An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e...

98
An introduction to thermodynamics Zhigang Suo, Harvard University, [email protected] I will keep updating this google doc, and draw figures in class. Please access the current version online, and keep good notes in class. The play of thermodynamics Entropy Isolated system Sample space Definition of entropy Fundamental postulate Dispersion of ink Equilibrium Irreversibility Fluctuation Kinetics Constrained equilibrium Separation of phases Internal variable Basic algorithm of thermodynamics The second law of thermodynamics Energy, space, matter, charge Potential energy Definition of energy Forms of energy Energy belongs to many sciences An isolated system conserves energy, space, matter, and charge A classification of systems Transfer energy between a closed system and its surroundings Entropy and energy Thermal system A family of isolated systems of a single independent variation General features of the function S(U) Phrases associated with a family of isolated systems Dissipation of energy

Transcript of An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e...

Page 1: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

AnintroductiontothermodynamicsZhigangSuo,HarvardUniversity,[email protected]

Iwillkeepupdatingthisgoogledoc,anddrawfiguresinclass.Pleaseaccessthecurrentversiononline,andkeepgoodnotesinclass.

Theplayofthermodynamics

EntropyIsolatedsystemSamplespaceDefinitionofentropyFundamentalpostulateDispersionofinkEquilibriumIrreversibilityFluctuationKineticsConstrainedequilibriumSeparationofphasesInternalvariableBasicalgorithmofthermodynamicsThesecondlawofthermodynamics

Energy,space,matter,chargePotentialenergyDefinitionofenergyFormsofenergyEnergybelongstomanysciencesAnisolatedsystemconservesenergy,space,matter,andchargeAclassificationofsystemsTransferenergybetweenaclosedsystemanditssurroundingsEntropyandenergy

ThermalsystemAfamilyofisolatedsystemsofasingleindependentvariationGeneralfeaturesofthefunctionS(U)PhrasesassociatedwithafamilyofisolatedsystemsDissipationofenergy

Page 2: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Isentropicprocess.ReversibilityThermalcontactDefinitionoftemperatureTwounitsoftemperatureUnitofentropyIdealgaslawVaporpressureSpecificquantitiesGeneralfeaturesofthefunctionT(U)Thermalcapacity

ExperimentalthermodynamicsDivisionoflaborCalorimetryThermometryExperimentaldeterminationofentropy

MeltingEmpiricalfactsPrimitivecurvesRuleofmixtureDerivedcurveEquilibriumofasinglehomogeneousstateEquilibriumoftwohomogeneousstatesTemperature-entropycurveThermalsystemofanonconvexcharacteristicfunctions(u).Metastability

TemperatureasanindependentvariableU(T)andT(U)ThermostatThermalreservoirIsothermalprocessAlgorithmofthermodynamicsforisothermalprocessHelmholtzfunctionMeltinganalyzedusingtheHelmholtzfunction

ClosedsystemAfamilyofisolatedsystemsoftwoindependentvariationsConstant-volumeprocessAdiabaticprocess

Page 3: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

ExperimentaldeterminationofthefunctionS(U,V)GeneralfeaturesofthefunctionS(U,V)

IdealgasThemodelofidealgasIdealgaslawEnergyofanidealgasEntropyofanidealgasEnergytransferbyworkandbyheatforafixedamountofanidealgasEntropicelasticityThermoelasticcoupling

OsmosisTheoryofosmosisBalanceofosmosis

PhasesofapuresubstanceEmpiricalfactsPrimitivesurfacesRuleofmixtureDerivedsurfaceEquilibriumofasinglehomogeneousstateEquilibriumoftwohomogeneousstatesEquilibriumofthreehomogeneousstatesCriticalpointMetastabilityEnergy-volumeplaneTemperatureandpressure

AlternativeindependentvariablesEntropyS(U,V)EnergyU(S,V)HelmholtzfunctionF(T,V)EnthalpyH(S,P)GibbsfunctionG(T,P)Constant-pressureandconstant-temperatureprocessAlgorithmofthermodynamicsforconstant-pressureandconstant-temperatureprocessEquilibriumoftwohomogeneousstatesbyequatingtheGibbsfunctionClapeyronequationRegelation

VanderWaalsmodelofliquid-gasphasetransition

Page 4: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

IsothermsCriticalpointEnergyEntropyEntropy-energycompetitionMaxwellrule

OpensystemAfamilyofisolatedsystemsofmanyindependentvariationsDefinitionofchemicalpotentialsTwoopensystemsincontactExperimentaldeterminationofthechemicalpotentialofaspeciesofmoleculesinacomplexsystemExtensibilityGibbsfunctionGibbs-Duhemrelation

ChemicalpotentialofaspeciesofmoleculesinapuresubstanceChemicalpotentialofaspeciesofmoleculesinanidealgasHumidityIncompressiblepuresubstanceTheascentofsap

Mixtureofidealgases

ChemicalreactionStoichiometriccoefficientsDegreeofreactionChemicalequilibriumReactionofidealgases

TheplayofthermodynamicsLeadingrole.Thermodynamicsisoftencalledthescienceofenergy.Thisdesignationstealsaccomplishmentsfromothersciences,anddiminishesaccomplishmentsofthermodynamics.Rather,thermodynamicsisthescienceofentropy.Entropyplaystheleadingroleinthermodynamics.Energycrisisisatimelytopic;entropycrisis,timeless.Supportingroles.Inthermodynamics,energyplaysasupportingrole,alongwithspace,matter,andcharge.Indeed,thesesupportingrolesareanalogoustooneanother,andareofequalimportance.Callingthermodynamicsthescienceofenergydistortsthestructureofthesubject,andneglectsobviouslysignificantrolesofspace,matter,andcharge.

Page 5: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Childrenandgrandchildren.Eachofthesesupportingroles,togetherwithentropy,producesachild.Thefourchildren—temperature,pressure,chemicalpotential,andvoltage—arethesecondgenerationofsupportingroles.Theyproducegrandchildren:thermalcapacity,compressibility,coefficientofthermalexpansion,etc.Extras.Therearealsosomeextras:enthalpy,Helmholtzfunction,Gibbsfunction,etc.Theyarecalledthermodynamicpotentials,introducedbyGibbs(1875).Theyareshadowsofentropy.Letnoshadowsobscuretherealthing—entropy.

TheCastofThermodynamicsLeadingrole:EntropySupportingroles:EnergySpaceMatterChargeChildrenofentropyandthesupportingroles:TemperaturePressureChemicalpotentialVoltageGrandchildren:ThermalcapacityCompressibilityCoefficientofthermalexpansion…...Extras:EnthalpyHelmholtzfunctionGibbsfunction…...

Thiscourse.Thiscoursewilldevelopthelogicofentropyfromfirstprinciples,intuitionofentropyfromeverydayexperience,andapplicationofentropyinmanydomains.

Page 6: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Wewillleteverydayexperience,alongwithdiscoveriesandinventions,revealthelongarmofentropy,anditsintriguingplayswiththesupportingroles.Iamwritingthisfileforlecturesthatfocusonthermodynamicsitself,ratherthanitsapplications.Anyoneofthestandardtextbookswillfilltherestofthecoursewithcopiousapplications.Thiscoursedoesnotteachthehistoryofthermodynamics.ItisimpracticaltoteachthermodynamicsbytracingthestepsofCarnot,Clausius,Boltzmann,andGibbs,justasitisimpracticaltoteachcalculusbytracingthestepsofNewtonandLeibniz.Asubjectanditshistoryaredifferentthings.Thussaid,thehistoryofthermodynamicsisinteresting,important,andwell-documented,fullofmomentsoftriumphanddespair.ManyoriginalworksareavailableonlineinEnglish.Iwillplaceafewnamesandyearsinthenotesaslandmarks.Youcanreadthehistoryofthermodynamicsonline,startingwiththeWikipediaentry.

EntropyThedefinitionofentropyrequirestwoideas:isolatedsystemandsamplespace.

IsolatedsystemSystem.Wehavemetthecast.Nowlookatthestage—theworld.Anypartoftheworldiscalledasystem.Therestoftheworldiscalledthesurroundings.Wecanregardanypartoftheworldasasystem.Eventheemptyspacecanbeasystem;thevacuumhostselectromagneticfield.Aprotonandanelectronconstituteasystem,calledahydrogenatom.Ahalfbottleofwaterisasystem.Thesystemiscomposedofwatermoleculesandsomeothermolecules,suchasnitrogen,oxygen,andcarbondioxide.Inthehalfbottleofwater,liquidoccupiessomevolume,andgasfillstherest.Theliquidandthegastogetherconstitutethesystem.Doweincludetheplasticbottleasapartofthesystem?Maybe,ifwedecidetostudythepermeationofwatermoleculesthroughtheplastic.Thedecisionisours.Interactionbetweenasystemanditssurroundings.Asystemanditssurroundingscanhavemanymodesofinteraction.Thehydrogenatomchangestheshapeofitselectroncloudwhentheatomabsorbsoremitsphotons,orwhentheatomissubjecttoanelectricfield.Iholdthehalfbottleofwaterinmyhand.Iseethewaterbecausetheliquid-gasinterfacerefractslight.Ifeelmoistbecausewatermoleculeshitme.Iwarmupthewaterwhenthevibrationofthemoleculesinmyhandcouplesthevibrationofthemoleculesinthewater.When

Page 7: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Idrinkfromthebottle,thebottletransferswatermoleculestomybody.Ishakethebottleandhearthesound.Ipourhoneyintowaterandwatchthemmix.Isolatedsystem.Ourplay—thermodynamics—showsallmodesofinteractionbetweenasystemanditssurroundings.Butournarrativebeginswithsomethingsimpler:anisolatedsystem—asystemthatdoesnotinteractwithitssurroundings.Tomakethehalfbottleofwateranisolatedsystem,Icapthebottletopreventmoleculesfromleakinginandout.Iinsulatethebottleinathermostoblockthevibrationofthemoleculesinmyhandfromcouplingwiththevibrationofmoleculesinthewater.Imakethebottlerigidtofixthevolume.Idonotshakethebottle.Iamalerttoanyothermodesofinteractionbetweenthewaterandthesurroundings.Doesthemagneticfieldoftheearthaffectthewater?Ifitdoes,Iwillfindawaytoshieldthebottleofwaterfromthemagneticfieldalso.Ofcourse,nothingisperfectlyisolated.Likeanyidealization,theisolatedsystemisausefulapproximationofthereality,solongastheinteractionbetweenthesystemandtherestoftheworldnegligiblyaffectsaphenomenonthatIchoosetostudy.Forexample,itmaybetoomuchtroubleformetoisolatethewaterfromgravity.Fewpeoplecaretostudywaterunderthezero-gravitycondition.GravityisimportantifImovethebottlearound,butunimportantifIstudythevaporpressureinthebottle.Exercise.Describeasystemandwhatyouneedtodotomakeitanisolatedsystem.

