Anaesthesia for morbidly Obese Patients and Bariatric Surgery

76
ANAESTHESIA FOR MORBIDLY OBESE PATIENTS AND BARIATRIC SURGERY DR.SANDEEP.G.B. NARAYANA MEDICAL COLLEGE NELLORE

description

The presentation will let you know about the Obese Patients and Bariatric Surgery

Transcript of Anaesthesia for morbidly Obese Patients and Bariatric Surgery

Page 1: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

ANAESTHESIA FOR MORBIDLY OBESE PATIENTS AND BARIATRIC SURGERY

DR.SANDEEP.G.B.NARAYANA MEDICAL COLLEGE

NELLORE

Page 2: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

OVERVIEW

• DEFINITION

• EPIDEMIOLOGY

• SCALES

• PATHOPHYSIOLOGY

• OBESITY – ANAESTHESIA CHALLENGES

• BARIATRIC SURGERY & ITS COMPLICATIONS

Page 3: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

DEFINITION

Body weight that exceeds the

expected or ideal weight by more than

10%, taking into account height, age,

body build and sex.

Page 4: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

EPIDEMIOLOGY

• Incidence:

– Worldwide : 20 to 30% of adults

– India : 10-15% of adults

Page 5: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

Aetiology

Page 6: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

MEASURING SCALES

• BODY MASS INDEX (Quetelet's index) (Kg/m2)

Page 7: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• WAIST CIRCUMFERENCE

Page 8: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

PATHOPHYSIOLOGY

• Resting blood flow to fat is 2 to 3 ml/100gm/min.

• With increasing obesity the percentage of perfusion to fat decreases {i,e not in direct proportion}

• 1 kg increase in fat above IBW needs 20 to 30 ml increase in C.O.

• For every 13.5 kg of fat added, app. 25 miles of neovascularisation is added to the body

Page 9: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

CARDIOVASCULAR SYSTEM

Page 10: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

CARDIOVASCULAR SYSTEM

Page 11: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

OBESITY CARDIOMYOPATHY

• Various heart tissues are replaced by fat cells and become dysfunctional.

• Conduction defects, pressure induced atrophy of myocardial cells.

• Secrete adipokines which are deleterious to adjacent cells.

• ↑C.O and Blood Volume LV dilatation and hypertrophy diastolic dysfunction

Page 12: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• If wall thickening fails to keep in pace with chamber dilatation then systolic failure occurs.

• This leads to cardiomyopathy CCF and sudden cardiac arrest.

Page 13: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

COAGULOPATHY

• Hypercoaguability :

– Obese individuals have higher levels of Fibrinogen, Factor VII, Factor VIII, Von Willebrand Factor, And Plasminogen Activator Inhibitor-1 (PAI-1).

– Hypofibrinolysis

Page 14: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

RESPIRATORY SYSTEM

• Restrictive lung disease

• Obesity hypoventilation syndrome (OHS)

• Obstructive sleep apnea (OSA)

• Corpulmonale

Page 15: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

Increased fatDecreased respiratory muscle function

Decreased chest wall complianceIncreased elastic resistance

Increased pulmonary blood flow

Decreased lung compliance

Decreased total respiratory compliance in supine position

↓FRC, ↓VC, ↓TLC

Shallow & rapid breathingIncreased work of breathing

Limited maximum ventilatory capacity

RESTRICTIVE LUNG DISEASE

FRC below CCSmall airway closure

V/Q mismatch & left to right shuntArterial hypoxemia

Page 16: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• Reduction in FRC is primarily a result of REDUCED ERV, but the relationship between FRC and closing capacity, the volume at which small airways begin to close, is adversely affected.

• Residual volume and closing capacity are unchanged

• Anesthesia worsens this situation such that up to a 50% reduction in FRC occurs in the obese anesthetized patient compared with 20% in the nonobese individual.

Page 17: Anaesthesia for morbidly Obese Patients and Bariatric Surgery
Page 18: Anaesthesia for morbidly Obese Patients and Bariatric Surgery
Page 19: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

DEFINITIONS:

OBSTRUCTIVE SLEEP APNEA

1. Complete cessation of airflow.

2. Lasting 10 seconds or longer

3. 5 0r more times per hour of sleep

4. Decrease of atleast 4% in SaO2

OBSTRUCTIVE SLEEP HYPOPNEA

1. Partial reduction of airflow of greater than 50%.

2. Lasting atleast 10 seconds

3. 15 or more times per hour of sleep

4. Decrease of atleast 4% in SaO2

Page 20: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• Diagnosis is made by Polysomnography and is reported as the APNEA/HYPOPNEA INDEX (AHI).

