    VIN=3.3V

    Output Voltage, VOUT(V)

    Supply Voltage, VIN (V)

    11.80

    11.85

    11.90

    11.95

    12.00

    12.05

    12.10

    12.15

    12.20

    2.5 3 3.5 4 4.5 5 5.5 6

    (Refer to Fig 1. in the section “Typical Application Circuits”, VIN=3.6V, TA=25oC, unless otherwise specified)

    Efficiency, η

    (%)

    Output Current, IOUT (mA)0.1 1 10 100 1000

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100VIN=5V

    VIN=3.3V

    VOUT=12V

  • Copyright ANPEC Electronics Corp.Rev. A.4 - Oct., 2008

    APW7137

    www.anpec.com.tw6

    Operating Waveforms(Refer to Fig 1. in the section “Typical Application Circuits”, VIN=3.6V, TA=25

    oC, unless otherwise specified)

    CH1: VEN, 1V/Div, DCCH2: VOUT, 5V/Div, DCCH3: IIN, 100mA/Div, DCTime: 0.5ms/Div

    Start-up

    1

    2

    IIN, 100mA/Div

    VEN, 1V/Div, DC

    Time: 0.5ms/Div

    VOUT, 5V/Div, DC

    3

    VIN=3.6VIOUT=1mA

    CH1: VEN, 1V/Div, DCCH2: VOUT, 5V/Div, DCCH3: IIN, 100mA/Div, DCTime: 0.5ms/Div

    Start-up

    1

    2 IIN, 100mA/Div

    VEN, 1V/Div, DC

    Time: 0.5ms/Div

    VOUT, 5V/Div, DC

    3 VIN=3.6VIOUT=100mA

    Normal Operation

    CH1: VLX, 10V/Div, DCCH2: VOUT, 50mV/Div, ACCH3: IL, 100mA/Div, DCTime: 1µs/Div

    1

    2

    3

    IL, 100mA/Div

    VOUT, 50mV/Div

    VLX, 10V/Div

    VIN=3.3VIOUT=80mATime: 1µs/Div

    Normal Operation

    CH1: VLX, 10V/Div, DCCH2: VOUT, 50mV/Div, ACCH3: IL, 100mA/Div, DCTime: 1µs/Div

    1

    2

    3Time: 1µs/Div

    IL, 100mA/Div

    VOUT, 50mV/Div

    VLX, 10V/Div

    VIN=5VIOUT=80mA

  • Copyright ANPEC Electronics Corp.Rev. A.4 - Oct., 2008

    APW7137

    www.anpec.com.tw7

    Operating Waveforms (Cont.)

    CH1: VOUT, 200mV/Div, ACCH2: IOUT, 50mA/Div, DCTime: 0.2ms/Div

    Load Transient Response

    1

    2

    IOUT, 50mA/Div

    VIN=3.3VVOUT=12V

    VOUT, 200mV/Div, AC

    1mA

    30mA

    Time: 0.2ms/Div

    CH1: VOUT, 200mV/Div, ACCH2: IOUT, 50mA/Div, DCTime: 0.5ms/Div

    Load Transient Response

    1

    2IOUT, 50mA/Div

    VIN=3.3VVOUT=12V

    VOUT, 200mV/Div, AC

    1mA

    30mA

    Time: 0.5ms/Div

    Load Transient Response

    CH1: VOUT, 200mV/Div, ACCH2: IOUT, 50mA/Div, DCTime: 0.2ms/Div

    1

    2

    IOUT, 50mA/Div

    VIN=5VVOUT=12V

    VOUT, 200mV/Div, AC

    1mA

    30mA

    Time: 0.2ms/Div

    Load Transient Response

    CH1: VOUT, 200mV/Div, ACCH2: IOUT, 50mA/Div, DCTime: 0.5ms/Div

    1

    2IOUT, 50mA/Div

    VIN=5VVOUT=12V

    VOUT, 200mV/Div, AC

    1mA

    30mA

    Time: 0.5ms/Div

    (Refer to Fig 1. in the section “Typical Application Circuits”, VIN=3.6V, TA=25oC, unless otherwise specified)

  • Copyright ANPEC Electronics Corp.Rev. A.4 - Oct., 2008

    APW7137

    www.anpec.com.tw8

    Operating Waveforms (Cont.)

    Load Transient Response

    CH1: VOUT, 200mV/Div, ACCH2: IOUT, 50mA/Div, DCTime: 0.1ms/Div

    1

    2

    IOUT, 50mA/Div

    VIN=3.3VVOUT=12V

    VOUT, 200mV/Div, AC

    30mA

    150mA

    Time: 0.1ms/Div

    Load Transient Response

    CH1: VOUT, 200mV/Div, ACCH2: IOUT, 50mA/Div, DCTime: 0.1ms/Div

    1

    2

    IOUT, 50mA/Div

    VIN=3.3VVOUT=12V

    VOUT, 200mV/Div, AC

    30mA

    150mA

    Time: 0.1ms/Div

    Load Transient Response

    CH1: VOUT, 200mV/Div, ACCH2: IOUT, 50mA/Div, DCTime: 0.1ms/Div

    1

    2

    IOUT, 50mA/Div

    VIN=5VVOUT=12V

    VOUT, 200mV/Div, AC

    30mA

    150mA

    Time: 0.1ms/Div

    Load Transient Response

    CH1: VOUT, 200mV/Div, ACCH2: IOUT, 50mA/Div, DCTime: 0.1ms/Div

    1

    2

    IOUT, 50mA/Div

    VIN=5VVOUT=12V

    VOUT, 200mV/Div, AC

    30mA

    150mA

    Time: 0.1ms/Div

    (Refer to Fig 1. in the section “Typical Application Circuits”, VIN=3.6V, TA=25oC, unless otherwise specified)

  • Copyright ANPEC Electronics Corp.Rev. A.4 - Oct., 2008

    APW7137

    www.anpec.com.tw9

    Operating Waveforms (Cont.)

    Line Transient Response

    CH1: VIN, 1V/Div, DCCH2: VOUT, 0.2/Div, ACTime: 0.2ms/Div

    IOUT=40mAVOUT=12V

    VIN, 1V/Div, DC

    4V

    5V

    Time: 0.2ms/Div

    VOUT, 0.2V/Div, AC

    1

    2

    Line Transient Response

    CH1: VIN, 1V/Div, DCCH2: VOUT, 0.2/Div, ACTime: 0.2ms/Div

    IOUT=40mAVOUT=5V

    VIN, 1V/Div, DC

    3.2V

    4.2V

    Time: 0.2ms/Div

    VOUT, 0.2V/Div, AC

    1

    2

    (Refer to Fig 1. in the section “Typical Application Circuits”, VIN=3.6V, TA=25oC, unless otherwise specified)

  • Copyright ANPEC Electronics Corp.Rev. A.4 - Oct., 2008

    APW7137

    www.anpec.com.tw10

    Pin Description

    PIN.

    NO NAME FUNCTION

    1 LX Switch pin. Connect this pin to inductor/diode here.

    2 GND Power and signal ground pin.

    3 FB Feedback Input. The device senses feedback voltage via FB and regulate the voltage at 1.23V. Connecting FB with a resistor-divider from the output that sets the output voltage in the range from VIN to 30V.

    4 EN Enable Control Input. Forcing this pin above 1.0V enables the device. Forcing this pin below 0.4V to shut it down. In shutdown, all functions are disabled to decrease the supply current below 1µA. Do not left this pin floating.

    5 VIN Main Supply Pin. Must be closely decoupled to GND with a 2.2µF or greater ceramic capacitor.

    Block Diagram

    UVLO

    Oscillator

    Control Logic

    Σ

    VIN

    EN

    FBGND

    LX

    Over-TemperatureProtection

    VREF1.23V

    EAMPCOMP

    ICMP

    Soft-Start

    ErrorAmplifier

    Current SenseAmplifier

    Gate Driver

    CurrentLimit

    SlopCompensation

  • Copyright ANPEC Electronics Corp.Rev. A.4 - Oct., 2008

    APW7137

    www.anpec.com.tw11

    Typical Application Circuits

    GND

    VIN

    VOUT

    12V

    EN

    LX

    FB4

    5

    3

    2

    1

    L1

    10µH

    C24.7µF

    C14.7µF

    R2137kΩ

    VIN

    5V

    OFF

    R11.2MΩ

    ON

    GND

    VIN

    VOUT

    5V

    EN

    LX

    FB4

    5

    3

    2

    1

    L1

    4.7µH

    C210µF

    C14.7µF

    R2140kΩ

    VIN

    OFF

    R1430kΩ

    ON

    Fig 1. Typical 5V to 12V Supply

    GND

    VIN

    VOUT

    5V

    EN

    LX

    FB4

    5

    3

    2

    1

    L1

    4.7µH

    C210µF

    C14.7µF

    R2140kΩ

    VIN

    3.3V

    OFF

    R1430kΩ

    ON

    Fig 2. Standard 3.3V to 5V Supply

    APW7137

    APW7137

    APW7137

    +9V

    +13V

    -8V

    -4V

    Fig 4. Multiple Output for TFT-LCD Power Supply

    C3

    0.1µFC40.47µF

    C60.47µF

    C5

    0.1µF

    C80.47µF

    C7

    0.1µF

    C100.47µF

    C9

    0.1µF

    GND

    VIN

    VOUT

    EN

    LX

    FB4

    5

    3

    2

    1

    L1

    22µH

    C21µF

    C14.7µF

    R162Ω

    VIN

    Up to 8WLEDs

    Fig 3. Brightness control using a PWM signal apply to EN

    100Hz~300Hz

    Duty=100%, ILED=20mA

    Duty=0%, LED off

    APW7137

  • Copyright ANPEC Electronics Corp.Rev. A.4 - Oct., 2008

    APW7137

    www.anpec.com.tw12

    Function Description

    Main Control Loop

    The APW7137 is a constant frequency and current-modeswitching regulator. In normal operation, the internal N-channel power MOSFET is turned on each cycle when theoscillator sets an internal RS latch, and then turned offwhen an internal comparator (ICMP) resets the latch. Thepeak inductor current at which ICMP resets the RS latchis controlled by the voltage on the COMP node which isthe output of the error amplifier (EAMP). An external resis-tive divider connected between VOUT and ground allowsthe EAMP to receive an output feedback voltage VFB at FBpin. When the load current increases, it causes a slightlyto decrease in VFB associated with the 1.23V reference,which in turn, it causes the COMP voltage to increaseuntil the average inductor current matches the new loadcurrent.