SamplespaceQuantumstatesofanisolatedsystem.Whenahydrogenatomisisolatedatthesecondenergylevel,theisolatedsystemhaseightquantumstates.Quantummechanicsgovernsallsystems,howevercomplicated.Aquantumstateofthehalfbottleofwaterisacloudofelectronsandpositionsofnuclei.Suchamacroscopicisolatedsystemhasalarge,butfinite,numberofquantumstates.Samplespace.Inthetheoryofprobability,eachtrialofanexperimentisassumedtoresultinoneofmultiplepossibleoutcomes.Eachpossibleoutcomeiscalledasamplepoint.Thesetofallpossibleoutcomesoftheexperimentiscalledthesamplespace.ThenotionofsamplespacecomesfromMises(1919).Anisolatedsystemisan“experiment”inthesenseofthewordusedinthetheoryofprobability.Theisolatedsystemflipsfromonequantumstatetoanother,rapidlyandceaselessly.Eachquantumstateisapossibleoutcome,orasamplepoint,oftheisolatedsystem.Allthequantumstatesoftheisolatedsystemconstitutethesamplespaceoftheisolatedsystem.

Page 8: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Exercise.Whatisthesamplespaceofathrowofacoin?Whatisthesamplespaceofthrowacoinandadiesimultaneously?Whatisthesamplespaceofathrowoftwodiessimultaneously?Howmanypossibleoutcomesdoyougetwhenyouthrow1000dies?Exercise.Whatisthesamplespaceofahydrogenatomisolatedatthesecondenergylevel?Sketchtheelectroncloudsofthequantumstates.

DefinitionofentropyNowenterstheleadingrole—entropy.LetΩbethenumberofquantumstatesofanisolatedsystem.DefinetheentropyoftheisolatedsystembyS=logΩ.Logarithmofanybasewilldo.Forconvenience,wewillusethenaturalbasee.Thenumberesimplifiesthederivativeoflogarithm.Recallafactofcalculus:dlogx/dx=1/x.Foranyotherbaseb,recallthatlogbx=(logbe)(logex),sothatdlogbx=(logbe)/x.Theprefactorclutterstheformulaandservesnopurpose.Entropyisanextensivequantity.WhydowehideΩbehindalog?Considertwoisolatedsystems,AandB.IsolatedsystemAhasonesamplespaceofΩAquantumstates,labeledas{a1,a2,...,aΩA}.IsolatedsystemBhasanothersamplespaceofΩBquantumstates,labeledas{b1,b2,...,bΩB}.Thetwosystemsareseparatelyisolated.Togethertheyconstituteacomposite,whichisalsoanisolatedsystem.Eachquantumstateofthiscompositeisacombinationofaquantumstateofoneisolatedsystem,ai,andaquantumstateoftheotherisolatedsystem,bj.Allsuchcombinationstogetherconstitutethesamplespaceofthecomposite.Thetotalnumberofallsuchcombinationsistheproduct:Ωcomposite=ΩAΩB.Recallapropertyoflogarithm:log(ΩAΩB)=logΩA+logΩB.Thus,theentropyofacompositeoftwoseparatelyisolatedsystemsisthesumoftheentropiesofthetwoindividualisolatedsystems.Wenowseethesignificanceoflogarithm:itturnsaproducttoasum.Theentropyofasystemisthesumoftheentropiesofitsparts,eachpartbeingseparatelyisolated.Suchanadditivequantityiscalledanextensivequantity.

Page 9: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Entropyofapuresubstance.Apuresubstanceisacollectionofalargenumberofasinglespeciesofmolecules(oratoms).Themoleculescanaggregateintovariousforms,calledphases.Forexample,atroomtemperatureandatmosphericpressure,diamondisacrystallinelatticeofcarbonatoms,waterisaliquidofH2Omolecules,andoxygenisagasofO2molecules.Entropyisanextensivequantity.Theentropyofapieceofapuresubstanceisproportionaltothenumberofmoleculesinthepiece.Forapieceofapuresubstance,havingthenumberofmoleculesNandentropyS,theentropyofthesubstancepermoleculeiss=S/N.Laterwewilldescribehowtomeasureentropyexperimentally.Fornow,welookatsomemeasurednumbers.Atroomtemperatureandatmosphericpressure,theentropyofdiamond,leadandwaterare0.3,7.8and22.70,respectively.Astrongsubstance,suchasdiamond,hasasmallvalueofentropy,becauseindividualatomsareheldtogetherbystrongchemicalbonds,whichreducesthenumberofquantumstates.Complexsubstancesgenerallyhavelargerentropiesthansimplesubstances.Forexample,atroomtemperatureandatmosphericpressure,theentropiesforO,O2andO3are19.4,24.7,28.6,respectively.Whenapuresubstancemelts,themoleculestransformfromacrystaltoaliquid.Associatedwiththisphasetransition,theentropytypicallyincreasesbyanumberbetween1to1.5permolecule.Zeroentropy.Theentropyofapuresubstanceisoftentabulated,attheendoftextbooksandonline,asafunctionoftemperatureandpressure.Suchatableoftenassumesanarbitrarystateoftemperatureandpressureasareferencestate.Thetableliststheentropyofthesubstanceatthisreferencestateaszero,andliststheentropyofthesubstanceatanyotherstateoftemperatureandpressurerelativetothereferencestate.Wefollowthispracticewithcaution.Recallthedefinitionofentropy,S=logΩ.Zeroentropyisnotsomethingarbitrary,buthasphysicalsignificance:zeroentropycorrespondstoanisolatedsystemofasinglequantumstate.Exercise.Theentropyofathrowofafairdieislog6.TheentropyofanisolatedsystemislogΩ.Whatistheentropyofathrowofacoin?Whatistheentropyofasimultaneousthrowofacoinandadie?Whatistheentropyofasimultaneousthrowof1000dies?Exercise.12gramsofdiamondhas6.02×1023numberofcarbonatoms.Howmanyquantumstatesarethereinonegramofdiamondatroomtemperatureandatmosphericpressure?

Page 10: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Exercise.Carbonatomscanalsoaggregateinotherforms,suchasgraphene,nanotube,andbuckyball.Learnabouttheseformsonline,andfindtheentropyperatomineachform.

FundamentalpostulateOfourworldweknowthefollowingfacts:

1. Anisolatedsystemhasacertainnumberofquantumstates.DenotethisnumberbyΩ.2. Theisolatedsystemflipsfromonequantumstatetoanother,rapidlyandceaselessly.3. Asystemisolatedforalongtimeflipstoeveryoneofitsquantumstateswithequal

probability,1/Ω.Thus,asystemisolatedforalongtimebehaveslikeafairdie:

1. Thediehassixfaces.2. Thedieisrolledfromonefacetoanother.3. Thedieisrolledtoeveryfacewithequalprobability,1/6.

Fact3oftheworldiscalledthefundamentalpostulate.Thefundamentalpostulatecannotbededucedfrommoreelementaryfacts,butitspredictionshavebeenconfirmedwithoutexceptionbyempiricalobservations.Wewillregardthefundamentalpostulateasanempiricalfact,andusethefacttobuildthermodynamics.Thefundamentalpostulatelinksthermodynamicstoprobability.Ourworldactslikeacompulsivegambler,ceaselesslyandrapidlythrowingfairdies,eachhavinganenormousnumberoffaces.

Probability Thermodynamics

Experiment Rollafairdie Isolateasystemforalongtime

Samplespace 6faces Ωquantumstates

Probabilityofasamplepoint

1/6

1/Ω

Subset Event Subset

Probabilitytorealizeasubset

(numberoffacesinthesubset)/6

(numberofquantumstatesinthesubset)/Ω

Page 11: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Afunctionfromsamplespacetoasetofvalues

Randomvariable

Internalvariable

Exercise.Acheatermakesanunfairdieofsixfaces,labeledasa,b,c,d,e,f.Throughmanythrows,thecheaterfindsthattheprobabilityoffaceais½,theprobabilityoffacefis1/10,andtheotherfourfaceshaveanequalprobability.Whatistheprobabilityofgettingfacebtwiceintwothrows?Ignoranceisbliss.Inthrowingadie,thegamblerdoesnotneedtoknowthematerialthatmakesthedie,orthesymbolsthatmarkthefaces.Allthegamblerneedstoknowaboutthedieisthatithassixfacesofequalprobability.Thesameistrueinthermodynamics.Instudyinganisolatedsystem,wedonotneedtoknowthequantumstatesthemselves(theshapeofthecloudofelectrons,thepositionsofnuclei,orthenumberofprotons).Wejustneedtoknowhowmanyquantumstatesthattheisolatedsystemhas.Thisenormousreductionofinformationiscentraltothesuccessofthermodynamics.Anisolatedsystemisreducedtoapurenumber,thenumberofquantumstates,Ω.Laterwewilllearnhowtocountthenumberofquantumstatesofanisolatedsystemexperimentally.

DispersionofinkEmpiricalfacts.Letuswatchthefundamentalpostulateinaction.Dripadropofinkintoabottleofwater,andtheinkdispersesovertime.Thedispersionofinkisreadilyobservedatmacroscopicscale,butcanalsobeobservedinamicroscope,asdescribedbelow.Theinkcontainspigmentparticlesofsizelessthanamicron.Eachpigmentparticleisbombardedbywatermolecules,rapidlyandceaselessly,fromalldirections.Atanygiventime,thebombardmentsdonotfullycancelout,butresultinanetforcethatmovesthepigmentparticle.Thisrapid,ceaseless,randommotionofaparticleinaliquidwasfirstobservedinamicroscopebyBrown(1827).WikiBrownianmotion.Thermodynamictheory.Individualpigmentparticlesmoveinalldirectionsrandomly.Aftersometime,thepigmentparticlesdisperseinthebottleofwaterhomogeneously.Howcantherandommotionofindividualpigmentparticlescausepigmentparticlescollectivelytodosomethingdirectional—dispersion?

Page 12: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Theanswerissimple.Whentheconcentrationofpigmentparticlesisinhomogeneous,moreparticleswilldiffusefromaregionofhighconcentrationtoaregionoflowconcentration.Thisbiascontinuesuntilthepigmentparticlesaredistributedhomogeneously.Letusrelatethiseverydayexperiencetothefundamentalpostulate.Tomakeadefinitecalculation,weassumethatthepigmentparticlesinwaterarefarapart,sothateachparticleisfreetoexploreeverywhereinthebottleofwater,unaffectedbythepresenceofotherpigmentparticles.Consequently,thenumberofquantumstatesofeachpigmentparticleisproportionaltothevolumeofthewaterinthebottle,V.ThenumberofquantumstatesofNpigmentparticlesisproportionaltoVN.Ontheotherhand,iftheNpigmentparticlesarelocalizedinasmallregion,say,intheinitialdropofinkofvolumeV/70,thenumberofquantumstatesoftheNpigmentparticlesisproportionalto(V/70)N.Aftertheinkisinwaterforalongtime,allquantumstatesareequallyprobable.Thus,theratiooftheprobabilityoffindingtheNpigmentparticlesinvolumeVtotheprobabilityoffindingtheNpigmentparticlesinvolumeV/70is70N.Thisratioisenormousbecauseadropofinkhasalargenumberofpigmentparticles,N.Thisfactexplainswhythepigmentparticlesmuch,muchpreferdispersiontolocalization.Exercise.Thedensityofthepigmentmaterialis1000kg/m3.Assumeeachpigmentparticleisasphere,diameter100nm.Howmanypigmentparticlesaretherein1gofdryink?Aftertheinkisinabottleofwater,volume100ml,foralongtime,whatistheratiooftheprobabilityoffindingallpigmentparticlesinavolumeof10mltotheprobabilityoffindingallpigmentsinthevolumeof100ml?