• AHI is the Total number of episodes of apneaand hypopnea divided by the total sleep time.

Normal : 5 to 10 events per hour

Mild : 10 to 15 events per hour

Moderate: 15 to30 events per hour

Severe : > 30 events per hour

Page 21: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• TOTAL AROUSAL INDEX is the total number of arousals per hour.

• RESPIRATORY DISTURBANCE INDEX is the sum of total arousal index and apnea hypopneaindex.

• Patients diagnosed to have maoderate/ severe OSA have to undergo CPAP prior to elective surgery

Page 22: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

Duration of CPAP

EFFECT

2 weeks Corrects abnormal ventilatory drive

3 weeks Increases LVEF in CHF

4 weeks Reduces B.P, HR, 35% increase in E.F

4-6 weeks Reduced tongue volume & increased pharyngeal space

8 weeks Reduction in CVS risk

3-6 months Reduction in PAH

Page 23: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

OBESITY HYPOVENTILATION SYNDROME (OHS)/PICKWIKIAN SYNDROME

• Presence of obesity (BMI >30) and awake arterial hypercapnia (PaCO2 >45mm Hg) in the absence of known causes of hypoventilation.

• Results from long term OSA

Page 24: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

Main ventilatory impairment is :

•Alveolar hypoventilation irrespective of intrinsic lung disease•Day time hypersomnalence•Hypercapnia, hypoxemia and polycythemia•Pulmonary hypertension and right heart failure

Impaired ventilatory response to hypoxia + hypercapnia↓

Mechanical load of obesity + upper airway obstruction ↓

Prolonged hypoxia + Hypercapnia at night↓

Alteration in control of breathing↓

Progressive desensitization of respiratory centres to hypercapnia↓

Type II Resp. Failure

Page 25: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

PARAMETER OHS OSA

Gender Males = females Males > females

Obesity (BMI ≥30 kg/m2) Yes May be

Ventilation pattern Hypoventilation Normal

PaCO2 (mm Hg) Increased (>45 mm Hg) Normal (increased during apnea)

Pao2 (mm Hg) Decreased; most severe during REM sleep

Normal (decreased during apnea)

Sao2 (%) Decreased Normal (decreased during apnea)

Nocturnal upper airway obstruction

No Yes

Pulmonary hypertension More common and severe Less common

Nocturnal monitoring Increased PaCO2 during sleep to >10 mm Hg from awake supine values. O2 desaturationduring sleep not explained by apnea or hypopnea

≥5 obstructive breathing events per hour of sleep

Page 26: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

GASTROINTESTINAL SYSTEM

• Gastric volume and acidity are increased.

• Delayed gastric emptying

– because of increased abdominal mass that causes antral distention

– gastrin release

– a decrease in pH with parietal cell secretion.

– increased intragastric pressure,

– Increased frequency of transient LES relaxation

Page 27: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• An increased incidence of hiatal hernia and gastroesophageal reflux also increase aspiration risk.

• Gastric emptying is faster with high energy content intake such as fat emulsions, but because of larger gastric volume, the residual volume is increased.

• Fatty liver & Non alcoholic fatty liver disease

Page 28: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

RENAL AND ENDOCRINE SYSTEMS

• Impaired glucose tolerance Type II D.M

• Subclinical hypothyroidism with electrolyte imbalance

• Glomerular hyperfiltration

• Excessive weight gain causes:-– increases renal tubular resorption

– impairs natriuresis through activation of the sympathetic and renin-angiotensin system as well as physical compression of the kidney.

– Loss of nephron function if prolonged obesity

Page 29: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

METABOLIC SYNDROME

• FEATURES:-– Abdominal obesity

– Atherogenic dyslipidemia

– Hypertension

– Insulin resistance ± glucose tolerance

– Proinflammatory state

– Prothrombotic state

– Others: endocrine dysfn.,microalbuminuria, PCOS, hypoandrogenism, NAFLD, hyperuricemia

Page 30: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• DIAGNOSIS:- 3 of the following

Page 31: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

PHARMACOLOGY

• Drug dosing should take into consideration the volume of distribution (VD) for administration of the loading dose, and on the clearance for the maintenance dose.