    VIN Under-Voltage Lockout (UVLO)

    The Under-Voltage Lockout (UVLO) circuit compares theinput voltage at VIN with the UVLO threshold to ensurethe input voltage is high enough for reliable operation.The 100mV (typ) hysteresis prevents supply transientsfrom causing a restart. Once the input voltage exceedsthe UVLO rising threshold, startup begins. When the in-put voltage falls below the UVLO falling threshold, thecontroller turns off the converter.

    Soft-Start

    The APW7137 has a built-in soft-start to control the outputvoltage rise during start-up. During soft-start, an internalramp voltage, connected to the one of the positive inputsof the error amplifier, raises up to replace the referencevoltage (1.23V typical) until the ramp voltage reaches thereference voltage.

    Current-Limit Protection

    The APW7137 monitors the inductor current, flows throughthe N-channel MOSFET, and limits the current peak atcurrent-limit level to prevent loads and the APW7137 fromdamaging during overload or short-circuit conditions.

    Over-Temperature Protection (OTP)

    The over-temperature circuit limits the junction tempera-ture of the APW7137. When the junction temperature ex-ceeds 150oC, a thermal sensor turns off the powerMOSFET allowing the devices to cool. The thermal sen-sor allows the converters to start a soft-start process andregulates the output voltage again after the junction tem-perature cools by 40oC. The OTP is designed with a 40oChysteresis to lower the average Junction Temperature(TJ) during continuous thermal overload conditions in-creasing the lifetime of the device.

    Enable/Shutdown

    Driving EN to the ground places the APW7137 in shut-down mode. When in shutdown, the internal powerMOSFET turns off, all internal circuitry shuts down, andthe quiescent supply current reduces to 1µA maximum.

  • Copyright ANPEC Electronics Corp.Rev. A.4 - Oct., 2008

    APW7137

    www.anpec.com.tw13

    Application InformationInput Capacitor Selection

    The input capacitor (CIN) reduces the ripple of the inputcurrent drawn from the input supply and reduces noiseinjection into the IC. The reflected ripple voltage will besmaller when an input capacitor with larger capacitanceis used. For reliable operation, it is recommended toselect the capacitor with maximum voltage rating at least1.2 times of the maximum input voltage. The capacitorsshould be placed close to the VIN and the GND.

    Inductor Selection

    Selecting an inductor with low dc resistance reduces con-duction losses and achieves high efficiency. The efficiencyis moderated whilst using small chip inductor which op-

    erates with higher inductor core losses. Therefore, it isnecessary to take further consideration while choosingan adequate inductor. Mainly, the inductor value deter-mines the inductor ripple current: larger inductor valueresults in smaller inductor ripple current and lower con-duction losses of the converter. However, larger inductorvalue generates slower load transient response. A rea-sonable design rule is to set the ripple current, ∆IL, to be30% to 50% of the maximum average inductor current,IL(AVG). The inductor value can be obtained as below,

    where

    VIN = input voltage

    VOUT = output voltage

    FSW = switching frequency in MHz

    IOUT = maximum output current in amp.

    η = Efficiency

    ∆IL /IL(AVG) = inductor ripple current/average current

    (0.3 to 0.5 typical)

    To avoid the saturation of the inductor, the inductor shouldbe rated at least for the maximum input current of theconverter plus the inductor ripple current. The maximuminput current is calculated as below:

    η⋅

    ⋅=

    IN

    OUT)MAX(OUT)MAX(IN V

    VII

    The peak inductor current is calculated as the followingequation:

    ( )SWOUT

    INOUTIN)MAX(INPEAK FLV

    VVV21

    II⋅⋅−⋅

    ⋅+=

    Output Capacitor Selection

    The current-mode control scheme of the APW7137 al-lows the usage of tiny ceramic capacitors. The highercapacitor value provides good load transients response.Ceramic capacitors with low ESR values have the lowestoutput voltage ripple and are recommended. If required,tantalum capacitors may be used as well. The output rippleis the sum of the voltages across the ESR and the idealoutput capacitor.

    where IPEAK is the peak inductor current.

    ΔVOUT = ΔVESR + ΔVCOUT

    ⋅−

    ⋅≈∆SWOUT

    INOUT

    OUT

    OUTCOUT FV

    VVCI

    V

    ESRPEAKESR RIV ⋅≈∆

    VIN VOUTIL

    N-FET

    LX IOUT

    ISWCIN

    COUT

    IIN D1

    ESR

    ILIM

    IL

    IPEAK

    IIN

    IOUT

    ISW

    ID

    ∆IL

    ( )

    η×

    ⋅−

    ×

    AVGL

    L)MAX(OUTSW

    INOUT2

    OUT

    IN

    IIIF

    VVVV

    L

  • Copyright ANPEC Electronics Corp.Rev. A.4 - Oct., 2008

    APW7137

    www.anpec.com.tw14

    Application Information (Cont.)

    Output Capacitor Selection (Cont.)

    For ceramic capacitor application, the output voltage rippleis dominated by the ∆VCOUT. When choosing the input andoutput ceramic capacitors, the X5R or X7R with their goodtempera tu re and vo l tage charac te r i s t i cs a rerecommended.

    Output Voltage Setting

    The output voltage is set by a resistive divider. The exter-nal resistive divider is connected to the output which al-lows remote voltage sensing as shown in “Typical Appli-cation Circuits”. A suggestion of the maximum value ofR1 is 2MΩ and R2 is 200kΩ for keeping the minimumcurrent that provides enough noise rejection ability throughthe resistor divider. The output voltage can be calculatedas below:

    +=

    +⋅=2R1R

    123.12R1R

    1VV REFOUT

    Diode Selection

    To achieve the high efficiency, a Schottky diode must beused. The current rating of the diode must meet the peakcurrent rating of the converter.

    Layout Consideration

    R1

    R2

    L1

    VEN

    VINLX

    Optimized APW7137 Layout

    VOUT D1

    C2

    C1

    For all switching power supplies, the layout is an impor-tant step in the design especially at high peak currentsand switching frequencies. If the layout is not carefullydone, the regulator might show noise problems and dutycycle jitter.1. The input capacitor should be placed close to the VIN

    and the GND without any via holes for good input volt-age filtering.

    2. To minimize copper trace connections that can injectnoise into the system, the inductor should be placed asclose as possible to the LX pin to minimize the noisecoupling into other circuits.

    3. Since the feedback pin and network is a high imped-ance circuit the feedback network should be routed awayfrom the inductor. The feedback pin and feedback net-work should be shielded with a ground plane or trace tominimize noise coupling into this circuit.

    4. A star ground connection or ground plane minimizesground shifts and noise is recommended.

  • Copyright ANPEC Electronics Corp.Rev. A.4 - Oct., 2008

    APW7137

    www.anpec.com.tw15

    Package InformationSOT-23-5

    MAX.

    0.057

    0.051

    0.024

    0.006

    0.009

    0.0200.012

    L 0.30

    0

    e

    e1

    E1

    E

    D

    c

    b

    0.08

    0.30

    0.60 0.012

    0.95 BSC

    1.90 BSC

    0.22

    0.50

    0.037 BSC

    0.075 BSC

    0.003

    MIN.

    MILLIMETERS

    SYMBOL

    A1

    A2

    A

    0.00

    0.90

    SOT-23-5

    MAX.

    1.45

    0.15

    1.30

    MIN.

    0.000

    0.035

    INCHES

    °8°0 °8°0

    b c

    e1

    0L

    VIEW A0.

    25

    GAUGE PLANESEATING PLANE

    AA2

    A1

    e

    D

    EE1

    SEEVIEW A

    1.40

    2.60

    1.80

    3.00

    2.70 3.10 0.122

    0.071

    0.1180.102

    0.055

    0.106

    Note : 1. Follow JEDEC TO-178 AA. 2. Dimension D and E1 do not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil per side.

  • Copyright ANPEC Electronics Corp.Rev. A.4 - Oct., 2008

    APW7137

    www.anpec.com.tw16

    Application A H T1 C d D W E1 F

    178.0±2.00 50 MIN. 8.4+2.00 -0.00 13.0+0.50 -0.20

    1.5 MIN. 20.2 MIN. 8.0±0.30 1.75±0.10 3.5±0.05

    P0 P1 P2 D0 D1 T A0 B0 K0 SOT-23-5

    4.0±0.10 4.0±0.10 2.0±0.05 1.5+0.10 -0.00 1.0 MIN.