EquilibriumThedispersionofinkillustratesseveralcharacteristicscommontoallisolatedsystems.Rightafterasmalldropofinkentersthebottleofwater,allthepigmentparticlesarelocalizedinthedrop.Thepigmentparticlesthenstarttodiffuseintothepurewater.Aftersometime,thepigmentparticlesdisperseinthebottleofwaterhomogeneously,andthesystemofthepigmentparticlesinwaterissaidtohavereachedequilibrium.Rightafterisolation,thesystemhasΩquantumstates,flipstosomeofthemmoreoftenthanothers,andissaidtobeoutofequilibrium.Outofequilibrium,theprobabilityfortheisolatedsystemtobeinaquantumstateistime-dependent.Afterbeingisolatedforalongtime,thesystemflipstoeveryoneofitsquantumstateswithequalprobability,1/Ω,andissaidtohavereachedequilibrium.Inequilibrium,theprobabilityfortheisolatedsystemtobeinaquantumstateistime-independent.

Page 13: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Severalphrasesaresynonymous:asystem“isolatedforalongtime”isasystem“flippingtoeveryoneofitsquantumstateswithequalprobability”,andisasystem“inequilibrium”.Wheneverwespeakofequilibrium,weidentifyasystemisolatedforalongtime.Inoroutofequilibrium,anisolatedsystemflipsfromonequantumstatetoanother,ceaselesslyandrapidly.Inoroutofequilibrium,anisolatedsystemhasafixedsamplespaceofΩquantumstates.Theentropyoftheisolatedsystem,S=logΩ,isafixednumberanddoesnotchange,nomatterwhethertheisolatedsystemisinoroutofequilibrium.

IrreversibilitySolongasthebottleisisolated,thehomogeneouslydispersedpigmentparticleswillbeextremelyunlikelytocomebackintoasmallvolume.Onceinequilibrium,theisolatedsystemwillnotgooutofequilibrium.Theisolatedsystemoutofequilibriumissaidtoapproachequilibriumwithirreversibility.Thermodynamicsusesthedirectionoftime,butnotthedurationoftime.Thermodynamicsmakesnouseofanyquantitywithdimensionoftime.Timeentersthermodynamicsmerelytodistinguishbetween“before”and“after”.Irreversibilitygivestimethedirection,thearrowoftime.

FluctuationInequilibrium,thepigmentparticleskeepinceaselessBrownianmotion.Thedistributionofthepigmentparticlesfluctuates.Possiblyallpigmentparticlescanmoveintoasmallvolumeinthebottle.However,theprobabilityoffindinganonuniformdistributionisexceedinglysmall.Thiscoursewillignorefluctuation.

KineticsAsystemisolatedforalongtimeflipstoeveryoneofitsquantumstateswithequalprobability.Howlongislongenough?Thefundamentalpostulateissilentonthisquestion.Thepigmentparticlesdisperseslowerinhoneythaninwater.Thetimeneededtoreachequilibriumscaleswiththeviscosityoftheliquid.Thestudyofhowfastasystemevolvesiscalledkinetics,whichwillnotbestudiedinthiscourse.

Page 14: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

ConstrainedequilibriumWhenanisolatedsystemisinequilibrium,anypartoftheisolatedsystemisalsoinequilibrium,solongasthepartismacroscopic.Itmakesnosensetotalkaboutequilibriumatthelevelofafewpigmentparticles,butequilibriumwillprevailinalargenumberofpigmentparticles.Wecandividetheisolatedsystemintomanyparts.Eachpartislargecomparedtoindividualparticles,butsmallcomparedtotheentireisolatedsystem.Weregardeachpartasanisolatedsubsystem.Eachisolatedsubsystemhasitsownsamplespaceofquantumstates.Thus,theentropyofanisolatedsystemisthesumoftheentropiesofallpartsofthesystem.Whenanisolatedsystemisoutofequilibrium,weoftendividetheisolatedsystemintoparts.Forexample,beforetheinkisfullydispersedinthebottleofwater,wemaydividethebottleintomanysmallvolumes.Eachsmallvolumehasalargenumberofpigmentparticles,whichareapproximatelyhomogeneouslydistributed,sothatwecanthinkofeachsmallvolumeasanisolatedsystem,withitsownsamplespaceofquantumstates.Wesaythattheisolatedsystemisinconstrainedequilibrium.

SeparationofphasesEmpiricalfacts.Anisolatedsysteminequilibriumcanbeheterogeneous.Hereisthehalfbottleofwateragain.AsIshakethebottle,watermovesandbubblespop.AfterIstopshaking,thehalfbottleofwaterbecomesapproximatelyanisolatedsystem.Rightaftertheisolation,thehalfbottleofwaterisstilloutofequilibrium.Afterbeingisolatedforsometime,thehalfbottleofwatercalmsdownatmacroscopicscale.Inequilibrium,somewatermoleculesformtheliquid,andothersformthevapor.Watermoleculesinthebottlearesaidtoseparateintotwophases,liquidandvapor.Thermodynamictheory.Wearenotreadytodevelopafulltheoryofphaseseparation,butbeginwithafewideashere,andpickthemuplater.Theisolatedsystemflipsamongasetofquantumstates,whichconstitutethesamplespaceoftheisolatedsystem.DenotethenumberofquantumstatesoftheisolatedsystembyΩ.ThehalfbottleofwaterhasatotalofMwatermolecules.Thenumberofwatermoleculesinthevapor,N,cantakeoneofasetofvalues:{0,1,...,M}. WhenthenumberofwatermoleculesinthevaporisfixedatN,theisolatedsystemflipsamongquantumstatesinasubsetofthesamplespace.DenotethenumberofquantumstatesinthissubsetbyΩ(N).Thus,

Page 15: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Ω(0)+Ω(1)+…+Ω(M)=Ω.Probability.Afterthebottleisisolatedforalongtime,everyquantumstateinthesamplespaceisequallyprobable,sothattheprobabilitytoobserveNwatermoleculesinthevaporisΩ(N)/Ω.Inequilibrium,themostprobableamountofmoleculesinthevapor,N,maximizesthefunctionΩ(N).Fromprobabilityto(almost)certainty.Thehalfbottleofwaterisamacroscopicisolatedsystem,andhasasamplespaceofalargenumberofquantumstates.Inequilibrium,thefluctuationinthenumberofwatermoleculesinthevaporisexceedinglysmall,andtheobservedamountofwatermoleculesinthevaporiswelldescribedbytheamountNthatmaximizesthefunctionΩ(N).Thefluctuationinthenumberofmoleculesinthevaporisnegligiblecomparedtothetotalnumberofmoleculesinthevapor.ThisobservationindicatesthatthefunctionΩ(N)hasasharppeak.

InternalvariableConstraintinternaltoanisolatedsystem.Fixingthenumberofwatermoleculesinthevaporinthehalfbottleofwaterisanexampleofaconstraintinternaltoanisolatedsystem.Theconstraintcanbemaderealbyplacingasealbetweentheliquidandvapor.Withtheseal,thetwopartsoftheisolatedsystemcanseparatelyreachequilibrium,butarenotinequilibriumwitheachother.Theisolatedsystemisinconstrainedequilibrium.Whentheconstraintisremoved,thenumberofwatermoleculesinthevaporcanchange,andiscalledaninternalvariable.Letusabstractthisexampleingeneralterms.Samplespace.Anisolatedsystemhasasetofquantumstates,whichconstitutethesamplespace.DenotethetotalnumberofquantumstatesoftheisolatedsystembyΩ.Subsetofsamplespace.LetXbeasetofvalues:X={x1,...,xn}.AninternalvariableisafunctionthatmapsthesamplespacetothesetX.Inthetheoryofprobability,suchafunctioniscalledarandomvariable.WhenaconstraintinternaltotheisolatedsystemfixestheinternalvariableatavaluexinthesetX,theisolatedsystemflipsamongquantumstatesinasubsetofthesamplespace.DenotethenumberofquantumstatesinthissubsetbyΩ(x).

Page 16: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Theinternalvariabledissectsthesamplespaceintoafamilyofsubsets.Anytwosubsetsinthefamilyaredisjoint.Theunionofallthesubsetsinthefamilyisthesamplespace.Thus,Ω(x1)+…+Ω(xn)=Ω.Probability.Aftertheconstraintisremovedforalongtime,theisolatedsystemflipstoeveryoneofitsΩquantumstateswithequalprobability,andtheinternalvariablecantakeanyvalueinX.Inequilibrium,theprobabilityfortheinternalvariabletotakeaparticularvaluexinXisΩ(x)/Ω.Equilibrium.Amacroscopicisolatedsystemhasasamplespaceofalargenumberofquantumstates.ThefunctionΩ(x)hasasharppeak.Aftertheconstraintisremovedforalongtime,theobservedvalueoftheinternalvariableiswelldescribedbythevaluexthatmaximizesthefunctionΩ(x).Thermodynamicsstudiesanisolatedsysteminconstrainedequilibrium,anddeterminesthemostprobablevalueoftheinternalvariable.Thermodynamicsneglectsthefluctuationinaninternalvariable,anddoesnotstudythekineticsofhowtheisolatedsystemapproachesequilibrium. Irreversibility.Rightafterbeingisolated,thesystemisoutofequilibrium.Astimemovesforward,theisolatedsystemevolvestowardequilibrium,andtheinternalvariablechangesinasequenceofvaluesthatincreasethefunctionΩ(x).Solongasthesystemisisolated,thechangeintheinternalvariableisirreversible.

BasicalgorithmofthermodynamicsFunctionΩ(x).AninternalvariableisafunctionthatmapsthesamplespaceofanisolatedsystemtoasetX.WhentheinternalvariabletakesavaluexinthesetX,theisolatedsystemflipsamongthequantumstatesinasubsetofthesamplespace.DenotethenumberofquantumstatesinthesubsetbyΩ(x).FunctionS(x).DefineS(x)=logΩ(x).Becauselogarithmisanincreasingfunction,maximizingΩ(x)isequivalenttomaximizingS(x),andincreasingΩ(x)isequivalenttoincreasingS(x).ThefunctionS(x)standsfor“thelogarithmofthenumberofquantumstatesinthesubsetofthesamplespaceofanisolatedsystemwhenaninternalvariableisfixedatavaluex”.Thisfunctioniscentraltotheapplicationofthermodynamics,butisunnamed.Forbrevity,IwillcallthefunctionS(x)thesubsetentropy.Basicalgorithmofthermodynamics.Hereishowweuseentropyinthermodynamics.

1. Constructanisolatedsystemwithaninternalvariablex.

Page 17: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

2. IdentifythefunctionS(x).3. Equilibrium.FindthevalueoftheinternalvariablexthatmaximizesthefunctionS(x).4. Irreversibility.Changethevalueoftheinternalvariablexinasequencethatincreases

thefunctionS(x).