• Dosing should be calculated based on LBW/TBW.

Page 32: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• IBW (kg) = height (cm) – x

where x is 100 for adult males

105 for adult females.

• Lean body weight (LBW) is the total body weight (TBW) minus the adipose tissue

• In morbidly obese patients, increasing the IBW by 20 to 30% gives an estimate of LBW.

Page 33: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• The VD in obese patients is affected by

– reduced total body water,

– increased total body fat,

– increased lean body mass,

– Altered tissue protein binding,

– increased blood volume & cardiac output,

– increased blood concentrations of free fatty acids, cholesterol, and

– organomegaly.

Page 34: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• Plasma protein binding– Adsorption of lipophilic drugs to lipoproteins

(increases free fraction of drug)

– Plasma albumin unchanged

– Increased alpha 1 glycoprotein

• Drug clearance– Increased RBF

– Increased GFR

– Increased tubular secretion

– Decreased Hepatic blood flow in CCF

Page 35: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• Increased Vd prolongs drug elimination half-life even when clearance is unchanged or increased.

• Drugs that undergo phase I metabolism (oxidation, reduction, hydrolysis) are generally unaffected by changes induced by obesity, while phase II reactions (glucuronidation, sulfation) are enhanced

Page 36: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• Renal clearance of drugs is increased .

• Highly lipophilic substances such as barbiturates and benzodiazepines show significant increases in VD for obese individuals

• Exceptions to this rule include the highly lipophilic drugs Digoxin, Procainamide, And Remifentanil

Page 37: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• IBW- Propofol, Vec, Rocuronium, Remifentanyl

• TBW- Thio, Midaz, Sch, Atra, Cis-atra, Fentanyl, Sufentanil

• Maintainence- Propofol- TBW

Sufentanil- IBW

Page 38: Anaesthesia for morbidly Obese Patients and Bariatric Surgery
Page 39: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

INVESTIGATIONS

• CBC, FBS,RFT,SCREENING,LFT• ECG

– Low voltage complexes– LVH/Strain– Prolonged QT/QTc– Inferolateral T wave abnormalities– RAD/RBBB– P- Pulmonale

• CXR, X –ray neck• ECHO• Polysomnography• Lipid profile

Page 40: Anaesthesia for morbidly Obese Patients and Bariatric Surgery
Page 41: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

TREATMENT

• Medical treatment

– Behavioural modifications

– Dietary & herbal medications

– Phamacological: Sibutramine/ Orlistat

– Implantable electrical stimulators

• Surgical treatment- BARIATRIC SURGERY

Page 42: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

BARIATRIC SURGERY

• Malabsoptive- jejenoilealbypass / RYGB/ biliopancreatic diversion

• Restrictive- Gastroplasty / adjustable gastric banding

Page 43: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

PREOPERATIVE CONSIDERATIONS

• PAC:-– Look for HTN/DM/CCF/OHS

• OHS -AHI >30- rapid and severe desaturation on induction

-CPAP>10 – difficult face mask ventilation

– Previous h/o surgeries/ anesthetic administration/ airway problems/ICU admissions

• STOP BANG:– Snoring, Tiredness, Observed apnea, blood

Pressure, BMI, Age, Neck circumference, Gender

Page 44: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• For repeat bariatric surgery

– Screen for metabolic and nutritional abnormalities.

– Acute postgastric reduction surgery neuropathy.

– Electrolyte and coagulation indices

• Evidence of OSA and OHS should be sought

– associated with difficult laryngoscopy

– a neck circumference >40 cm correlates with an increased probability of OSA.

– patients on CPAP at home should be instructed to bring it with them as it may be needed postoperatively

Page 45: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• Lab investigations- lipid profile / FBS/ LFT/ CBC/ ECG/2D ECHO/RFT/ VIT-B12/ THYROTROPIN/PFT

• Arterial blood gas measurements

• NBM for 12 hrs

• Avoid pre operative sedatives & hypnotics

• Multimodal antiemetic therapy

• Continue routine medications

Page 46: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

CONCURRENT, PREOPERATIVE, AND PROPHYLACTIC MEDICATIONS

• Usual medications should be continued except insulin and OHA.