    0.6+0.00 -0.40

    3.20±0.20 3.10±0.20 1.50±0.20

    (mm)

    Carrier Tape & Reel Dimensions

    Devices Per Unit

    Package Type Unit Quantity

    SOT-23-5 Tape & Reel 3000

    A

    E1

    AB

    W

    F

    T

    P0OD0

    BA0

    P2

    K0

    B0

    SECTION B-B

    SECTION A-A

    OD1

    P1

    H

    T1

    A

    d

  • Copyright ANPEC Electronics Corp.Rev. A.4 - Oct., 2008

    APW7137

    www.anpec.com.tw17

    Test item Method Description SOLDERABILITY MIL-STD-883D-2003 245°C, 5 sec HOLT MIL-STD-883D-1005.7 1000 Hrs Bias @125°C PCT JESD-22-B, A102 168 Hrs, 100%RH, 121°C TST MIL-STD-883D-1011.9 -65°C~150°C, 200 Cycles ESD MIL-STD-883D-3015.7 VHBM > 2KV, VMM > 200V Latch-Up JESD 78 10ms, 1tr > 100mA

    Reflow Condition (IR/Convection or VPR Reflow)

    t 25 C to Peak

    tp

    Ramp-up

    tL

    Ramp-down

    tsPreheat

    Tsmax

    Tsmin

    TL

    TP

    25

    Tem

    per

    atu

    re

    Time

    Critical ZoneTL to TP

    °

    Reliability Test Program

    Taping Direction InformationSOT-23-5

    USER DIRECTION OF FEED

  • Copyright ANPEC Electronics Corp.Rev. A.4 - Oct., 2008

    APW7137

    www.anpec.com.tw18

    Profile Feature Sn-Pb Eutectic Assembly Pb-Free Assembly Average ramp-up rate (TL to TP)

    3°C/second max. 3°C/second max.

    Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (min to max) (ts)

    100°C 150°C

    60-120 seconds

    150°C 200°C

    60-180 seconds

    Time maintained above: - Temperature (TL) - Time (tL)

    183°C 60-150 seconds

    217°C 60-150 seconds

    Peak/Classification Temperature (Tp) See table 1 See table 2 Time within 5°C of actual Peak Temperature (tp)

    10-30 seconds 20-40 seconds

    Ramp-down Rate 6°C/second max. 6°C/second max.

    Time 25°C to Peak Temperature 6 minutes max. 8 minutes max.

    Note: All temperatures refer to topside of the package. Measured on the body surface.

    Table 2. Pb-free Process – Package Classification Reflow Temperatures

    Package Thickness Volume mm3

    2000

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw1

    ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advisecustomers to obtain the latest version of relevant information to verify before placing orders.

    Step-Up Converter and LDO Combo

    Features General Description

    Applications

    • Dual Mode Power System• USB Peripheral• Camcorders and Digital Camera• Hand-Held Instrument• PDAs

    The APW7075 is a PWM/PFM, high-efficiency, and step-up DC-DC converter with an integrated LDO input switchfor dual mode application. During battery mode operation,the APW7075 acts as synchronous rectifier and step-upDC-DC converter with a fixed or adjustable output voltage.When the VIN pin sense 5V input voltage, the APW7075 isswitched to LDO operation mode, maintaining the con-

    stant output voltage.

    The input voltage ranges from 0.6 V to 4.5V for step-upDC-DC converter. The start-up is guaranteed at 1V andthe device operates down to 0.6V. When the device is atLDO operating mode, the suitable output voltage 3.3Vand loading current 500mA for maximum power con-

    sumption are guaranteed.

    The APW7075 is suited for dual mode and portable bat-tery powered appliance with low-battery detector. In dual-mode applications, the APW7075 draws power from anyavailable 5V USB connection and reverts to battery powerwhen the USB power is removed.

    • Built-In a 500mA LDO and Synchronous Step-Up DC-DC Converter

    • Built-In PWM/PFM Operating Mode• Provided Dual Input Power Sources• Connect FB to OUT for 3.3V Output Voltage or

    GND for 2.5V Output Voltage or an External

    Resistor Divider for Adjustable Output Voltage.

    • Fixed 300kHz Operating Frequency• High Efficiency Up to 94% at 200mA Output Current

    • 0.6V to 4.5V Operating Voltage• 1V Start-Up Input Voltage• Low Battery Voltage Detection• Reverse Voltage Protection• Internal Synchronous Rectifier• Automatic Detection Input Voltage• Compact SOP-8P and TSSOP-8 Packages• Lead Free and Green Devices Available (RoHS Compliant)

    Pin Configuration

    VIN

    SHDN

    FB

    LBI LBO

    GND

    LX

    OUT1

    2

    3

    4 5

    6

    7

    8 VIN

    SHDN

    FB

    LBI LBO

    GND

    LX

    OUT1

    2

    3

    4 5

    6

    7

    8

    = Thermal Pad (connected to GND plane for better heatdissipation)

    TSSOP-8 Top View SOP-8P Top View

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw2

    Ordering and Marking Information

    Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; whichare fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C forMSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogenfree (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm byweight).

    Symbol Parameter Value Unit

    VOUT Supply Voltage (OUT to GND) -0.3 to 6.0 V

    VIO Input / Output Pins -0.3 to 6.0 V

    TA Operating Ambient Temperature Range 0 to 85 °C

    TJ Junction Temperature Range 0 to 150 °C

    TSTG Storage Temperature Range -65 to +150 °C

    TS Soldering Temperature, 10 Seconds 260 °C

    Symbol Parameter Typical Value Unit

    R θJA

    Thermal Resistance − Junction to Ambient SOP-8 SOP-8-P TSSOP-8

    124 80 160

    °C/W

    Thermal Characteristics

    Absolute Maximum Ratings

    APW7075Package Code KA : SOP-8P O : TSSOP-8Temperature Range C : 0 to 70 C I : -40 C to 85 CHandling Code TR : Tape & ReelAssembly Material L : Lead Free DeviceG : Halogen and Lead Free Device

    °Handling Code

    Temperature Range

    Package Code

    APW7075 KA : APW7075XXXXX XXXXX - Date Code

    APW7075XXXXX

    APW7075 O : XXXXX - Date Code

    Assembly Material ° °

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw3

    Electrical CharacteristicsVBAT = 2V, FB = OUT (VOUT = 3.3V), RL = ∞, TA = 0°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.

    APW7075 Symbol Parameter Test Conditions

    Min. Typ. Max. Unit

    STEP-UP SECTION

    VBAT Minimum Operating Input Voltage (Note1) 0.6 - - V

    Operating Voltage 0.6 - 4.5 V

    Start-up Voltage RL = 3kΩ - 0.9 1 V

    FSW Operating Frequency VOUT = 3.3VX96% - 300 - kHz

    DMAX Maximum PWM Duty Cycle VOUT = 3.3VX96% - 90 - %

    POWER MOSFET

    RDS(on)-N Active Switch ON Resistance ILX = 100mA - 0.3 0.6 Ω

    RDS(ON)-P Synchronous Switch on Resistance ILX = 100mA - 0.6 0.9 Ω

    CONTROL

    FB = OUT, ILOAD = 0mA 3.234 3.3 3.366 V Output Voltage

    FB = GND, ILOAD = 0mA 2.45 2.5 2.55 V VOUT

    Output Voltage Range External divider 2.5 - 5.5 V

    VOUT(drop) VOUT Dropping Voltage (Note 2) VOUT = 3.3V, C OUT = 100µF - - 150 mV

    TSS Soft-Start Time VOUT = 3.3V - 30 100 ms

    VREF FB Input Threshold ILOAD = 0mA 1.176 1.2 1.224 V

    IFB FB Input Current VFB = 1.4V - 0.03 50 nA

    IDD Operating Current (Note3) VOUT = 3.3VX96%, ILOAD = 0mA - 70 140 µA

    Shutdown Current VSHDN = 0 - 0.1 5 µA

    ISHDN SHDN Input Current VSHDN = 0 or VOUT - 0.07 50 nA

    Logic LOW (VIL) - 0.8 0.3 V SHDN

    Logic HIGH(VIH) 1.4 0.8 - V

    LBI Input Hysteresis - 10 - mV

    VLBI LBI Threshold 0.588 0.6 0.612 V

    ILBI LBI Input Current VLBI = 0.8V - 1 50 nA

    VLBO LBO Logic Low VLBI = 0, ISINk = 1mA - 0.2 0.4 V

    ILBO LBO Off Leakage Current VLBO = 5.5V, VLBI = 5.5V - 0.07 1 µA

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw4

    Unless otherwise noted these specifications apply over full temperature, 3.9V≤VIN

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw5

    0.6V. Open-drain device is turned on during shutdown.

    OUT (pin 8)

    Power output. OUT provides bootstrap power to the IC.

    GND (Pin 6)

    Ground pins of the circuitry and all ground pins must besoldered to PCB with proper power dissipation.

    LX (pin 7)

    N-channel and P-channel power MOSFET drainconnection.

    Function Pin Description

    VIN (Pin 1)

    Input supply voltage for dual-mode application. Connecta schokkty diode (current rating >500mA) to USB port or5V adapter. If the LDO mode is not used, ties the VIN pinto the ground.

    FB (pin 2)

    Internal 1.2V reference voltage. Connect to OUT for 3.3Voutput. Connect to the GND for 2.5V output. Use a resistordivider to set the output voltage from 2.5V to 5.5V.

    SHDN (pin 3)

    Shutdown input. High = operating mode; Low = shut-down mode.

    LBI (Pin 4)

    Low-battery comparator input. Internally set to trip at 0.6V.

    LBO (pin 5)

    Open-drain low battery comparator output. Connect LBOto OUT through a 100kΩ resistor. Output is low as VLBI

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw6

    Application Schematic

    Connect the R6=500Ω to 1kΩ to GND

    Figure 1. Dual Model : 3.3V Output Voltage

    Connect the R6=500Ω to 1kΩ to GND

    Figure 2. Dual Model : 2.5V Output Voltage

    APW7075

    1VIN

    SHDN

    LBI LBO

    OUT

    LX

    GND

    FB2

    3

    4

    8

    7

    6

    5

    VBAT

    Adapter5V

    C2100µF

    C110µF

    L122UH

    ON

    OFF

    C310µF

    C41µF

    VOUT

    R3

    R4

    100kΩ

    3.3V

    Low Battery Output

    1N5817

    R6

    R5

    APW7075

    1VIN

    SHDN

    LBI LBO

    OUT

    LX

    GND

    FB2

    3

    4

    8

    7

    6

    5

    VBAT

    C2100µF

    C110µF

    L122UH

    ON

    OFF

    C310µF

    C41µF

    VOUT

    R3

    R4

    100kΩ

    2.5V

    Low Battery Output

    Adapter5V

    1N5817

    R6

    R5

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw7

    Application Schematic (Cont.)