ThesecondlawofthermodynamicsThebasicalgorithmisoneofmanyalternativestatementsofthelawoftheincreaseofentropy,orthesecondlawofthermodynamics.Forentertainment,wewilllaterlistsomehistoricalstatementsofthesecondlawofthermodynamics.Theymaysoundlikeancientphilosophicalpronouncements.Theysoundmysteriousnotbecausetheyaremoreprofoundthanthebasicalgorithm,butbecausetheymissbasicfactsoftheworld(e.g.,therapidandceaselessflipsamongquantumstates,andthefundamentalpostulate).HereisonesuchstatementmadebyClausius(1865),inthesamepaperinwhichhemadeupthewordentropy:Theentropyoftheuniversetendstoamaximum.Wewilltaketheworduniversetomeananisolatedsystem.Thisstatementisadoptedbynumeroustextbooks.Thestatementiselegantbutconfusing.TheentropyofanisolatedsystemisS=logΩ,whereΩisthetotalnumberofquantumstatesintheentiresamplespaceoftheisolatedsystem.Theentropyofanisolatedsystemisafixednumber,notafunctionthatcanchangevalues.Totalkaboutamacroscopicchangeofanisolatedsystem,weneedtoidentifyaninternalvariable.Whenaconstraintinternaltotheisolatedsystemfixestheinternalvariableatavaluex,theisolatedsystemflipsamongquantumstatesinasubsetofthesamplespace.ThenumberofquantumstatesinthissubsetisΩ(x),andtheentropyofthissubsetisS(x)=logΩ(x).Whentheconstraintinternaltotheisolatedsystemisremoved,theinternalvariablexcanchangevalues.ItisthesubsetentropyS(x)thattendstoamaximum.Wheneleganceandclarityconflict,wegoforclarity.Thiscoursedoesnotstudythehistoryofthermodynamics.WedonotattempttoreadthemindofClausiusanddecipheroldpronouncements.Rather,wewillusethebasicalgorithmtodirectcalculationandmeasurement.Inparticular,thebasicalgorithmwillletuscountthenumberofquantumstatesexperimentally.

Page 18: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Energy,space,matter,chargeThebasicalgorithmcallsforinternalvariables.Nowenterstheparticularshowysupportingactor—energy.Energyservesasaninternalvariableinthermodynamics,alongwithspace,matter,andcharge.

PotentialenergyAnappleweighsabout1Newton.WhenIpickuptheapplefromtheground,theapplereachesabout1meterhighandaddsabout1Jouleofenergy.Thisformofenergyiscalledthepotentialenergy(PE).Frommechanicsyouhavelearnedthefact:PE=(weight)(height).Potentialenergyhastheunitofforcetimeslength,(Newton)(meter).ThisunitofenergyiscalledtheJoule.Theheightisrelativetosomefixedpoint,suchastheground.Thus,potentialenergyisarelativequantity.Foragivenheight,thepotentialenergyisproportionaltotheamountofmaterial.Thus,potentialenergyisalsoanextensivequantity.Indeed,allformsofenergyarerelativeandextensive.Frommechanicsyouhavelearnedanotherfact: weight=(mass)(accelerationofgravity).Anapplehasamassabout0.1kg.Theaccelerationofgravityisabout10m/s2.Thus,theweightoftheappleis(0.1kg)(10m/s2)=1Newton.

DefinitionofenergyEnergyiswhateverthatcanliftaweighttosomeheight.Bythisdefinition,energyisconserved,relative,andextensive.Thedefinitionofenergycallsforaction.Itisuptopeopletodiscoverenergyinitsvariousforms,andinventwaystoconvertenergyfromoneformtoanother.Howdoweknowthatsomethingoffersaformofenergy?Justtestifthissomethingcanbeconvertedtoliftaweighttosomeheight.

Page 19: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

FormsofenergyKineticenergy.Myhandnowreleasestheapple.Justaftertherelease,theappleis1meterhighandhaszerovelocity.Thefallingapplethenlosesheight,butgainsvelocity.Theenergyassociatedwiththevelocityofamassiscalledthekineticenergy(KE).Thefallingappleconvertpotentialenergytokineticenergy.MechanicstellsusthatKE=(½)(mass)(velocity)2.Theconservationofmechanicalenergy.Thefrictionbetweentheappleandtheairisnegligible.Mechanicstellsyouthat,astheapplefalls,thesumofthepotentialenergyandthekineticenergyisconstant—thatis,PE+KE=constant.Thepotentialenergyandthekineticenergyaretwoformsofmechanicalenergy.Theaboveequationsaysthatmechanicalenergyisconservedwhenfrictionisnegligible.Exercise.Whatisthevelocityoftheapplejustbeforehittingtheground?Exercise.Atigerjumps1mhigh.Whatisthevelocityofthetigerjustbeforeithitstheground?Exercise.DerivetheconservationofmechanicalenergyfromNewton’ssecondlaw.Thermalenergy(internalenergy).Watchtheapplefallagain.Theapplefallsfromaheight,andgainsavelocityjustbeforehittingtheground.Afterhittingtheground,theapplebumps,rolls,andthenstops.Whathappenstoallthatpotentialenergyandkineticenergy?Justbeforetheapplehitstheground,allpotentialenergyhasconvertedtokineticenergy.Aftertheapplehitsthegroundandcomestorest,allthekineticenergyoftheappledisperses,ordissipates,intothemotionofthemoleculesinsidetheappleandtheground.Wesaythattheappleandthegroundgainsthermalenergy(TE),alsocalledinternalenergy.WegeneralizetheprincipleoftheconservationofenergytoTE+PE+KE=constant.Thewordthermalisanadjectivethatdescribesphenomenarelatedtomicroscopicinteractionandmotion.Thermalenergyisjustthepotentialenergyandkineticenergyatmicroscopicscale.WedesignatePEandKEasthepotentialenergyandkineticenergyatmacroscopicscale.

Page 20: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

InHeatconsideredasaModeofMotion,publishedin1863,JohnTyndalldescribednumerousexperimentsthattestedthehypothesisofheatasaformofenergy.WikiJuliusRobertvonMayer.WikiJamesPrescottJoule.Thefollowingpassageistakenfromthebook.Abullet,inpassingthroughtheair,iswarmedbythefriction,andthemostprobabletheoryofshootingstarsisthattheyaresmallplanetarybodies,revolvingroundthesun,whicharecausedtoswervefromtheirorbitsbytheattractionoftheearth,andareraisedtoincandescencebyfrictionagainstouratmosphere.Electricalenergy.Electricalenergy(EE)takesmanyforms.Onewaytouseelectricalenergyistheresistiveheating.Avoltageofanelectricoutletmoveselectronsinametalwire,andtheresistanceofthemetalconvertstheelectricalenergyintothermalenergy.Recallvoltage=(resistance)(current).TheelectricalenergyisEE=(resistance)(current)2(time)=(voltage)(current)(time).Chemicalenergy.Chemicalenergy(CE)hasalwaysbeenfamiliartohumansintheformoffireandfood.Wewilllearnhowtomeasurechemicalenergylaterinthecourse.Exercise.Describehowonecantestifelectrostaticsoffersaformofenergy.Exercise.Findthenutritionenergyofabanana.Ifthisnutritionenergyisfullyconvertedtothepotentialenergyofthebanana,whatwillbetheheightofthebanana?

EnergybelongstomanysciencesEnergyplayspartsinmanysciences.Allhavemuchtoclaimaboutenergy:formsofenergy,storesofenergy,carriersofenergy,conversionofenergyfromoneformtoanother,andflowofenergyfromoneplacetoanother.Associatedwiththesewords—forms,stores,carriers,conversion,andflow—areagreatvarietyofinventionsanddiscoveries.Examplesincludefire,food,blood,wind,rivers,springs,capacitors,waterwheels,windmills,steam,engines,refrigerators,turbines,generators,batteries,lightbulbs,andsolarcells.Theseyouhavelearned,andwilllearnmore,frommanycourses(includingthisone),aswellasfromdailylife.Thesefactsdonotoriginatefromthermodynamics,butwewillusethemjustasweusefactsincalculus.Wedonotsteallinesfromothersciences;weborrow.Ithasbeencommontoletthesupportingactor—energy—todominatetheplayofthermodynamics.Wewillavoidthispitfall.Wewillletenergyplayitssupportingrole,alongwithspace,matter,andcharge.

Page 21: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

tothermal tomechanical toelectrical tochemical

thermal heatexchanger engine thermocouple reaction

mechanical friction turbine generator fracture

electrical resistor compressor capacitor chargingbattery

chemical fire,food muscle battery reaction

Exercise.Whatisthefunctionofaturbine?Howdoesitwork?Linkyouranswertoavideoonline.Exercise.Whatisthefunctionofagenerator?Howdoesitwork?Linkyouranswertoavideoonline.

Anisolatedsystemconservesenergy,space,matter,andchargeBesideenergy,wenowaddafewothersupportingroles:space,matter,andcharge.Imakeahalfbottleofwaterintoanisolatedsystem.Iclosethebottlesothatwatermoleculescanneitherenternorleavethebottle.Ithermallyinsulatethebottletostopanyenergytransferbyheat.Idonotsqueezethebottle,sothatthevolumeofthebottleisfixed.Thereisalsonotransferofchargebetweenthesystemanditssurroundings.Westatetheprinciplesofconservation:anisolatedsystemconservesenergy,space,matter,andcharge.Thermodynamicswillusetheseconservedquantitiesasinternalvariables.Ofcourse,internalvariablesneednotberestrictedtoconservedquantities.Allconservedquantitiesobeysimilarmathematics,andareconvenienttostudyinparallel.Exercise.Whatarespace,matter,andcharge?Doyouknowwhyeachisconserved?

AclassificationofsystemsDependingonthemodesofinteractionbetweenthesystemsandtheirsurroundings,weclassifysystemsintoseveraltypes.

transfermatter

transferspace

transferenergy

isolatedsystem no no no

thermalsystem no no yes

Page 22: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

closedsystem no yes yes

opensystem yes yes yes

Thermalsystem.Athermalsysteminteractswithitssurroundingsinonemode:transferenergy.Forexample,abottleofwaterisathermalsystem.Wecapthebottletopreventmoleculestoleakinorout.Wemakethebottlerigidtofixitsvolume.Wecanstillchangetheenergyofthewaterbyplacingthebottleoveraflame,orbyshakingthebottle.Closedsystem.Aclosedsystemanditssurroundingsdonottransfermatter,buttransferspaceandenergy.Consideracylinder-pistonsetupthatencloseswatermolecules.Somewatermoleculesformaliquid,andothersformavapor.Wecanmakethewatermoleculesinsidethecylinderclosedsystembysealingthepiston,sothatnomoleculeswillleakinorout.Thecylinder-pistonsetupinteractswiththerestoftheworldintwoways.First,whenweightsareaddedontopofthepiston,thepistonmovesdownandreducesthevolumeinsidethecylinder.Second,whenthecylinderisbroughtoveraflame,theflameheatsupthewater.Opensystem.Anopensystemanditssurroundingstransfermatter,space,andenergy.Abottleofwater,oncethecapisremoved,isanopensystem.Exercise.Describeamethodtokeepwaterhotforalongtime.Whatcanyoudotoprolongthetime?Whatmakeswatereventuallycooldown?Exercise.Foreachtypeofsystemlistedabove,giveanexample.Ineachexample,describeallmodesofinteractionbetweenthesystemanditssurroundings.