• Antibiotic prophylaxis

• Prophylaxis against Aspiration Pneumonitis and DVT.

• Dexmedetomidine, because of its minimal respiratory depressant effects, may be considered for anxiolysis

Page 47: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• DVT prophylaxis:

– Risk factors: venous stasis, BMI ≥60, truncalobesity, and OHS/OSA

– Subcutaneous heparin 5,000 IU administered before surgery and repeated every 8 to 12 hours until the patient is fully mobile

Or

Enoxaparin, 40 mg, injected subcutaneously every 12 hours

Page 48: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

AIRWAY

• Limitation of movement of the atlantoaxial joint & cervical spine by upper thoracic and low cervical fat pads; excessive tissue folds inthe mouth and pharynx;

• Short, thick neck• Suprasternal, presternal, and posterior cervical fat;• A very thick submental fat pad.

Page 49: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• OSA

• Excess pharyngeal tissue deposited in the lateral pharyngeal walls may not be noticed during routine airway examination

• Neck circumference has been identified as the single biggest predictor -5% with a 40-cm & 35% probability at 60-cm

Page 50: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

INTRAOPERATIVE CONSIDERATIONS

• POSITIONING

– Specially designed tables or two regular operating tables

– operating tables capable of holding up to 455 kg, with a little extra width to accommodate the extra girth

– Strapping obese patients to the operating table in combination with a malleable bean bag helps keep them from falling off the operating table.

– protecting pressure areas - pressure sores, neural injuries, and rhabdomyolysis (carpal tunnel syndrome).

Page 51: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• SUPINE POSITIONING

– Ventilatory impairment

– Inferior vena cava and aortic compression

– FRC and oxygenation are decreased

– Head-down positioning further worsens FRC

– Significant increase in oxygen consumption and

cardiac output.

Page 52: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• Head-up position & Intraoperative PEEP can

– decrease alveolar-arterial oxygen tension difference

– increase total respiratory compliance

– Decreases peak and plateau airway pressures

• Lateral decubitus position allows for better diaphragmatic excursion and should be favoured over prone positioning

Page 53: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

MONITORING

• Std monitoring

• Invasive arterial pressure monitoring may be indicated for the super morbidly obese.

• BIS and entropy monitoring to titrate depth of anaesthesia

• Monitoring of neuromuscular junction

• Central venous catheterization may also be required for intravenous access

Page 54: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

INDUCTION, INTUBATION, AND MAINTENANCE

• Adequate preoxygenation is vital & performed with 10 L/min of oxygen to avoid rapid desaturation.

• Application of PPV during preoxygenation decreases atelectasis formation and improves oxygenation.

• 4 vital capacity breaths with 100% O2 within 30 seconds have been suggested as superior to the usually recommended 3 minutes of 100% preoxygenation in

obese patients.

Page 55: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• Larger doses of induction agents may be required

• Increased dose of Sch is necessary because of an increase in activity of pseudocholinesterase.

Page 56: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

INTUBATION

• If a difficult intubation is anticipated, awake intubation is a prudent approach.

• Sedative-hypnotic in minimal doses.

• Sedation with Dexmedetomidine provides adequate anxiolysis and analgesia without respiratory depression.

• Hypoxia and aspiration of gastric contents should be prevented at all costs.

Page 57: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

STACKING

Page 58: Anaesthesia for morbidly Obese Patients and Bariatric Surgery
Page 59: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• RAMPING ADVANTAGES:– Improves laryngoscopic view

– The gradient for passive regurgitation is reduced

– The safe apnea period is increased.

• 25-30 degrees reverse trendelenburg position with manual PEEP/NIPPV improves oxygenation

• For HELP placement, the preformed Troop Elevation Pillow may be used in place of folded towels or blankets .

Page 60: Anaesthesia for morbidly Obese Patients and Bariatric Surgery
Page 61: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

MAINTAINENCE

• Continuous infusion of a short-acting intravenous agent, such as Propofol, or any of the inhalation agents, or a combination, may be used.