    Connect the R6=500Ω to 1kΩ to GND

    Figure 3. Dual Model: Adjustable Output Voltage

    Figure 4. Single Boost Converter

    3.6V

    3.8V

    APW7075

    1VIN

    SHDN

    LBI LBO

    OUT

    LX

    GND

    FB2

    3

    4

    8

    7

    6

    5

    VBAT

    C2100µF

    C110µF

    L122UH

    ON

    OFF

    C310µF

    C41µF

    VOUTR1

    R2

    R4

    300kΩ

    150kΩ

    100kΩ

    Low Battery Output

    VOUT≦ 2.5V ≦

    Adapter5V

    1N5817

    R5

    R6

    0.6V

    5V

    APW7075

    1VIN

    SHDN

    LBI LBO

    OUT

    LX

    GND

    FB2

    3

    4

    8

    7

    6

    5

    VBAT

    C2100µF

    C110µF

    L122UH

    ON

    OFF

    C41µF

    VOUTR1

    R2

    R3

    R4

    300kΩ

    150kΩ

    100kΩ

    3.6V

    Low Battery Output

    VOUT≦ 2.5V ≦

    ≦ 4.5V≦VBAT

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw8

    Typical Operating Characteristics

    Time(10ms/div)

    VBAT(1V/div)

    VOUT(1V/div)

    LX(2V/div)

    IOUT=100mA

    Time(10ms/div)

    VBAT(1V/div)

    VOUT(1V/div)

    LX(2V/div)

    IOUT=100mA

    Power Up (VBATTERY=2.4V) Power Up (VBATTERY=1.2V)

    Block Diagram

    Drive

    CurrentLimit

    P-MOS

    N-MOS

    PWM/PFM

    controller

    Vref

    phasecompensation

    soft-startvoltagereference

    Oscillator

    Vref

    LX

    Vref

    OUT

    VIN

    LBOLBI

    FB

    GND

    P-MOSSHDN

    VDD

    VDD

    VDD

    VDD

    N-MOS

    Q1

    Q2

    Q3

    Q4

    VDD

    A

    B

    C

    Y

    ABC

    YFB

    VOUTGNDR1,R2

    2

    SHDN

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw9

    Time(5ms/div)

    VBAT(2V/div)

    VOUT(1V/div)

    LX(2V/div)

    IOUT=100mA

    Time(10ms/div)

    SHDN(1V/div)

    VOUT(1V/div)

    LX(2V/div)

    IOUT=100mA

    Power Down Enable

    Typical Operating Characteristics (Cont.)

    SHDN(1V/div)

    VOUT(1V/div)

    LX(2V/div)

    IOUT=100mA

    Time(1ms/div) Time(1µs/div)

    IL(200mA/div)

    LX(2V/div)

    LOUT(100mV/div)

    IOUT=100mA, VOUT=3.3VVBAT=2.4V, CBAT=10µFCOUT=100µF, L=22µH

    Shutdown Heavy Load Operating Waveforms

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw10

    Typical Operating Characteristics (Cont.)

    Time(5µs/div)

    IL(200mA/div)

    LX(2V/div)

    LOUT(100mV/div)

    IOUT=30mA, VOUT=3.3VVBAT=2.4V, CBAT=10µFCOUT=100µF, L=22µH

    Light Load Operating Waveforms

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0.1 1 10 100

    Output Current(mA)

    Sta

    rt-u

    p V

    olta

    ge(V

    )

    Output Current vs. Start-up Voltage

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0.01 0.1 1 10 100 1000

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0.01 0.1 1 10 100 1000

    VOUT=2.5V, L=22µHVIN=1.2V

    VIN=2.4V

    VIN=1.2V

    VOUT=3.3V, L=22µH

    Output Current(mA)

    Eff

    cien

    cy(%

    )

    Output Current(mA)

    Eff

    cien

    cy(%

    )

    Effciency vs. Output Current Effciency vs. Output Current

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw11

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0.01 0.1 1 10 100 1000

    Typical Operating Characteristics (Cont.)

    VIN=2.4V

    VOUT=3.3V, L=10µH

    VIN=1.2V

    Output Current(mA)

    Eff

    icie

    ncy(

    %)

    Efficiency vs. Output Current

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0.01 0.1 1 10 100 1000

    Output Current(mA)

    Eff

    icie

    ncy(

    %)

    Efficiency vs. Output Current

    VOUT=2.5V, L=10µHVIN=1.2V

    0

    250

    500

    750

    1000

    1 1.5 2 2.5 3 3.5 4

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Output Voltage(V)

    Ope

    ratin

    g C

    urre

    nt in

    to O

    UT

    (mA

    )

    Operating Curretnt into OUT vs. Output Voltage

    FB=1.4V

    Input Voltage(V)

    Max

    imum

    Out

    put C

    urre

    nt (m

    A)

    Maximum Output Current vs.Input Voltage

    VOUT=3.6VVOUT=3.3V

    VOUT=2.5V

    VOUT=5V

    L=22µH

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw12

    0

    100

    200

    300

    400

    500

    1 1.5 2 2.5 3 3.5 4

    Typical Operating Characteristics (Cont.)

    0

    100

    200

    300

    400

    500

    1 1.5 2 2.5 3 3.5 4

    L=10µH

    VOUT=3.3V

    VOUT=2.5V

    VOUT=3.6V

    VOUT=5V

    The

    trans

    ition

    from

    PFM

    to P

    WM

    (mA

    )

    Input Voltage(V)

    Transition from PFM to PWM vs. Input Voltage

    The

    trans

    ition

    from

    PFM

    to P

    WM

    (mA

    )

    Input Voltage(V)

    VOUT=3.3V

    VOUT=2.5V

    VOUT=3.6V

    VOUT=5V

    L=22µH

    Transition from PFM to PWM vs. Input Voltage

    0

    50

    100

    150

    200

    250

    300

    0 0.5 1 1.5 2 2.5 3

    Inpu

    t Bat

    tery

    Cur

    rent

    (µA

    )

    Input Battery Voltage(V)

    Input Battery Current vs. Input Battery Voltage

    VOUT=3.3V

    VOUT=2.4V

    Time(2ms/div)

    VBAT(2V/div)

    VOUT(200mV/div)

    IOUT=100mA, VOUT=3.3VVBAT=2V~3V

    Line Transient Response

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw13

    Typical Operating Characteristics (Cont.)

    Time(0.5ms/div)

    VOUT(200mV/div)

    IOUT=10~300mA

    VBAT=2.4V, VOUT=3.3VL=22µH

    Time(50µs/div)

    IOUT=100mA, VOUT=3.3VCIN=10µF, VBAT=2.4V

    VIN(2V/div)

    VOUT(100mV/div)

    LX(2V/div)

    Load Transient Response PWM to LDO

    VIN(2V/div)

    VOUT(100mV/div)

    LX(2V/div)

    IOUT=100mA, VOUT=3.3VCIN=10µF, VBAT=2.4V

    Time(0.2ms/div)

    VIN(2V/div)

    VOUT(2V/div)

    IIN(1A/div)

    IOUT=100mA

    Time(10ms/div)

    LDO to PWM LDO Power Up

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw14

    Typical Operating Characteristics (Cont.)

    VIN(20V/div)

    VOUT(2V/div)

    IN(1A/div)

    IOUT=100mA

    Time(10ms/div)

    VIN=5V, VOUT=3.

    VOUT(50mV/div)

    IOUT=10mA~500mA

    Time(5µs/div)

    LDO Power Down LDO Load Transient Response

    Time(5µs/div)

    VOUT(50mV/div)

    VIN=5V, VOUT=3.

    IOUT=10mA~500mA

    LBI(0.5V/div)

    LBO(2V/div)

    VBAT=2.4V, VOUT=3.3V

    Time(5µs/div)

    LDO Load Transient Response LBO Rising Delay Time

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw15

    Typical Operating Characteristics (Cont.)

    LBI(0.5V/div)

    LBO(2V/div)

    VBAT=2.4V, VOUT=3.3V

    Time(5µs/div)

    0

    5

    10

    15

    20

    25

    30

    0 0.25 0.5 0.75 1 1.25 1.5

    VOUT=3.3V

    LBO Output Low Voltage(V)

    LBO

    Sin

    k C

    urre

    nt(m

    A)

    LBO Output Sink Current vs. LBO Low VoltageLBO Falling Delay Time

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    4 4.5 5 5.5 6

    LDO Input Voltage(V)

    LDO

    Cur

    rent

    Lim

    it(A

    )

    LDO Current Limit vs. LDO Input Voltage

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    4 4.5 5 5.5 6

    LDO

    Qui

    esce

    nt C

    urre

    nt (

    A)

    LDO Input Voltage(V)

    IOUT=10mA

    IOUT=0mA

    LDO Quiescent Current vs. LDO Input Voltage

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw16

    0

    100

    200

    300

    400

    500

    600

    700

    0 100 200 300 400 5000

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 100 200 300 400 500

    Typical Operating Characteristics (Cont.)