TransferenergybetweenaclosedsystemanditssurroundingsAhalfbottleofwater.Hereisthehalfbottleofwateragain.Icapthebottletopreventmoleculesfromleakinginorout.Ishakethebottle,orjusttouchit.Inbothcases,myhandtransfersenergytothebottle.Inshakingthebottle,myhandtransfersenergytothebottlebywork,throughforcetimesdisplacement.Intouchingthebottle,myhandtransfersenergytothebottlebyheat,throughmolecularvibration.Thehalfbottleofwaterisaclosedsystem.Workandheataretwowaystotransferenergybetweentheclosedsystemanditssurroundings.

Page 23: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Transferenergybywork.Wehavelearnedmanywaysofdoingworkinmechanicsandelectrodynamics.Wenowrecalltwoexamples.Theexpansionofagas.Aweightisplacedontopofapiston,whichsealsacylinderofgas.Forbrevity,byaweightwemeantheforceactingonthepistonduetobothablockofmassandthepressureofthesurroundingair:weight=mg+P0A.Heremismass,gistheaccelerationofgravity,P0isthepressureofsurroundingair,andAistheareaofthepiston.Assumethatthepistonmoveswithnofriction.Thebalanceoftheforcesactingonthepistonrelatestheforceoftheweight,F,tothepressureofthegasinthecylinder,P:weight=PA.Whenthepistonraisesitsheightbydz,thegasexpandsitsvolumebydV=Adzanddoesworktotheweight:(weight)dz=PdV.Theexpansionofthegasraisestheweight.Resistiveheating.Asasecondexample,aresistorisplacedinacontainerofwater.WhenavoltageVisappliedtothetwoendsoftheresistor,anelectriccurrentIgoesthroughtheresistor,andtheworkdonebythevoltageperunittimeisIV.Theelectricalworkheatsthewater.Transferenergybyheat.Energytransfersbyheatinseveralways.Conduction.Energycangothroughamaterial.Atamacroscopicscale,thematerialremainsstationary.Atamicroscopicscale,energyiscarriedbytheflowofelectronsandvibrationofatoms.Convection.Energycangofromonesystemtoanotherwiththeflowofafluid.Thiswayofenergytransferinvolvesthetransferofmatterbetweensystemsandispresentforanopensystem.Radiation.Energycanbecarriedbyelectromagneticwaves.Becauseelectromagneticwavescanpropagateinvacuum,twosystemscantransferenergywithoutbeinginproximity.Signconvention.Givenaclosedsystem,weadoptthefollowingsignconvention.

Page 24: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

● Q>0,energytransferbyheattotheclosedsystemfromthesurroundings.● W>0,energytransferbyworkfromtheclosedsystemtothesurroundings.● ΔU>0,increaseoftheinternalenergyoftheclosedsystem.

Someauthorsadoptothersignconventions.Youcanadoptanysignconvention,solongasyoumakeyoursignconventionexplicitinthebeginningofathought,anddonotchangethesignconventioninthemiddleofthethought.Thefirstlawofthermodynamics.Foraclosedsystem,thefirstlawofthermodynamicsstatesthatQ=W+ΔU.Internalenergyisapropertyoftheclosedsystem.Neithertransferenergybyworknortransferenergybyheatisapropertyoftheclosedsystem;theyaremethodsofthetransferofenergybetweentheclosedsystemanditssurroundings.Wealreadyknowhowtomeasuretheinternalenergyandtheenergytransferbywork.Thefirstlawofthermodynamicsdefinestheenergytransferbyheat.Wedoourbesttoidentifyvariousprocessesthattransferenergybywork.Energytransferbyheatisthenthetransferofenergythatwedonotbothertocallwork.Thus,thefirstlawofthermodynamicsisnotreallyalaw;itjustdefinestheenergytransferbyheat.Inoldliterature,heatwassometimesusedasasynonymforthermalenergy.Wewillsticktothemodernusage.Heatisamethodofenergytransfer,whereasthermalenergyisaformofenergy.Thetwoconceptsaredistinct.Onecanincreasethethermalenergyofasystembyworkorheat.

EntropyandenergyNowthatyouhaveseenbothentropyandenergy,youarereadytocritiquethefollowingextractfromapaperbyafounderofthermodynamics(Clausius1865).WemightcallSthetransformationalcontentofthebody,justaswetermedthemagnitudeUitsthermalandergonalcontent.ButasIholdittobebettertoborrowtermsforimportantmagnitudesfromtheancientlanguages,sothattheymaybeadoptedunchangedinallmodernlanguages,IproposetocallthemagnitudeStheentropyofthebody,fromtheGreekwordτροπη),transformation.Ihaveintentionallyformedthewordentropysoastobeassimilaraspossibletothewordenergy;forthetwomagnitudestobedenotedbythesewordsaresonearlyalliedintheirphysicalmeanings,thatacertainsimilarityindesignationappearstobedesirable.

1. Theenergyoftheuniverseisconstant.2. Theentropyoftheuniversetendstoamaximum.

Page 25: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Exercise.Critiquethisextract.Taketheword“universe”tomeananisolatedsystem.Doyouagreethatentropyandenergyarenearlyalliedintheirphysicalmeanings?Howcantheentropyofanisolatedsystemincrease?

ThermalsystemNowwehaveanall-starcastofactors.Letuswatchthemplay,actbyact.Letactonestart:theunionofentropyandenergyproducesachild—temperature.Thechildissoprodigiousthatitismuchbetterknownthanitsparents,entropyandenergy.

AfamilyofisolatedsystemsofasingleindependentvariationCharacteristicfunctionS(U).Athermalsystemanditssurroundingsinteractinonemodeonly:transferenergy.WhenthethermalenergyofthethermalsystemisfixedatavalueU,thethermalsystembecomesanisolatedsystem.DenotethenumberofquantumstatesofthisisolatedsystembyΩ(U).AstheenergyUofthethermalsystemvaries,thefunctionΩ(U),oritsequivalent,S(U)=logΩ(U),characterizesthethermalsystemasafamilyofisolatedsystems,capableofoneindependentvariation.WecallS(U)thecharacteristicfunctionofthethermalsystem.Laterwewilldeterminethisfunctionbyexperiment—thatis,wewillcountthenumberofquantumstatesofeachmemberisolatedsystemexperimentally.Hydrogenatom.Ahydrogenatomchangesitsenergybyabsorbingphotons.Whenisolatedataparticularvalueofenergy,thehydrogenatomhasafixedsetofquantumstates.Eachquantumstateinthesetischaracterizedbyadistinctelectroncloudandspin.Thehydrogenatomisathermalsystem.Itscharacteristicfunctionhasbeencomputedinquantummechanics:Ω(−13.6eV)=2,Ω(−3.39eV)=8,Ω(−1.51eV)=18,...…ThedomainofthefunctionΩ(U)isasetofdiscretevaluesofenergy:−13.6eV,-3.39eV,-1.51eV,…TherangeofthefunctionΩ(U)isasetofintegers:2,8,18,….Forthehydrogenatom,thevaluesofenergyhavelargegaps.

Page 26: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Ahalfbottleofwater.Ahalfbottleofwaterisathermalsystem.Wecantransferenergytothewaterinmanyways,bytouch,fire,shake,andelectriccurrent,etc.Wesealthebottletopreventanytransferofmatter.Wemakethebottlerigidtofixthevolume.Foracomplexsystemlikeahalfbottleofwater,thevaluesofenergyaresocloselyspacedthatweregardtheenergyofthesystemasacontinuousrealvariable.ThecharacteristicfunctionS(U)isacontinuousfunction.Exercise.Describeafewmoreexamplesofthermalsystems.

GeneralfeaturesofthefunctionS(U)Energy-entropyplane.Inaplane,wedrawenergyandentropyastwoperpendicularaxes,withenergyasthehorizontalaxisandentropyastheverticalaxis.Drawingtwoaxesperpendicularlyisaconvention,andhasnoexperimentalsignificance.Whatdoesitevenmeantosaythatenergyisperpendiculartoentropy?Theworldworkswellifwedrawthetwoaxeswithanarbitraryangle,ornotdrawthematall.Butwewillfollowtheconventionanddrawthetwoaxesperpendicularly.Inlinearalgebra,wecallenergyUandentropyStwoscalars.Apairofthevaluesofenergyandentropy(U,S)iscalledavector.Theenergy-entropyplaneiscalledatwo-dimensionalvectorspace.FeaturesoftheS(U)curve.WecharacterizeathermalsystemwithafunctionS(U),whichisacurveintheenergy-entropyplane.Ofcourse,differentthermalsystemshavedifferentcharacteristicfunctions.Severalfeaturesarecommontoallthermalsystems.WewilllistthesecommonfeaturesinmathematicaltermsofthecurveS(U)here,andwillrelatethemtoexperimentalobservationsasweprogress.

1. Becauseenergyisrelative,thecurveS(U)cantranslatehorizontallywithoutaffectingthebehaviorofthethermalsystem.

2. Becauseentropyisabsolute,thecurvestartsatS=0,andcannotbetranslatedupanddown.

3. Thebehaviorofathermalsystemisoftenindependentofthesizeofthesystem.Forexample,1kgofwaterbehavesthesameas2kgofwater.Bothenergyandentropyislinearinthesizeofthethermalsystem.Aswechangethesizeofthethermalsystem,thecurveS(U)changessize,butkeepstheshape.

4. Asentropyapproacheszero,thecurveS(U)approachesthehorizontalaxisvertically.Thatis,asS→0,dS(U)/dU→∞.

5. Themoreenergy,themorequantumstates.Thus,Ω(U)isanincreasingfunction.Becauselogarithmisanincreasingfunction,S(U),isalsoanincreasingfunction.Thatis,theslopeofthecurveS(U)ispositive,dS(U)/dU>0.

