An object undergoing free fall has an acceleration of 9.8118m/s 2. This varies from the equator when...

Click here to load reader

download An object undergoing free fall has an acceleration of 9.8118m/s 2. This varies from the equator when it is 9.7803m/s 2 to the poles when it is 9.8322m/s.

of 26

Transcript of An object undergoing free fall has an acceleration of 9.8118m/s 2. This varies from the equator when...

Free fall

An object undergoing free fall has an acceleration of 9.8118m/s2 . This varies from the equator when it is 9.7803m/s2 to the poles when it is 9.8322m/s2Free fall

Factors affecting gThe value of g can vary due to the following factors:(a) distance above sea level - g is less up a mountain or in a satellite or plane;(b) on the equator - the distance from the centre of the Earth is greater here, because of the non-spherical shape of the Earth, and g is smaller;(c) above mineral deposits there is a greater attraction and so g is larger;(d) the centripetal force of the rotating Earth causes a variation in g from Equator to pole.Acceleration due to gravity and gravitational field strengthWeight = mass x gravitational field strength.But according to Newtons second lawForce = mass x acceleration.The force = weight in this situationTherefore numericallyGravitational field strength (N/kg) = acceleration due to gravity.So on earth the acceleration due to gravity = 9.81m/s2 near the earths surface

Example 1A gun is fired vertically into the air. If the bullet travels at 300m/s calculate how long it takes for the bullet to land and how high it travels?u=300m/s v=0 s=? a=-10m/s2 t=?Use v2=u2+2as0=90,000+(2x-10xs)0=90,000-20s20s=90,000 s=90,000/20=4500m v=u+at0=300-10t10t=300 t=30secsAt top of flightTotal time for up and down=2x30=60secsExample problem 1

A ball is thrown vertically upwards with an initial velocity at 30 ms-1 Calculate:(a)the maximum height reached,(a)Using v2 = u2 + 2as,0 = 900 - 2x10xs 20s= 900 s =45mNotice that at the maximum height the vertical velocity is zero and that the acceleration due to gravity is negative since it acts to retard the ball.

Example 1 continued(b)the time taken for it to return to the ground.(b) Using v = u + at, 30 = -30 + 10t t = 6sRemember that the ball must return to the ground with the same speed with which it left it.

Object projected horizontally We will now look at an object projected horizontally from a cliff with a velocity u. The problem is to find out where this object will be after a time t and how fast it will be travelling and in what direction.

The important thing to remember is that you can consider the motion in two parts :- (a) motion in the horizontal direction - this is uniform velocity since no forces act in this direction(b) motion in the vertical direction - this is uniformly accelerated motion due to the gravitational pull of the Earth, the vertical acceleration being the strength of the Earth's field (g = 9.8 ms-2). Remember that this always acts vertically downwards.

The horizontal and vertical motions are completely independent of each other.We will ignore air resistance for the time being. Consider the horizontal motion:The horizontal distance travelled (s) = horizontal velocity x time = vxt = ut(1)

11Now consider the vertical motion:The initial vertical velocity (uy) = 0So the vertical velocity after a time t is given by vy = uy + gtTherefore vy = gt The vertical distance travelled (h) = uyt + (gt2) = (gt2) (2)since uy = 0.

FinallyVelocity after a time t v = (vx2 + vy2)1/2The velocity (v) after a time t can be found from the equation: Direction of motion after time t tan = vy/vx(using pythogoras) and the direction by: where is the angle that the trajectory makes with the horizontal at that point

ExampleA ball is thrown horizontally with an initial velocity of 6 ms-1 from an open window that is 4m above the ground. Calculate:(a) the time it takes to hit the ground(b) the distance from the wall where it hits the ground(c) the velocity (magnitude and direction 0.5 seconds after it is thrown.(Ignore air resistance in your calculations and take g = 9.8 ms-2).Example 2A ball is kicked off a cliff with a speed of 10m/s. If the cliff is 100m above the sea, calculate how far from the base of the cliff the ball lands.ProjectilesA ParabolaProjectiles - horizontal directionA ParabolaConstant speedNo forces actProjectilesVertical directionA ParabolaConstant accelerationOnly gravity actsProjectilesA ParabolaHow to solve projectile problems1) Separate vertical and horizontal parts of motion2) For vertical motion use the kinematics equations3) For horizontal motion use dst.Vertical component of velocity = usin

Horizontal component of velocity = u cos

If we ignore the effects of air resistance, the horizontal velocity is constant and the vertical velocity changes with a uniform acceleration.

Vertical motion: h = u sin t gt2 Horizontal motion: s = u cos t

1) Separate vertical and horizontal parts of motion2) For vertical motion use the kinematics equations3) Use s=ut+1/2at24) Vertically u=0 so use s=1/2at2 5) Solve to find the time taken to hit the ground5) For horizontal motion use d=sxt.How to solve projectile problemsA ball is kicked off a 100m tall cliff and lands 300m from the base. How fast was it kicked off?A ball is kicked vertically into the air and reaches the top of a 15m building. How fast was it kicked and how long did it spend in the air?A bowler bowls a ball from 2.3m above the ground at a speed of 20m/s. Calculate the balls velocity just as it hits the ground. Another ball is thrown from 2 m above the ground if it is to hit stumps 1m tall 10ms away how fast must the ball be bowled?

How to solve projectile problemsProjectiles and air resistance

Objects moving through air are slowed down due to air resistance, sometimes called drag. This air resistance affects a spacecraft when it re-enters the Earths atmosphere but also the path of a projectile such as a bullet or a ball. When air resistance is taken into account the trajectory of a projectile is changed. The resistance is often taken as being proportional to either the velocity of the object or the square of the velocity of the object.The medieval scientists believed that a projectile went upwards at an angle along a straight path, then went through a short curved section before falling vertically back to the ground again.Both the range of a projectile and the maximum height that it reaches are affected by air resistance. The mathematics of the motion is quite complicated (especially if you consider the change in the shape and/or surface of a projectile and the variation of the density of the air with height) but the following diagrams try to simplify things by showing generally how air resistance affects both the trajectory and the velocity of a projectile.25The blue lines show the projectile with no air resistance and the red lines show what happens when air resistance is taken into account. The maximum height, the range and the velocity of the projectile are all reduced.