    Qui

    esce

    nt C

    urre

    nt (

    mA

    )

    LDO Output Current(mA)

    VIN=5V

    Quiescent Current vs. LDO Output Current

    LDO Output Current(mA)

    Dro

    pout

    Vol

    tage

    (m

    V)

    Dropout Voltage vs. LDO Output Current

    VOUT=4.2V

    3.27

    3.275

    3.28

    3.285

    3.29

    3.295

    3.3

    -40 -20 0 20 40 60 80 100 120 140

    Out

    put V

    olta

    ge (

    V)

    Temperature (oC )

    Output Voltage vs. Temperature

    3.297

    3.298

    3.299

    3.3

    3.301

    3.302

    3.303

    4 4.5 5 5.5 6

    Iout=0mA

    LDO Input Voltage(V)

    Out

    put V

    olta

    ge (

    V)

    Output Voltage vs. LDO Input Voltage

    IOUT=0mA

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw17

    The APW7075 has an active high enable function. ForceSHDN high (>1.4V) to enable the step-up converter, SHDNlow (

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw18

    Application Information

    Output Voltage Selection

    The output voltage of APW7075 can be adjusted by anexternal resistor divider, or connect FB pin to OUT for3.3V and to the ground for 2.5V (see ApplicationSchematic). The internal reference voltage is 1.2V andthe allowed output voltage is from 2.5V to 5.5V. The fol-lowing equation can be used to calculate the outputvoltage:

    Programming Low Battery Threshold Voltage

    The low battery threshold voltage can be programmedwith a resistive divider from battery to LBI pin to the ground(see Application Schematic). The internal reference volt-age is 0.6V, and the low battery threshold voltage mustbe below the battery voltage. The following equation canbe used to calculate the low battery threshold voltage:

    0.6VR4

    R31V TH-BAT ×+=

    Inductor Selection

    The APW7075 works well with a 22µH inductor in mostapplications. The inductance values determine the induc-tor ripple current and affect the output current. Higher in-ductance values reduce ripple and improve efficiency.Lower inductance values have fast response but increasethe ripple and reduce the efficiency. The maximum al-lowed LX current is 1A (the maximun output current showsin Typical Characteristics), therefore, the peak inductorcurrent cannot exceed it. The following equations calcu-late the inductor current, and output current.

    ( )fLD1

    V(VIL INOUT×−

    ×−=∆ )

    IOUT = IL x (1-D)

    1.2VR2

    R11VOUT ×+=

    Where:

    D =OUT

    IN OUT

    VVV −

    The inductor’s DC resistance affects the efficiency; largerresistance dissipates more power, it should be as smallas possible. It is important to choose the inductor’s satu-ration current rating greater than the peak current whichthe inductor will flow in the application.

    Boost Converter Input Capacitor Selection

    At least a 10µF input capacitor is recommended to stabi-lize the battery voltage and minimizes the peak currentripple from the battery.

    LDO Input Capacitor Selection

    The LDO input capacitor with larger values and lowerESRs provides better PSRR and line transient response.At least a 10µF capacitor is recommended.

    Output Capacitor Selection

    ESR)VFC

    VVI Voripple

    OUTSWOUT

    BATOUT OUT +

    ××−

    ×= (

    recommended. The following equation calculates theoutput ripple.

    The output capacitor is used for supplying the output dur-ing internal N-channel MOSFET turns on time. Larger ca-

    pacitance and lower ESR reduce the output voltage ripple.The output voltage supplies the power to the IC and sothe output voltage ripple must be as small as possible toprovide better PSRR. In general, a 100µF to 220µF lowESR Tantalum capacitor is recommended, a 1µF ceramiccapacitor in parallel for bypassing the noise is also

    Layout Consideration

    The correct PCB layout is important for all switchingconverters. If the layout is not carefully done, the regulatorcould show stability problems as well as EMI problems.Figure 5 illustrates the layout guidelines, the bold linesindicate the high current paths; these traces must be shortand wide. The input capacitors, output capacitors, and theinductor should be as close to the IC as possible. Use acommon ground plane for power ground and a differentone for control ground to minimize the effects of the groundnoise. Connect these ground planes at a node close tothe GND pin of IC. The feedback and LBI resistor dividersshould be placed as close to the IC as possible.

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw19

    Figure 5. Recommended Layout Diagram

    APW7075

    1VIN

    SHDNLBI LBO

    OUTLX

    GNDFB

    234

    8

    76

    5 VBAT

    USB 5V

    C2100uF

    C110uF

    22UH

    C310uF

    C41uF

    VOUT

    Application Information (Cont.)

    Layout Consideration (Cont.)

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw20

    Package Information

    SOP-8P

    0.020

    0.010

    0.020

    0.050

    0.006

    0.063

    MAX.

    0.40L

    0

    E

    e

    h

    E1

    0.25

    D

    c

    b

    0.17

    0.31

    0.0161.27

    0.50

    1.27 BSC

    0.51

    0.25

    0.050 BSC

    0.010

    0.012

    0.007

    MILLIMETERS

    MIN.

    SYMBOL

    A1

    A2

    A

    0.00

    1.25

    SOP-8P

    MAX.

    0.15

    1.60

    MIN.

    0.000

    0.049

    INCHES

    D1 2.25 0.098

    2.00 0.079E2

    3.50

    3.00

    0.138

    0.118

    8o 0o 8o0o

    h X

    45°

    D

    e

    EE1

    SEE VIEWA

    cb

    D1E

    2THERMALPAD

    A

    0L

    VIEW A0.

    25

    SEATING PLANEGAUGE PLANE

    A1

    A2

    Inter-lead flash and protrusions shall not exceed 10 mil per side.

    Note : 1. Follow JEDEC MS-012 BA. 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side . 3. Dimension "E" does not include inter-lead flash or protrusions.

    4.80 5.00

    5.80 6.20

    3.80 4.00

    0.2440.228

    0.1570.150

    0.1970.189

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw21

    Package Information

    TSSOP-8

    SYMBOL MIN. MAX.

    1.20

    0.05

    0.09 0.20

    2.90 3.10

    0.15

    A

    A1

    c

    D

    E1

    L

    e

    MILLIMETERS

    b 0.19 0.30

    0.65 BSC

    TSSOP-8

    4.30 4.50

    0.026 BSC

    MIN. MAX.

    INCHES

    0.047

    0.002

    0.007 0.012

    0.004 0.008

    0.114 0.122

    0.244 0.260

    0.169 0.177

    0

    0.006

    A2 0.80 1.05

    6.20 6.60E

    0.031 0.041

    Note : 1. Follow JEDEC MO-153 AA 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side. 3. Dimension "E1" does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 10 mil per side.

    S

    8 0 80 °° °°

    D

    E1

    E

    e b

    A2 A

    A1

    VIEW A

    SEATING PLANE

    GAUGE PLANE

    0.25

    L

    SEE VIEW A

    C

    0.45 0.75 0.018 0.030

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw22

    Application A H T1 C d D W E1 F

    330.0±2.00 50 MIN. 12.4+2.00 -0.00 13.0+0.50 -0.20 1.5 MIN. 20.2 MIN. 12.0±0.30 1.75±0.10 5.5±0.05

    P0 P1 P2 D0 D1 T A0 B0 K0 SOP-8P

    4.0±0.10 8.0±0.10 2.0±0.05 1.5+0.10 -0.00 1.5 MIN. 0.6+0.00

    -0.40 6.40±0.20 5.20±0.20 2.10±0.20

    Application A H T1 C d D W E1 F

    330.0±2.00 50 MIN. 12.4+2.00 -0.00 13.0+0.50 -0.20 1.5 MIN. 20.2 MIN. 12.0±0.30 1.75±0.10 5.5±0.10

    P0 P1 P2 D0 D1 T A0 B0 K0 TSSOP-8

    4.00±0.10 8.00±0.10 2.00±0.05 1.5+0.10 -0.00 1.5 MIN. 0.6+0.00

    -0.40 6.90±0.20 3.40±0.20 1.60±0.20

    Carrier Tape & Reel Dimensions

    Devices Per Unit

    (mm)

    Package Type Unit Quantity

    SOP-8P Tape & Reel 2500

    TSSOP-8 Tape & Reel 2500

    A

    E1

    AB

    W

    F

    T

    P0OD0

    BA0

    P2

    K0

    B0

    SECTION B-B

    SECTION A-A

    OD1

    P1

    H

    T1

    A

    d

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw23

    Taping Direction Information

    t

    SOP-8P

    USER DIRECTION OF FEED

    TSSOP-8

    USER DIRECTION OF FEED

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw24

    Test item Method Description SOLDERABILITY MIL-STD-883D-2003 245°C, 5 sec HOLT MIL-STD-883D-1005.7 1000 Hrs Bias @125°C PCT JESD-22-B, A102 168 Hrs, 100%RH, 121°C TST MIL-STD-883D-1011.9 -65°C~150°C, 200 Cycles ESD MIL-STD-883D-3015.7 VHBM > 2KV, VMM > 200V Latch-Up JESD 78 10ms, 1tr > 100mA

    Reliability Test Program

    Reflow Condition (IR/Convection or VPR Reflow)

    t 25 C to Peak

    tp

    Ramp-up

    tL

    Ramp-down

    tsPreheat

    Tsmax

    Tsmin

    TL

    TP

    25

    Tem

    per

    atu

    re

    Time

    Critical ZoneTL to TP

    °

    Classification Reflow ProfilesProfile Feature Sn-Pb Eutectic Assembly Pb-Free Assembly

    Average ramp-up rate (TL to TP)

    3°C/second max. 3°C/second max.

    Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (min to max) (ts)

    100°C 150°C

    60-120 seconds

    150°C 200°C

    60-180 seconds

    Time maintained above: - Temperature (TL) - Time (tL)

    183°C 60-150 seconds

    217°C 60-150 seconds

    Peak/Classification Temperature (Tp) See table 1 See table 2 Time within 5°C of actual Peak Temperature (tp)

    10-30 seconds 20-40 seconds

    Ramp-down Rate 6°C/second max. 6°C/second max.

    Time 25°C to Peak Temperature 6 minutes max. 8 minutes max.