Page 27: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

6. ThecurveS(U)isconvexupward.Thatis,theslopedS(U)/dUdecreasesasUincreases,orequivalently,d2S(U)/dU2<0.

PhrasesassociatedwithafamilyofisolatedsystemsAsingleisolatedsystem.Forasingleisolatedsystem,asnotedbefore,severalphrasesaresynonymous:asystem“isolatedforalongtime”isasystem“flippingtoeveryoneofitsquantumstateswithequalprobability”,andisasystem“inequilibrium”.Wheneverwespeakofequilibrium,weshouldidentifyasystemisolatedforalongtime.Associatedwitheachisolatedsystemisasetofquantumstates—thesamplespace.Theisolatedsystemflipstoitsquantumstatesceaselesslyandrapidly.Outofequilibrium,theisolatedsystemflipstosomeofitsquantumstatesmoreoftenthanothers.Inequilibrium,theisolatedsystemflipstoeveryoneofitsquantumstateswithequalprobability.Afamilyofisolatedsystems.Athermalsystemisafamilyofisolatedsystemscapableofoneindependentvariation—energy.Eachmemberinthisfamilyisadistinctisolatedsystem,hasafixedvalueofenergy,andflipsamongthequantumstatesinitsownsamplespace.Wedescribeafamilyofisolatedsystemsusingseveraladditionalphrases.Thesephrasesareapplicabletoanyfamilyofisolatedsystems,buthereweintroducethesephrasesusingafamilyofisolatedsystemsthatconstituteathermalsystem.Thermodynamicstate.Inafamilyofisolatedsystems,amemberisolatedsysteminequilibriumiscalledathermodynamicstate,orastateofequilibrium,ofthefamily.Wenowusetheword“state”intwoways.Anisolatedsystemhasmanyquantumstates,butasinglethermodynamicstate.Athermodynamicstateissynonymoustoanisolatedsysteminequilibrium.Inathermodynamicstate,theisolatedsystemflipstoeveryoneofitsquantumstateswithequalprobability.

Page 28: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Athermalsystemisafamilyofisolatedsystems.Eachmemberisolatedsystemcorrespondstoonethermodynamicstateofthethermalsystem,specifiedbyavalueofenergy.Asenergyvaries,thethermalsystemcanbeinmanythermodynamicstates.EachthermodynamicstatecorrespondstoapointonthecurveS(U).Thermodynamicprocess.Asequenceofthermodynamicstatesiscalledareversiblethermodynamicprocess,orquasi-equilibriumprocess.Eachthermodynamicstateinthisprocesscorrespondstoadistinctisolatedsysteminequilibrium.Athermodynamicprocessissynonymoustoafamilyofisolatedsystems,eachbeinginequilibrium.Athermalsystemiscapableofonetypeofthermodynamicprocess:changingenergy.Aftereachchangeofenergy,weisolatethethermalsystemlongenoughtoreachequilibrium.Functionofstate.Wespecifyathermodynamicstateofthethermalsystembyavalueofenergy.Energyiscalledafunctionofstate.Thewordstateheremeansthermodynamicstate,notquantumstate.Afunctionofstateisalsocalledathermodynamicproperty.Entropyisalsoafunctionofstate,soisthenumberofquantumstates.Forathermalsystem,wewillsoonintroducefourotherfunctionsofstate:temperature,thermalcapacity,Massieufunction,andHelmholtzfunction.Equationofstate.OncetheenergyUisfixed,athermalsystembecomesanisolatedsystemofafixedsamplespace,sothattheentropySisalsofixed.Consequently,givenathermalsystem,theenergyandentropyarerelated.TherelationS(U)iscalledanequationofstate.Again,thewordstateheremeansthermodynamicstate,notquantumstate.Ingeneral,anequationofstateisanequationthatrelatesthermodynamicpropertiesofafamilyofisolatedsystems.Forathermalsystem,wewillsoonintroduceseveralequationsofstate,inadditiontoS(U).

DissipationofenergyEmpiricalfacts.WhenIshakeahalfbottleofwater,energytransfersfrommymuscletothewater,andincreasesthetemperatureofthewater.Icanalsotransferenergytothewaterusinganelectriccurrent.Thistransferofenergygoesthroughseveralsteps.Anelectricoutlettransfersenergybyworktoametalwire,wherethevoltageoftheelectricoutletmoveselectronsinthemetalwire.Theresistanceofthemetalwireheatsupthemetalwire.Letussaythatthemetalwireisimmersedinthewater,andtransfersenergybyheattothewater.Icanalsodropaweightintothebottleofwaterfromsomeheight.Theweightcomestorestinthewaterandheatsupthewater.

Page 29: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Inthethreeexamples,theenergystartsintheformof,respectively,chemicalenergyinthemuscle,electricalenergyintheoutlet,andthepotentialenergyintheweightatsomeheight.Aftertransferringintothewater,chemical,electrical,andpotentialenergyconvertstothermalenergyofthewater.Thechemical,electrical,andpotentialenergyaresaidtodissipateintothermalenergy.Thermodynamicanalysis.Tospeakofthedissipationofenergy,weidentifythermalenergyandotherformsofenergyinasingleisolatedsystem.Theisolatedsystemconservesenergy,butdissipatestheotherformsofenergyintothermalenergy.Solongasthesystemisisolated,thedirectionofdissipationisirreversible,fromotherformsofenergytothermalenergy,nottheotherwayaround.Thermalenergyiscalledlow-gradeenergy.Wenextanalyzethefallingweightintowaterusingthebasicalgorithm. Constructanisolatedsystemwithaninternalvariable.Thebottleofwaterandtheweighttogetherconstituteanisolatedsystem.Beforetheweightdrops,thethermalenergyofwaterisU0,andthepotentialenergyoftheweightisPE.Accordingtotheprincipleoftheconservationofenergy,theenergyoftheisolatedsystemisfixed.Aftertheweightcomestorestinwater,thepotentialenergyoftheweightvanishes,andthethermalenergyofthewaterisU0+PE.Thus,thethermalenergyofthewater,U,isaninternalvariableoftheisolatedsystem,increasingfromU0toU0+PE.Findthesubsetentropyasafunctionoftheinternalvariable.Thebottleofwaterisathermalsystem,characterizedbyafunctionS(U),whichisanincreasingfunction.LettheentropyoftheweightbeSweight,whichistakentobeunchangedafterfallingintothewater.TheentropyoftheisolatedsystemisthesumS(U)+Sweight.Maximizethesubsetentropytoreachequilibrium.Beforetheweightdrops,theentropyoftheisolatedsystemisS(U0)+Sweight.Aftertheweightcomestorestinthewater,S(U0+PE)+Sweight.ThelawoftheincreaseofentropyrequiresthatS(U0+PE)+Sweight>S(U0)+Sweight.BecauseS(U)isanincreasingfunction,theaboveinequalityholdsifthepotentialenergyoftheweightchangestothermalenergyinthewater.Thepotentialenergyoftheweightissaidtodissipateintothethermalenergyinthewater.Theisolatedsystemmaximizestheentropywhenthepotentialenergyoftheweightfullychangestothethermalenergyofthewater,theweightcomestorest,andtheisolatedsystemreachesequilibrium.Increasethesubsetentropytoseeirreversibility.Thereversechangewouldviolatethelawoftheincreaseofentropy,andthereforeviolatethefundamentalpostulate.Theweight,afterrest

Page 30: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

inwater,willnotdrawthermalenergyfromthewaterandjumpup.Dissipation—theconversionofpotentialenergytothermalsystem—isirreversible.Whatmakethermalenergylow-gradeenergyisitshighentropy.Theirreversibilityisunderstoodfromthemolecularpicture.Thermalenergycorrespondstomolecularmotion,whereasthejumpingupoftheweightcorrespondstoallmoleculesaddingvelocityinonedirection.Theformercorrespondstomorequantumstatesthanthelatter.Theisolatedsystemchangesinthedirectionthatincreasesthenumberofquantumstates.Consequently,thepotentialenergydissipatesintothermalenergy,nottheotherwayaround.TheKelvin-Planckstatementofthesecondlawofthermodynamics.Thisanalysisconfirmsageneralempiricalobservation.Itisimpossibletoproducenoeffectotherthantheraisingofaweightbydrawingthermalenergyfromasinglethermalsystem.ThisobservationiscalledtheKelvin-Planckstatementofthesecondlawofthermodynamics.Exercise.Usethebasicalgorithmtoanalyzeheatingwaterbyanelectriccurrent.Exercise.Usethebasicalgorithmtoanalyzeheatingbyfriction.

Isentropicprocess.ReversibilityAfallingapplelosesheight,butgainsvelocity.Solongasthefrictionofairisnegligible,thesumofthepotentialenergyandkineticenergyoftheappleisconstant,andthethermalenergyoftheappleisalsoconstant.Wemodeltheapple,togetherwithapartofspacearoundtheapple,asanisolatedsystem.Theheightoftheappleistheinternalvariableoftheisolatedsystem.Whentheappleisataparticularheight,z,theisolatedsystemflipsamongasetofquantumstates,andhasacertainentropy,S(z).TheprocessoffallingkeepsthesubsetentropyS(z)fixed,independentoftheinternalvariablez.Suchaprocessiscalledanisentropicprocess.Anisentropicprocessofanisolatedsystemisreversible.Wecanarrangeasetuptoreturntheappletoitsoriginalheightwithoutcausinganychangetotherestoftheworld.Forexample,wecanlettheapplefallalongacircularslide.Solongasfrictionisnegligible,theapplewillreturntothesameheight.Ofcourse,frictionisinevitableinreality;wehaveneverseenanapplegoupanddownaslideforalongtime.Theappleinevitablystopsaftersometime.Butafrictionlessprocesscanbeausefulidealization.Forexample,theplanetEarthhasbeenmovingaroundtheSunforaverylongtime.Foranisolatedsystem,thetwowords,isentropicandreversible,areequivalent.Bothadjectivesdescribeanisolatedsystemthatkeepsthenumberofquantumstatesunchangedwhenaninternalvariablechanges.Anisentropic(orreversible)processisalsocalledaquasi-equilibrium

Page 31: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

process.Toavoidincreasingentropy,theprocessmustbeslowenoughfortheisolatedsystemtohavealongenoughtimetoreachequilibriumateverypointalongtheprocess.Exercise.Describeanotherisentropicprocess.

ThermalcontactWehavejustanalyzedthedissipationofenergyfromahighgradetoalowgrade.Wenowlookthetransferenergyfromonethermalsystemtoanotherthermalsystem.Twothermalsystemsaresaidtobeinthermalcontactifthefollowingconditionshold.

1. Thetwothermalsystemsinteractinonemodeonly:transferenergy.2. Thetwothermalsystemstogetherformanisolatedsystem.

Empiricalfacts.Theprincipleoftheconservationofenergyrequiresthatanisolatedsystemshouldhaveafixedamountofenergy.Itallowsarbitrarypartitionofenergybetweenthetwothermalsystems,solongasthesumoftheenergiesofthetwothermalsystemsremainsconstant.However,oureverydayexperienceindicatestwofacts.

1. Whentwothermalsystemsareinthermalcontact,energytransfersfromonesystemtotheothersystem,one-wayandirreversible.

2. Aftersometime,theenergytransferstops,andthetwothermalsystemsaresaidtoreachthermalequilibrium.

Thermodynamicanalysis.Wenowtracetheseempiricalfactstothefundamentalpostulate.Weusethebasicalgorithmtoanalyzethermalcontact.Constructanisolatedsystemwithaninternalvariable.Thetwothermalsystems,AandB,togetherconstituteanisolatedsystem.Wecallthisisolatedsystemthecomposite.LettheenergiesofthetwothermalsystemsbeUAandUB.Thecompositeofthetwothermalsystemsisanisolatedsystem,andhasafixedamountofenergy,denotedbyUcomposite.Energyisanextensivequantity,sothatUcomposite=UA+UB.Consequently,theisolatedsystemhasasingleindependentinternalvariable,say,theenergyofoneofthethermalsystems,UA.Findthesubsetentropyasafunctionoftheinternalvariable.Thetwothermalsystemsarecharacterizedbytwofunctions,SA(UA)andSB(UB).OncetheinternalvariableUAisfixed,thecompositeflipsamongasubsetofitsquantumstates.DenotethesubsetentropybyScomposite(UA).Entropyisanextensivequantity,sothatScomposite(UA)=SA(UA)+SB(UB).