• Inhalatinal agents that are minimally metabolized are useful agents, with Desflurane possibly providing better hemodynamic stability and faster washout.

Page 62: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• Rapid elimination and analgesic properties make N2O an attractive choice, but high oxygen demand limits its use.

• Short-acting opioids, combined with a low-solubility inhalation agents, facilitate a more rapid emergence without increasing opioid-related side effects.

• Cis-atracurium possesses an organ-independent elimination profile and is a favorable NDMR for use during maintenance.

Page 63: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

INTRAOPERATIVE OXYGENATION

• No effect on increasing TV (Pressure controlled ventilation with low tidal volumes 6-8ml/kg )

• VC and recruitment maneuvers – Increased oxygenation

– Decrease atelectasis

– Shortens PACU stay

– Less respiratory complications.

• The recruitment maneuver consists of providing escalating levels of PEEP in 5 cm increments upto a maximum airway pressure of 40-42cm H2O, continue for 10 breaths and reduce PEEP back to basal levels.

Page 64: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

FLUID MANAGEMENT:

• Although the total circulating blood volume is increased, it is less than normal on a weight basis, since fat contains little water.

• Adequate preoperative hydration and higher intraoperative fluid administration (20-40 ml/kg) reduce postoperative complications

Page 65: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• Blood loss is usually greater.

• Excess adipose tissue may mask peripheral perfusion, making fluid balance difficult to assess.

• Early infusion of colloids and blood products may be necessary because they are less able to compensate for small volumes lost, – but rapid infusion of excessive amounts should be

avoided because pre-existing CCF is common

Page 66: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

INTRAGASTRIC CALIBRATION TUBE

• Intragastric calibration tube is used instead of a Ryle’s tube.

• It is a bilumen tube with one port for suction and another port in which 15-20ml of saline is injected to inflate the intragastric balloon.

• This balloon enables the surgeon to place the gastric band just below the esophagogastricjunction which is then tightened and helps in deciding the size of the gastric pouch.

Page 67: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

EMERGENCE

• Prompt extubation reduces the likelihood of ventilator-dependence.

• Patient should be fully awake, follow oral commands, have adequate muscle strength, Adequate tidal volume and brisk airway reflexes.

• Reverse residual neuromuscular blockade.

• Extubated in the same position as for intubation

• Supplemental oxygen should be administrated after extubation.

Page 68: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

LIFTING AND TRANSFERING

Page 69: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• There is an increased incidence of atelectasis.

• Initiation of CPAP or BiPAP may improve oxygenation but does not facilitate CO2 elimination.

• Adequate analgesia, use of a properly fitted elastic binder for abdominal support, early ambulation, deep breathing exercises, and incentive spirometryare all useful adjuncts.

• Pulseoximetry and ABG should be monitored appropriately.

Page 70: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

REGIONAL ANESTHESIA

• Help avoid potential intubation difficulties

• Difficult because of inability to identify usual bony landmarks

• Central neuraxial block is easier in the lumbar region because the midline in this area has a thinner layer of fat than other areas of the spinal column.

• Longer needles and the sitting position are other useful tools that facilitate central neuraxialanesthesia.

Page 71: Anaesthesia for morbidly Obese Patients and Bariatric Surgery
Page 72: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• Epidural vascular engorgement and fatty infiltration reduce the volume of the space, making dose requirements of L.A 20 to 25% less in obese patients

• The height of a SAB can be unpredictable because of considerable upward spread within a short time, causing cardiorespiratorycompromise.

Page 73: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

• A continuous catheter SAB therefore seems an attractive choice that allows careful titration of the L.A to desired effect and level.

• Spirometric parameters such as PEFR and maximum mid expiratory flow are reduced in obese patients receiving subarachnoid block

• Combined epidural and general anesthesia

Page 74: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

CONCLUSION

ComorbiditiesPositive pressure ventilationDrug dosingAirway & intubation problemsRapid desaturationPositioning Post operative hypoxiaTechnical difficulties in regional techniques.Higher level of blockade

Page 75: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

REFERENCES

• Miller’s Anesthesia

• Barasch clinical anesthesia

• Stoeltings coexisting diseases

• Internet

Page 76: Anaesthesia for morbidly Obese Patients and Bariatric Surgery

Thank you