    Notes: All temperatures refer to topside of the package. Measured on the body surface.

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Oct., 2008

    APW7075

    www.anpec.com.tw25

    Table 2. Pb-free Process – Package Classification Reflow Temperatures

    Package Thickness Volume mm3

    2000

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw1

    ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, andadvise customers to obtain the latest version of relevant information to verify before placing orders.

    PWM Step-Up DC-DC Converter

    Features General Description

    Applications

    • Cellular and Portable Phones• Portable Audio• Camcorders and Digital Still Camera• Hand-held Instrument• PDAs

    The APW7077/A series are multi- function PWM step-upDC-DC converter with an adaptive voltage mode control-ler and higher efficiency application from one to four cellsbattery packs. The APW7077/A series are set PWM oper-ating mode, voltage-mode to follow portable application.And built-in driver pin, EXT pin, for connecting to an exter-nal transistor or MOSFET during light load, the device willautomatically skip switching cycles to maintain highefficiency. The APW7077/A series consist of PWMcontroller, reference voltage, phase compensation,oscillator, soft-start, driver block. It will be provided to op-erate suitable voltage without external compensationcircuit. The APW7077/A series have fixed voltage and ad-justable voltage version from a wide input voltage ranges0.7V to 5.5V for step-up DC-DC converter. The start-up isguaranteed at 1V and the device is operating down to0.7V, and providing up to 300mA loading current. Besides,low quiescent current (switch-off) is guaranteed.

    • Low Start-Up Voltage 0.9V• Fixed 300kHz Operating Frequency• Built-In Internal Soft-Start Circuit• Low Operating Current• 3.3V and 5V (±2.5%) Fixed (APW7077) or

    Adjustable Output Voltage (APW7077A)

    • High Efficiency Up to 88% at 400mAOutput Current

    • High Output Current Up to 1A• Compact Package: SOT-23-5• Lead Free and Green Devices Available

    (RoHS Compliant)

    Pin Configuration

    VOUTCE NC

    GNDEXT

    1 2 3

    45

    FB VDD CE

    GNDEXT

    1 2 3

    45

    SOT-23-5 (Top View)

    SOT-23-5 (Top View)

    APW7077 APW7077A

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw2

    Ordering and Marking Information

    Note : ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; whichare fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C forMSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogenfree (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm byweight).

    Symbol Parameter Rating Unit

    VDD Supply Voltage -0.3 to 7 V

    VIO Input / Output Pins (CE, FB, EXT) -0.3 to 7 V

    TA Operating Ambient Temperature Range -40 to 85 °C

    TJ Junction Temperature Range -40 to 150 °C

    TSTG Storage Temperature Range -65 to +150 °C

    TS Maximum Lead Soldering Temperature, 10 Seconds 260 °C

    Symbol Parameter Typical Value Unit

    RθJA Thermal Resistance − Junction to Ambient (Note 2)

    SOT-23-5 200 °C/W

    Thermal Characteristics

    Absolute Maximum Ratings (Note 1)

    Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolutemaximum rating conditions for extended periods may affect device reliability.

    Note 2: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air.

    APW7077/A Package Code B : SOT-23-5Temperature Range I : -40 to 85 oCHandling Code TR : Tape & ReelVoltage Code R : 3.3V Z : 5.0VAssembly Material G : Halogen and Lead Free Device

    Handling Code

    Temperature Range

    Package Code

    APW7077 33B :

    Assembly Material

    Voltage Code

    APW7077A B : A77X

    X - Date Code; R : 3.3V

    X - Date Code

    APW7077 50B : X - Date Code; Z : 5.0V

    77RX

    77ZX

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw3

    Electrical Characteristics

    APW7077A Symbol Parameter Test Conditions

    Min. Typ. Max. Unit

    STEP-UP SECTION

    VIN Minimum Operating Input Voltage VOUT = VDD - 0.9 - V

    VDD Operating Voltage VIN = VDD 1.9 - 5.5 V

    Start-Up Voltage IO

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw4

    Electrical Characteristics (Cont.)

    APW7077 Symbol Parameter Test Conditions

    Min. Typ. Max. Unit

    STEP-UP SECTION

    VIN Minimum Operating Input Voltage 0.7 - - V

    Operating Voltage 1 - 5.5 V

    APW7077_33, Io

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw5

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 10020

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100 1000

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    0 50 100 1 5 0 20 0 25 0 3000

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    0 50 100 150 200 250 300

    Typical Operating Characteristics

    Start-up/Hold Voltage vs. Output Current

    Output Current (mA)

    Inpu

    t Vol

    tage

    (V

    ) VSTART-up

    Vhold

    VOUT=3.3V

    Start-up/Hold Voltage vs. Output Current

    Output Current (mA)

    Inpu

    t Vol

    tage

    (V

    ) VSTART-up

    Vhold

    VOUT=5.0V

    Efficiency vs. Output Current

    Output Current (mA)

    Eff

    icie

    ncy(

    %)

    VDD=5V

    VDD=3.3V

    VOUT=12VL=10µF

    Efficiency vs. Output Current

    Output Current (mA)

    Eff

    icie

    ncy(

    %)

    VOUT=5VL=10µH

    VDD=3V

    VDD=2V

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw6

    2 70

    2 80

    2 90

    3 00

    3 10

    3 20

    3 30

    -40 -20 0 20 40 60 80

    3. 20

    3. 22

    3. 24

    3. 26

    3. 28

    3. 30

    3. 32

    3. 34

    3. 36

    3. 38

    3. 40

    -40 -20 0 20 40 60 80

    4. 98

    4. 985

    4. 99

    4. 995

    5

    5. 005

    5. 01

    5. 015

    5. 02

    0 200 4 00 600 8 00 1 0 00

    3. 28

    3.285

    3. 29

    3.295

    3. 3

    3.305

    3. 31

    3.315

    3. 32

    0 200 400 600 8 00 10 00

    Typical Operating Characteristics (Cont.)

    Output Voltage vs. Output Current

    Out

    put V

    olta

    ge (

    V)

    Output Current (mA)

    VIN=2.5V

    VIN=1.2V VIN=2.0V

    VOUT=3.3V

    Output Voltage vs. Output Current

    Out

    put V

    olta

    ge (

    V)

    Output Current (mA)

    VIN=3.0V

    VIN=1.2VVIN=2.0V

    VOUT=5.0V

    Output Voltage vs. Temperature

    Temperature (°C)

    Out

    put V

    olta

    ge (

    V)

    Oscillation Frequency vs. Temperature

    Temperature (°C)

    Osc

    illat

    ion

    Fre

    quen

    cy (

    kHz)

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw7

    Typical Operating Characteristics (Cont.)

    0

    2 0

    4 0

    6 0

    8 0

    100

    120

    140

    160

    0 1 2 3 4 5 6

    1

    1 0

    100

    0 1 2 3 4 5 6

    Load Transient Waveform Load Transient Waveform

    EXT Driving Current vs. Supply Voltage EXT Rds,on vs. Supply Voltage

    VIN=3.3V, VOUT=12V, IOUT=5mA->50mA->5mAL=10µH, COUT=4.7µF+0.1µF, Cff=560pFCH1:VOUT, 100mV/DIV, Time=1ms/DIVCH4:IOUT, 20mA/DIV

    VIN=3.3V, VOUT=5V, IOUT=10mA->300mA->10mAL=10µH, COUT=22µF+22µF+0.1µF, Cff=33pFCH1:VOUT, 100mV/DIV, Time=1ms/DIVCH4:IOUT, 200mA/DIV

    Supply Voltage (V) Supply Voltage (V)

    Sin

    k/S

    ourc

    e C

    urre

    nt (

    mA

    )

    Rds

    ,on

    resi

    stan

    ce (

    Ω)

    ISINK(EXT=0.4V)

    ISOURCE(EXT=VDD-0.4V)

    EXT to VDD

    EXT to GND

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw8

    0

    5 0

    100

    150

    200

    250

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.50

    0.5

    1

    1.5

    2

    2.5

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

    0

    5 0

    10 0

    15 0

    20 0

    25 0

    30 0

    35 0

    0 0. 5 1 1. 5 2 2. 5 3 3.5 4 4. 5 5 5.50

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

    Typical Operating Characteristics (Cont.)

    Supply Voltage (V) Supply Voltage (V)

    Oscillation Frequency vs. Supply Voltage

    Osc

    illat

    ion

    Fre

    quen

    cy (

    kHz)

    Maximum Duty vs. Supply Voltage

    Max

    imum

    Dut

    y (%

    )

    Feedback Voltage vs. Supply Voltage

    Supply Voltage (V) Supply Voltage (V)

    Fee

    dbac

    k V

    olta

    ge (

    V)

    Sup

    ply

    Cur

    rent

    (µA

    )

    Supply Current vs. Supply Voltage

    Switching Mode

    Non Switching Mode

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw9

    Typical Operating Characteristics (Cont.)

    0.980

    0.985

    0.990

    0.995

    1.000

    1.005

    1.010

    1.015

    1.020

    -40 - 20 0 2 0 4 0 60 8 0

    Temperature (°C)

    Fee

    dbac

    k V

    olta

    ge (

    V)

    Feedback Voltage vs. Temperature

    PIN

    NO.

    APW7077 APW7077A NAME

    FUNCTION

    1 3 CE Chip enable input. High = operating mode; Low = shutdown mode

    5 5 EXT External MOSFET or transistor drive pin.

    4 4 GND Ground pins of the circuit.

    - 2 VDD Supply voltage.

    - 1 FB FB: Internal 1.0V reference voltage. Use a resistor divider to set the output voltage

    from and VOUT =

    +

    1R2R

    1 VFB.

    3 - NC No internal connection to the pin.

    2 - VOUT VOUT Provides bootstrap power to the IC.