Page 32: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Equilibrium.WhenonethermalsystemgainsenergydUA,theotherthermalsystemlosesenergybythesameamount,sothatdScomposite(UA)=(dSA(UA)/dUA-dSB(UB)/dUB)dUA.Afterbeingisolatedforalongtime,thecompositereachesequilibrium,andthesubsetentropymaximizes,dScomposite(UA)=0,sothatdSA(UA)/dUA=dSB(UB)/dUB.Thisequationistheconditionofthermalequilibrium,anddeterminestheequilibriumpartitionofenergybetweenthetwothermalsystemsAandB.Irreversibility.Priortoreachingequilibrium,thesubsetentropyofthecompositeincreasesintime,dS>0,sothatIfdSA(UA)/dUA>dSB(UB)/dUB,thendUA>0,andthermalsystemAgainsenergyfromthermalsystemB;IfdSA(UA)/dUA<dSB(UB)/dUB,thendUA<0,andthermalsystemAlosesenergytothermalsystemB.Theseinequalitiesdictatethedirectionofenergytransfer.Inthermalcontact,thedirectionofenergytransferisonewayandirreversible.Thisanalysisconfirmsthetwoempiricalfactsofthermalcontact.

1. Withoutlossofgenerality,assumethat,rightafterthermalcontact,dSA(UA)/dUA>dSB(UB)/dUB.OuranalysisshowsthatsystemAgrainsenergyfromsystemB.Thedirectionoftheenergytransferisone-wayandirreversible.

2. WefurtherassumethatSA(UA)andSB(UB)areconvexfunctions.Consequently,assystemAgainsenergy,theslopedSA(UA)/dUAdecreases.AssystemBlosesenergy,theslopedSB(UB)/dUBincreases.Ouranalysisshowsthatthetransferofenergycontinuesuntilthetwoslopesareequal,whenthetwothermalsystemsreachthermalequilibrium.

DefinitionoftemperatureDefinethetemperatureTby1/T=dS(U)/dU.BothSandUareextensivethermodynamicproperties.ThedefinitionensuresthatTisanintensivethermodynamicproperty.

Page 33: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Wecanusethewordtemperaturetoparaphrasetheaboveanalysisofthermalcontact.1. Whentwothermalsystemsarebroughtintothermalcontact,energytransfersonlyin

onedirection,fromthesystemofhightemperaturetothesystemoflowtemperature.ThisobservationiscalledtheClausiusstatementofthesecondlawofthermodynamics.

2. Aftersometimeinthermalcontact,energytransferstops,andthetwosystemshavethesametemperature.Thisobservationiscalledthezerothlawofthermodynamics.

Butwaitaminute!AnymonotonicallydecreasingfunctionofdS/dUwillalsoserveasadefinitionoftemperature.Whatissospecialaboutthechoicemadeabove?Nothing.Itisjustachoice.Indeed,allthatmattersistheslopedS/dU.Whatwecalltheslopemakesnodifference.Rangeoftemperature.Forathermalsystem,thefunctionS(U)isamonotonicallyincreasingfunction.Themoreenergy,themorequantumstates,andthemoreentropy.Thus,thedefinition1/T=dS(U)/dUmakestemperaturepositive.Usuallyweonlymeasuretemperaturewithinsomeinterval.Extremelylowtemperaturesarestudiedinthescienceofcryogenics.Extremelyhightemperaturesarerealizedinstars,andotherspecialconditions.Whatcanyoudofortemperature?Anessentialsteptograspthermodynamicsistogettoknowthetemperature.Wedefinetemperaturebyanalyzinganeverydayexperience—thermalcontact.Howdoestemperaturerisesupasanabstractionfromeverydayexperienceofthermalcontact?Howdoestemperaturecomesdownfromtheunionofenergyandentropy?Letmeparaphraseabetter-knownBostonian.Andso,myfellowthermodynamicist:asknotwhattemperaturecandoforyou—askwhatyoucandofortemperature.Exercise.Writeanessaywiththetitle,Whatistemperature?Howdoestemperaturerisesupasanabstractionfromeverydayexperienceofthermalcontact?Howdoestemperaturecomesdownfromtheunionofenergyandentropy?Exercise.Hotnessandhappinessaretwocommonfeelings.Wemeasurehotnessbyanexperimentalquantity,temperature.Canwedosoforhappiness?Why?

TwounitsoftemperatureRecallthedefinitionoftemperature,1/T=dS/dU.Becauseentropyisadimensionlessnumber,temperaturehastheunitofenergy,Joule.Butadifferentunitfortemperature,Kelvin,iscommonlyused.Theconversionfactorbetweenthetwounitsoftemperature,JouleandKelvin,iscalledtheBoltzmannconstantk,definedby1.380649×10−23Joule=1Kelvin.

Page 34: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Wiki2019redefinitionoftheSIbaseunits.TheoldandnewdefinitionsofKelvinstartat28:40ofthisvideo.ModernCelsiusscale.Temperatureisdefinedbytheequation1/T=dS(U)/dU.Anymonotonicfunctionofthistemperaturedefinesanarbitraryscaleoftemperature.Herewewilljustmentionacommonlyusedscale,theCelsiusscaleC,definedbyC=T−273.15K(Tintheunitofkelvin).ThismoderndefinitionoftheCelsiusscalediffersfromthehistoricaldefinition.Specifically,themeltingpointandtheboilingpointofwaterarenolongerusedtodefinethemodernCelsiusscale.Rather,thesetwotemperaturesaredeterminedbyexperimentalmeasurements.Theexperimentalvaluesareasfollows:watermeltsat0°Candboilsat99.975°C.ThemeritofusingCelsiusineverydaylifeisevident.Itfeelsmorepleasanttohearthattoday’stemperatureis20degreeCelsiusthan293.15Kelvin,or404.34×10−23Joule.Exercise.HowwasCelsiusscaleoriginallydefined?Whatmadetheinternationalcommitteetoredefineit?Exercise.Howwouldyoudefendthechoiceoftheconversionfactor,1.380649×10−23Joule=1Kelvin?

UnitofentropyDimensionlessentropy.Theentropyofanisolatedsystem,S,isdefinedbythenumberofquantumstatesoftheisolatedsystem,Ω,asS=logΩ.Theentropyisadimensionlessnumber.Aunitofentropy.Byahistoricalaccident,however,theentropyisgivenaunit.Topreservetheequation1/T=dS/dU,whenweusetemperatureintheunitofKelvin,wemultiplythedimensionlessentropybyk.TheentropyisthenreportedintheunitofJK-1.WriteS=klogΩ.TheBoltzmannconstant,k=1.380649×10−23Joule/Kelvin,doesnohonortothethreegreatscientists.Itisunfortunatethatweassociateanunsightlynumberwiththethreegreatnames.Thenumberisjusttheconversionfactorbetweenthetwounitsoftemperature,JouleandKelvin.

Page 35: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Thisunitofentropymaygiveanimpressionthattheconceptofentropydependsontheconceptsofenergyandtemperature.Thisimpressioniswrong.Aswehaveseen,forasamplespaceofafinitenumberΩofsamplepoints,entropyislogΩ.Entropyandenergyaretwoindependentconcepts.Whereasentropyisameasureofthesizeofasamplespaceofanisolatedsystem,energyisjustoneofnumerousquantitiesthatcanserveasinternalvariables.Temperatureisthechildoftheunionofentropyandenergy,1/T=dS/dU.

IdealgaslawkTistemperatureintheunitofenergy.TheBoltzmannconstantkhasnofundamentalsignificance;itmerelydefinesaunitoftemperaturemoremanageableineverydayuse.Foranyfundamentalresult,ifTisinunitsofKelvin,theproductkTmustappeartogether.OftenpeoplecallkTthermalenergy.Thisdesignationisingeneralincorrect.Thereisnoneedtogiveanyotherinterpretation:kTistemperatureintheunitofenergy.Idealgaslaw.Thechangeofunitisillustratedwiththeidealgaslaw.TheidealgaslawtakestheformPV=NT.wherePisthepressure,Vthevolume,Nthenumberofmolecules,andTthetemperatureintheunitofenergy.Historically,thelawofidealgaseswasdiscoveredempiricallybeforethediscoveryofentropy.Laterwewillshowthatthetwodefinitionsoftemperature,PV=NTand1/T=dS(U)/dU,arethesame.WhenTisintheunitofKelvin,theidealgaslawbecomesthatPV=NkT.AvogadroconstantNA.Accordingtothe2019redefinitionoftheSIbaseunits,theAvogadroconstantNAisdefinedby6.02214076×1023items=1moleofitems.Ifweusemoleataunitfortheamountofgas,anduseKelvinasaunitfortemperature,theidealgaslawbecomesthatPV=nRT,wherenistheamountofthegasintheunitofmoleand R=kNA=8.314JK

-1mole-1.

Page 36: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

ThisquantityRiscalledtheuniversalgasconstant,andistheproductoftwohistoricalaccidents:theKelvinunitfortemperature,andtheAvogadrounitforamountofitems.Thename“theuniversalgasconstant”soundspretentioustothemodernear.

VaporpressurePartialpressure.Theairaroundusisamixtureofmanyspeciesofmolecules,includingnitrogen,oxygen,carbondioxide,andwater.WikiatmosphereoftheEarth.LetVbethevolumeofamixtureofgas,andNwaterbethenumberofwatermoleculesinthevolume.Thepartialpressureofwaterinthemixture,Pwater,isdefinedbyPwaterV=PwaterkT.Vaporpressure.Thevaporpressureofwateristhepartialpressureofwateratwhichthevaporequilibrateswithacondensedphaseofwater,liquidwaterorice.Thevaporpressuredependsontemperature.Atroomtemperature,thevaporpressureisapproximately3kPa.At100degreesCelsius,thevaporpressureisapproximately100kPa.Wikivaporpressure.Wikivaporpressureofwater.Whenthepartialpressureofwaterisbelowthevaporpressure,theliquidwateroriceevaporates.Whenthepartialpressurethevaporpressure,thewatermoleculesinthegaswillcondense.Relativehumidity.Atagiventemperature,whenamoistairisinequilibriumwiththeliquidwater,wesaythattheairissaturatedwithwater.Ifaircontainsfewerwatermoleculesthanthesaturatedairdoes,thenumberofwatermoleculesintheairdividedbythenumberofwatermoleculesinthesaturatedairiscalledtherelativehumidity.WriteRH=N/Nsatu.Whenthevaporismodeledasanidealgas,therelativehumidityisalsogivenbyRH=P/Psatu,Exercise.Estimatethenumberofwatermoleculesinthevaporinthehalfbottleofwater.Whatisthevolumeofthevapordividedbythenumberofmolecules?Comparethisvaluetothevolumeofanindividualwatermolecule.