    Pin Descripition

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw10

    Block Diagram

    DriverPWM

    Controller

    PhaseCompensation

    Soft-StartVoltage

    Reference

    RAMPGEN.

    EXT

    VOUT

    NC

    GND

    CE

    VDD

    VDD

    VDD

    Oscillator

    Error Amp. PWM Comp.

    APW7077

    VREF=1.0V

    VDD

    DriverPWM

    Controller

    PhaseCompensation

    Soft-StartVoltage

    Reference

    RAMPGEN.

    EXT

    VDD

    GND

    CE

    VDD

    VDD

    Oscillator

    Error Amp. PWM Comp.

    VDD

    APW7077A

    FB

    VDD

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw11

    Typical Application Circuit

    FB

    CE

    VDD

    EXT

    GND

    VIN

    R2820K/620K

    R1/75K

    APM2300A

    10µH/1.5A SS12

    4.7µF

    1µF

    2R22.5~5.2V

    CFF/1000pF

    APW7077A

    VOUT=(1+R2/R1)*1.0V

    9~12V/50mA

    0.1µF

    Application Circuit for APW7077A

    10µF

    CE

    VOUTEXT

    GND

    VIN VOUT=3.3V(APW7077-33)

    APM2300A

    SS12

    1µF

    APW7077

    NC

    VOUT=5V(APW7077-50)

    100µF

    100µF

    Application Circuit for APW7077

    10µF

    10µH/1.5A

    FB

    CE

    VDD

    EXT

    GND

    VIN

    R2/300K

    R1/75K

    APM2300A

    SS12

    CFF/33pF

    APW7077A

    VOUT=(1+R2/R1)*1.0V

    3~5V

    10µF

    100µF

    10µH/1.5A

    Application Circuit for APW7077A

    *R1≦100KΩ is recommended

    100µF

    1µF

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw12

    Function Description

    For APW7077A, the output voltage is adjustable. The out-put voltage is set using the FB pin and a resistor dividerconnected to the output as shown in the typical operatingcircuit. The internal reference voltage is 1.0V with 2%variation, so the ratio of the feedback resistors sets theoutput voltage according to the following equation:

    Operation

    The APW7077/A series are low noise fixed frequency volt-age-mode PWM DC-DC controllers, and consist of start-up circuit, reference voltage, oscillator, loop compensa-tion network, PWM control circuit, and low ON resistancedriver.APW7077 provides on–chip feedback resistor and loopcompensation network, the system designer can get theregulated fixed output voltage 3.3V and 5.0V with a smallnumber of external components, it is optimized for bat-tery powered portable products where large output cur-rent is required. APW7077A provides internal referencevoltage 1.0V and output voltage setting by external resis-tance for higher voltage requirement. The quiescent cur-rent is typically 120µA (VOUT = 3.3V, fsw = 300kHz), and canbe further reduced to about 1.0µA when the chip is dis-abled (VCE < 0.7V).The APW7077/A operation can be best understood by re-ferring to the block diagram. The error amplifier monitorsthe output voltage via the feedback resistor divider by com-paring the feedback voltage with the reference voltage.When the feedback voltage is lower than the referencevoltage, the error amplifier output will decrease. The erroramplifier output is then compared with the oscillator rampvoltage at the PWM controller.When the feedback voltage is higher than the referencevoltage, the error amplifier output increases and the dutycycle decreases. When the external power switch is on,the current ramps up in the inductor, storing energy in themagnetic field. When the external power switch is off, theenergy stored in the magnetic field is transferred to theoutput filter capacitor and the load. The output filter ca-pacitor stores the charge while the inductor current ishigher than the output current, and then sustains the out-put voltage until the next switching cycle.As the load current decreases, the switch transistor turnson for a shorter duty cycle. Under the light load condition,the controller will skip switching cycles to reduce powerconsumption, therefore, high efficiency is maintained atlight loads.

    Fixed Output Voltage (for APW7077 Only)

    The APW7077 VOUT is set by an integrate feedback resis-tor network. This is trimmed to a selected voltage 3.3V or5.0V with an accuracy of +/-2.5%.

    Setting Output Voltage (for APW7077A only)

    1.0V)R1

    R2(1V OUT ×+=

    Soft-Start

    Oscillator

    The oscillator frequency is internally set to 300kHz at anaccuracy of +/-10% and with low temperature coefficientof 3.3%/°C.

    Enable/Disable Operation

    The APW7077/A series offer IC shutdown mode by chipenable pin (CE pin) to reduce current consumption. Whenvoltage at pin CE is greater than 1.2V, the chip will beenabled, which means the controller is in normaloperation. When voltage at pin CE is less than 0.7V, thechip is disabled, which means IC is shutdown and qui-escent current becomes 1µA.

    To avoid the thermal noise from feedback resistor, (R1+R2)resistance smaller than 1mΩ and 1% variation isrecommended.

    There is a soft-start function integrated in APW7077/Aseries to avoid the over shooting when power on. Whenpower is applied to the device, the soft-start circuit firstpumps up the output voltage to let VDD (or VOUT) approxi-mately 1.65V at a fixed duty cycle 50%. This is the voltagelevel at which the controller can operate normally. Whensupply voltage more than 1.65V, the internal referencevoltage will be ramp up to let output voltage reach to set-ting voltage without over shooting issue whenever heavyload or light load condition. The soft-start time 25ms issetting by internal circuit.

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw13

    Function Description (Cont.)

    Enable/Disable Operation (Cont.)

    The CE pin is pulled high to VDD (or VOUT) by internal resistor,and this resistance is greater than 1mΩ. Therefore, thischip will enable normally when CE pin is floating.Important: DO NOT apply a voltage between 0.7V and 1.2Vto pin CE as this is the CE pin’s hysteresis voltage range.Clearly defined output states can only be obtained by ap-plying voltage out of this range.

    Compensation

    The device is designed to operate in continuous conduc-tion mode. An internal compensation circuit was designedto guarantee stability over the full input/output voltage andfull output load range.

    Step-Up Converter Operating Mode

    The step-up DC-DC controller is designed to operate incontinuous conduction mode (CCM) or discontinuousconduction mode (DCM).For a step up converter in a CCM, the duty cycle D is givenby:

    OUT

    INOUT

    VVVD −=

    In higher output voltage or small output current application,the step-up DC-DC controller operated in discontinuousconduction mode almost. For a step-up converter in aDCM, the duty cycle D is given by:

    External components values can be calculated from theseequations, however, the optimized value should obtainedthrough experimental results.

    Critical Inductance Value

    The minimum value of inductor to maintain continuousconduction mode can be determined by the followingequation.

    A system can be designed to operate in continuous modefor load currents above a certain level usually 20 to 50%(Ratio define as 0.2~0.5) of full load at minimum inputvoltage. When IO smaller than (IO*Ratio), the controllersystem will into DCM.∆IL is the ripple current flowing through the inductor, whichaffects the output voltage ripple and core losses. Basedon 20%(Ratio=0.2) current ripple, VOUT=5V, IO=1A andVIN =1.8V system, the inductance value is calculated as6.9µH and a 6.8µH inductor is used.The inductor current ripple has an expression :

    Lfsw

    DVI

    INL

    ×

    ×=∆

    The maximum DC input current can be calculated as :

    (min)V

    (max)IV(max)I

    IN

    OOUTL

    ×=

    The inductor peak current can be calculated as :

    Inductor Selection

    APW7077/A series are designed to work well with a 6.8 to12µH inductors. In most applications, 10µH is a suffi-ciently low value to allow the use of a small surface mountcoil but large enough to maintain low ripple. Lower in-ductance values not only supply higher output current butalso increase the ripple and reduce efficiency. Higher in-ductor values not only reduce ripple and improve efficiencybut also limit output current. The inductor should havesmall DCR, usually less than 0.2Ω, to minimize loss. Itis necessary to choose an inductor with a saturation cur-rent greater than the peak current which the inductor willencounter in the application.

    2I

    VIVI L

    IN

    OOUTPK

    ∆+×=

    −⋅

    ⋅⋅= 1

    VV

    VV

    RTL2D

    IN

    OUT

    IN

    OUT

    LOADS

    Ratio IfD)D(1VL

    OSW

    2OUT

    ××−×≥

    Notes:D - On-time duty cycleIL - Average inductor currentIPK - Peak inductor currentIO - Desired dc output currentVIN - Nominal operating dc input voltageVOUT - Desired dc output voltageESR - Equivalent series resistance of the outputcapacitor

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw14

    Function Description (Cont.)

    The inductor ripple current is important for a few reasons.One reason is the peak switch current will be the averageinductor current (IL) plus ∆IL.As a side note, discontinuous operation occurs when theinductor current falls to zero during a switching cycle, or∆IL is greater than the average inductor current. Therefore,continuous conduction mode occurs when ∆IL is lessthan the average inductor current. Care must be taken tomake sure that the switch will not reach its current limitduring normal operation.The inductor must also be sized accordingly. It shouldhave a saturation current rating higher than the peak in-ductor current expected. The output voltage ripple is alsoaffected by the total ripple current.

    Inductor Selection

    Output Capacitor

    The output capacitor is used for sustaining the outputvoltage when the external MOSFET or bipolar transistoris switched on and smoothing the ripple voltage.The output capacitance needed is calculated in equation.

    The ESR is also important because it determines thepeak to peak output voltage ripple according to the ap-proximated equation:

    With 1% output voltage ripple, low ESR capacitor shouldbe used to reduce output ripple voltage. In general, a100µF to 220µF low ESR (0.10Ω to 0.30Ω) Tantalum ca-pacitor should be appropriate. The choice of output ca-pacitors is also somewhat arbitrary and depends on thedesign requirements for output voltage ripple. A minimumvalue of 10µF is recommended and may be increased toa larger value.

    O

    OUT

    IVESR∆

    ∆=

    OUTSW

    O(max)OUT(min) Vf

    DIC

    ∆××

    =

    Input Capacitor

    The input capacitor can stabilize the input voltage andminimize peak current ripple from the source. The sizeused is dependant on the application and board layout. Ifthe regulator will be loaded uniformly, with very little load

    changes, and at lower current outputs, the input capacitorsize can often be reduced. The size can also be reducedif the input of the regulator is very close to the sourceoutput. The size will generally need to be larger for appli-cations where the regulator is supplying nearly the maxi-mum rated output or if large load steps are expected. Aminimum value of 10µF should be used for the lessstressful conditions while a 22µF to 47µF capacitor maybe required for higher power and dynamic loads. SmallESR Tantalum or ceramic capacitor should be suitableand the total input ripple voltage can be calculated:

    Design Example

    It is supposed that a step-up DC-DC controller with 3.3Voutput delivering a maximum 1000mA output current with100 mV output ripple voltage powering from a 2.4V inputis to be designed.Design parameters:

    VIN = 2.4VVOUT = 3.3VIO = 1.0ADVOUT = 100mVfSW= 300kHzRatio = 0.2 (typical for small output ripple voltage)

    Assume the diode forward voltage and the transistor satu-ration voltage are both 0.3V. Determine the maximumsteady state duty cycle at VIN = 2.4V:

    D=0.273Calculate the maximum inductance value which can gen-erate the desired current output and the preferred deltainductor current to average inductor current ratio:

    L=10µHDetermine the average inductor current and peak induc-tor current:

    IL=1.38A∆IL=0.218AIpk=1.45A

    Therefore, a 10µH inductor with saturation current largerthan 1.73A can be selected as the initial trial.Determine the output capacitance value for the desiredoutput ripple voltage:

    COUT=33µF

    ESRIV LIN ×∆=∆

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw15

    Function Description (Cont.)

    The ESR of the output capacitor is 0.05Ω. Therefore, aTantalum capacitor with value of 33µF to 47µF and ESR of0.05Ω can be used as the output capacitor. However, ac-cording to experimental result, 220µF output capacitorgives better overall operational stability and smaller ripplevoltage.

    Design Example (Cont.)

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw16

    Component Selection

    Diode Selection

    The output diode for a boost regulator must be chosencorrectly depending on the output voltage and the outputcurrent. The diode must be rated for a reverse voltageequal to or greater than the output voltage used. The av-erage current rating must be greater than the maximumload current expected, and the peak current rating mustbe greater than the peak inductor current. During shortcircuit testing, or if short circuit conditions are possible inthe application, the diode current rating must exceed theswitch current limit. The diode is the largest source ofloss in DC-DC converters. The most importance param-eters which affect their efficiency are the forward voltagedrop, VF, and the reverse recovery time, tr. The forwardvoltage drop creates a loss just by having a voltage acrossthe device while a current flowing through it. The reverserecovery time generates a loss when the diode is re-verse biased, and the current appears to actually flow back-wards through the diode due to the minority carriers be-ing swept from the P-N junction. Using Schottky diodeswith lower forward voltage drop will decrease power dis-sipation and increase efficiency.

    External Switch Transistor

    The APW7077/A can drive up to 110mA of gate drivecurrent. An N-channel MOSFET with a relatively low thresh-old voltage, low gate charge and low RDS(ON) is requiredto optimize overall circuit performance. The APW7077/AEvaluation Board uses a APM2300A. This NMOS devicewas chosen because it demonstrates an RDS_ON of45mΩ and a total gate charge Qg of 12nC (typ.).

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw17

    Output Capacitor

    Layout Consideration

    In APW7077A high output voltage application circuit, theinput voltage (VIN) is tied to chip supply pin (VDD). The inputcapacitor CIN in VIN must be placed close to the IC. This willreduce copper trace resistance which effects input volt-age ripple of the IC. For additional input voltage filtering, a1µF capacitor can be placed in parallel with CIN, close tothe VDD pin, to shunt any high frequency noise to theground.

    Surface mount board layout is a critical portion of the totaldesign. The footprint for the semiconductor packagesmust be the correct size to insure proper solder connec-tion interface between the board and the package. Withthe correct pad geometry, the packages will self alignwhen subjected to a solder reflow process.

    The output capacitor should be placed close to the outputterminals to obtain better smoothing effect on the outputripple.The output capacitor, COUT, should also be placed closeto the diode. Any copper trace connections for the COUTcapacitor can increase the series resistance, which di-rectly effects output voltage ripple and efficiency.

    Feedback Network

    On APW7077A application, the feedback networks shouldbe connected directly to a dedicated analog ground planeand this ground plane must connect to the GND pin.If no analog ground plane is available, this ground musttie directly to the GND pin. The feedback network, resis-tors R1 and R2, should be kept close to the FB pin andaway from the inductor, to minimize copper trace connec-tions that can inject noise into the system. Prevent con-nect feedback network on output decoupling MLCC.

    Ground Plane

    One point grounding should be used for the output powerreturn ground, the input power return ground, and thedevice switch ground to reduce noise. The input groundand output ground traces must be thick enough for cur-rent to flow through and for reducing ground bounce.

    Power Signal Traces

    Low resistance conducting paths should be used for thepower carrying traces to reduce power loss so as to im-prove efficiency (short and thick traces for connecting theinductor L can also reduce stray inductance). Trace con-nections made to the inductor and schottky diode shouldbe minimized to reduce power dissipation and increaseoverall efficiency.

    Switching Noise Decoupling Capacitor

    On APW7077 fixed voltage application, a 0.1µF ceramiccapacitor should be placed close to the VOUT pin and GNDpin of the chip to filter the switching spikes in the outputvoltage monitored by the VOUT pin.

    Input Capacitor

    Inductor

    To minimize copper trace connections that can inject noiseinto the system, the inductor, switch, and Schottkydiode should be placed as close as possible to minimizethe noise coupling into other circuits.

    Minimum Recommended Footprint for Surface MountedApplications

    75mil

    50mil

    20mil

    15mil

    100mil

    150m

    il

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw18

    Layout Consideration (Cont.)

    Demo Board Circuit Layout

    Minimum Recommended Footprint for Surface MountedApplications

    Top Layout

    1300

    mil

    1600mil

    Bottom Layer

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw19

    Package Information

    SOT-23-5

    MAX.

    0.057

    0.051

    0.024

    0.006

    0.009

    0.0200.012

    L 0.30

    0

    e

    e1

    E1

    E

    D

    c

    b

    0.08

    0.30

    0.60 0.012

    0.95 BSC

    1.90 BSC

    0.22

    0.50

    0.037 BSC

    0.075 BSC

    0.003

    MIN.

    MILLIMETERS

    SYMBOL

    A1

    A2

    A

    0.00

    0.90

    SOT-23-5

    MAX.

    1.45

    0.15

    1.30

    MIN.

    0.000

    0.035

    INCHES

    °8°0 °8°0

    b c

    e1

    0L

    VIEW A0.

    25

    GAUGE PLANESEATING PLANE

    AA2

    A1

    e

    D

    EE1

    SEEVIEW A

    1.40

    2.60

    1.80

    3.00

    2.70 3.10 0.122

    0.071

    0.1180.102

    0.055

    0.106

    Note : 1. Follow JEDEC TO-178 AA. 2. Dimension D and E1 do not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil per side.

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw20

    Application A H T1 C d D W E1 F

    178.0±2.00 50 MIN. 8.4+2.00 -0.00 13.0+0.50 -0.20

    1.5 MIN. 20.2 MIN. 8.0±0.30 1.75±0.10 3.5±0.05

    P0 P1 P2 D0 D1 T A0 B0 K0 SOT-23-5

    4.0±0.10 4.0±0.10 2.0±0.05 1.5+0.10 -0.00 1.0 MIN. 0.6+0.00

    -0.40 3.20±0.20 3.10±0.20 1.50±0.20

    Carrier Tape & Reel Dimensions

    Devices Per Unit

    (mm)

    Package Type Unit Quantity

    SOT-23-5 Tape & Reel 3000

    A

    E1

    AB

    W

    F

    T

    P0OD0

    BA0

    P2

    K0

    B0

    SECTION B-B

    SECTION A-A

    OD1

    P1

    H

    T1

    A

    d

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw21

    Taping Direction Information

    Classification Profile

    SOT-23-5

    USER DIRECTION OF FEED

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw22

    Classification Reflow ProfilesProfile Feature Sn-Pb Eutectic Assembly Pb-Free Assembly

    Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts)

    100 °C 150 °C

    60-120 seconds

    150 °C 200 °C

    60-120 seconds

    Average ramp-up rate (Tsmax to TP)

    3 °C/second max. 3°C/second max.

    Liquidous temperature (TL) Time at liquidous (tL)

    183 °C 60-150 seconds

    217 °C 60-150 seconds

    Peak package body Temperature (Tp)*

    See Classification Temp in table 1 See Classification Temp in table 2

    Time (tP)** within 5°C of the specified classification temperature (Tc)

    20** seconds 30** seconds

    Average ramp-down rate (Tp to Tsmax) 6 °C/second max. 6 °C/second max.

    Time 25°C to peak temperature 6 minutes max. 8 minutes max.

    * Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum. ** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.

    Table 1. SnPb Eutectic Process – Classification Temperatures (Tc) Package

    Thickness Volume mm3

  • Copyright ANPEC Electronics Corp.Rev. A.7 - Jun., 2009

    APW7077/A

    www.anpec.com.tw23

    Customer Service

    Anpec Electronics Corp.Head Office :

    No.6, Dusing 1st Road, SBIP,Hsin-Chu, Taiwan, R.O.C.Tel : 886-3-5642000Fax : 886-3-5642050

    Taipei Branch :2F, No. 11, Lane 218