Page 37: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

SpecificquantitiesBothmassMandvolumeVareextensivequantities.Theirratiosdefinetwointensivequantities:theratioofmasstovolumeM/Viscalledthemassdensity,andtheratioofvolumetomassV/Miscalledthespecificvolume.WealsoreportvolumepermoleculeV/N,orvolumepermoleofmolecules,V/n.SometextbooksgiveV/M,V/N,andV/ndistinctsymbols.Wewilldenotethemallbyv,andletthecontexttellthedifference.WewillsimilarlydenotespecificentropyS/M,entropypermoleculeS/N,andentropypermoleofmoleculesS/nbys.WedenotespecificenergyU/M,energypermoleculeU/N,andenergypermoleofmoleculesU/nbyu.Themassofamoleofwateris18g.Atroomtemperatureandatmosphericpressure,themassdensityofwateris1000kg/m3.Exercise.Howwouldyoudefendthechoiceoftheconversionfactor,6.02214076×1023items=1moleofitems?Exercise.Calculatethemassdensity,specificvolume,volumepermolecule,andvolumepermoleofwatermoleculesatatemperatureof200°Candapressureof100kPa.Exercise.ThegravityoftheEarthpullsmoleculesofgastowardtheEarth,buttheentropyofthegasdispersesthemoleculesintothespace.Assumethatthetemperatureisconstant,howdoesthedensityofaspeciesofmoleculesinthegaschangewiththeelevation?

GeneralfeaturesofthefunctionT(U)Recallthedefinitionoftemperature,1/T=dS(U)/dU.WeplotthefunctionT(U)ontheenergy-temperatureplane.Weuseenergyasthehorizontalaxis,andtemperatureastheverticalaxis.Eachpointonthecurverepresentsathermalsystemisolatedataparticularvalueofenergy.Thatis,eachpointonthecurverepresentsathermodynamicstateofthethermalsystem.NoteseveralgeneralfeaturesofthecurveT(U).

1. Theenergyisdefineduptoanadditiveconstant,sothatthecurveT(U)canbetranslatedalongtheaxisofenergybyanarbitrarilyamount.

2. ThetemperatureTstartsatabsolutezero,ispositive,andhasnoupperbound.3. Forthetimebeing,weassumethatT(U)isanincreasingfunction.

ThesefeaturesofT(U)shouldbecomparedwiththoseofS(U).

Page 38: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Exercise.AthermalsystemcanalsobecharacterizedbyfunctionS(T).DiscussthegeneralfeaturesofthecurveS(T)ontheentropy-temperatureplane.

ThermalcapacityWhentheenergyofathermalsystemchangesbydU,thetemperaturechangesbydT.Definethethermalcapacityby1/C=dT(U)/dU.Becauseenergyisanextensivequantityandtemperatureisanintensivequantity,thermalcapacityisanextensivequantity.Thermalcapacityisafunctionofstate.Whenwereporttemperatureintheunitofenergy,thermalcapacityisdimensionless.WhenwereporttemperatureintheunitKelvin,thethermalcapacityhastheunitJK-1.Thethermalcapacityisafunctionofenergy,C(U).Weassumethatthethermalcapacityispositive.ThisassumptionisequivalenttothatthefunctionT(U)haspositiveslope,andthatthefunctionS(U)isconvex.Recallthedefinitionoftemperature,1/T=dS(U)/dU.Thermalcapacityisalsocalledheatcapacity.Thermalcapacityisafunctionofstate,andisindependentofthemethodofenergytransfer.Forexample,wecanaddenergytoahalfbottleofwaterbywork,suchasshakingthebottle,orelectricheating.Oncewecommittothemodernusageofthewordheatasamethodofenergytransfer,itisinappropriatetonameafunctionofstateusingthewordheat.Specificthermalcapacity.Theenergyneededtoraisethetemperatureofaunitmassofasubstancebyadegreeiscalledthespecificthermalcapacityofthesubstance.Liquidwaterhasapproximatelyaconstantspecificthermalcapacityof4.18J/g/K.Icehasapproximatelyaconstantspecificthermalcapacityof2.06kJ/kg/K.Exercise.(a)Weimmersea100Wlightbulbin1kgofwaterfor10minutes.Assumethatallelectricenergyappliedtothebulbconvertstotheinternalenergyofwater.Howmuchdoesthetemperatureofthewaterincrease?(b)Howmuchdoesthetemperatureofthewaterincreasewhenanapplefallsfromaheightof1mintothewaterandconvertsallitspotentialenergytotheinternalenergyofthewater?Similarexperimentswereconductedin1840stoestablishthatheatisaformofenergy.Exercise.Whatarethechangesinenergyandentropyof1kgofwaterwhenraisedfromthefreezingtotheboilingtemperature?Exercise.When1kgofwateratthefreezingpointismixedwith2kgofwaterattheboilingpoint,whatisthetemperatureinequilibrium?Whatisthechangeofentropyassociatedwiththismixing?

Page 39: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Exercise.Forasolidoraliquid,thechangeofvolumeissmallwhentemperatureincreases.Wemodelthesolidorliquidasathermalsystem,andmeasurethetemperature-energycurveexperimentally.Forasmallrangeoftemperature,thethermalenergyisapproximatelylinearintemperature,U(T)=CT,wherethethermalcapacityCistakentobeaconstant.DerivethecharacteristicfunctionS(U).

Experimentalthermodynamics

DivisionoflaborSomethingsareeasytocalculatetheoretically,othersareeasytomeasureexperimentally.Adivisionoflaborimprovestheeconomicsofgettingthingsdone.Muchofthermodynamicsisonlysensibleintermsofthedivisionoflaborbetweentheoryandexperiment,andbetweenpeopleandmachines.Formostisolatedsystems,countingquantumstatesexperimentallyisfarmoreeconomicthancomputingthemtheoretically. Experimentandtheory(Bryan,Thermodynamics,1907).Itismaintainedbymanypeople(rightlyorwrongly)thatinstudyinganybranchofmathematicalphysics,theoreticalandexperimentalmethodsshouldbestudiedsimultaneously.Itishoweververyimportantthatthetwodifferentmodesoftreatmentshouldbekeptcarefullyapartandifpossiblestudiedfromdifferentbooks,andthisisparticularlyimportantinasubjectlikethermodynamics.

CalorimetryTheartofmeasuringthermalenergyiscalledcalorimetry.Adevicethatmeasuresthermalenergyiscalledacalorimeter.Calorimetryhasbecomeafineartofhighsophistication,anditistoomuchofatangenttotalkaboutcurrentpracticeofcalorimetryinabeginningcourseinthermodynamics.Allweneedtoknowisthatthermalenergyismeasuredroutinely.Ifyouwishtohaveaspecificmethodinmind,justthinkofanelectricheater.Theelectricenergyis(current)(voltage)(time),assumedtobefullyconvertedintothermalenergy.

ThermometryTheartofmeasuringtemperatureiscalledthermometry.Adevicethatmeasurestemperatureiscalledathermometer.Temperatureaffectsallpropertiesofallmaterials.Inprinciple,anypropertyofanymaterialcanserveasathermometer.Thechoiceisamatterofconvenience,accuracy,andcost.Herearetwocommonlyusedthermometers.

Page 40: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Mercury-in-glassthermometer.Amercury-in-glassthermometerreliesonapropertyofmercury:thevolumeexpandsastemperatureincreases.Thus,avolumeindicatesatemperature. Gasthermometer.Anidealgasobeystheequationofstate:PV=NkT,ThisequationrelatestemperatureTtomeasurablequantitiesP,V,andN.Thus,anidealgascanserveasathermometer,calledthegasthermometer.Exercise.Beforeyouacceptanidealgasasathermometer,describeamethodtomeasurethenumberofmoleculesinabottleofgas.Adivisionoflabor.Howdoesadoctordeterminethetemperatureofapatient?Certainlyshedoesnotcounttheenormousnumberofquantumstatesofherpatient.Instead,sheusesathermometer.Letussaythatshebringsamercury-in-glassthermometerintothermalcontactwiththepatient.Uponreachingthermalequilibriumwiththepatient,themercuryexpandsacertainamount,givingareadingofthetemperatureofthepatient.Themanufacturerofthethermometermustassignavolumeofthemercurytoatemperature.Thishecandobybringingthethermometerintothermalcontactwithaflaskofanidealgas.Hedeterminesthetemperatureofthegasbymeasuringitsvolume,pressure,andnumberofmolecules.Also,byheatingorcoolingthegas,hevariesthetemperatureandgivesthethermometeraseriesofmarkings.Anyexperimentaldeterminationofthethermodynamictemperaturefollowsthesebasicsteps:

1. Forasimplesystem,formulateatheorythatrelatestemperaturetoameasurablequantity.

2. Usethesimplesystemtocalibrateathermometerbythermalcontact.3. Usethethermometertomeasuretemperaturesofanyothersystembythermalcontact.

Steps2and3aresufficienttosetupanarbitraryscaleoftemperature.ItisStep1thatmapsthearbitraryscaleoftemperaturetothethermodynamictemperature.Ourunderstandingoftemperaturenowdividesthelaborofmeasuringtemperatureamongadoctor(Step3),amanufacturer(Step2),andatheorist(Step1).Onlythetheoristneedstocountthenumberofquantumstates,andonlyforaveryfewidealizedsystems.

Page 41: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

ExperimentaldeterminationofentropyThisisamagicofthermodynamics.Wecancountexperimentallythenumberofquantumstatesofanisolatedsystemofanycomplexity,knowingnothingaboutthequantumstatesthemselves.Weillustratethemethodusingathermalsystem. Hereisastatementofthetask.Givenathermalsystem,measureitscharacteristicfunctionS(U).Recallthedefinitionoftemperature,dS(U)=T-1dU.CountingthenumberofquantumstatesrequiresacombinationofthermometrytomeasureTandcalorimetrytomeasureU.ExperimentalmeasurementofthefunctionT(U).Weaddenergytothethermalsystemby,say,anelectricheater.WemeasurethechangeinenergyUby(time)(resistance)(current)2.Ateachincrementofenergy,weisolatethesystem,waituntilthesystemreachesequilibrium,andmeasuretemperatureT.TheseincrementalmeasurementsdeterminethefunctionT(U). Determinationofentropy.Recallthedefinitionoftemperature:dS(U)=T-1dU.ThisequationrelatesthefunctionS(U)toexperimentallymeasurablequantity,UandT.OncethefunctionT(U)ismeasuredexperimentally,anintegrationdeterminesthefunctionS(U).Inthisintegration,setS=0asT→0.Thatis,atthegroundstate,thenumberofquantumstatesislow,andissettobeone.Thisisastatementofthethirdlawofthermodynamics.Ontheenergy-entropyplane,thecurveS(U)approachesthehorizontalaxisvertically.Often,themeasurementonlyextendstoatemperaturemuchaboveabsolutezero.Assumethatthemeasurementgivestheenergy-temperaturecurveintheintervalbetweenT0andT.Uponintegrating,weobtainS(T)-S(T0).SuchanexperimentleavesS(T0)undetermined.RecallthatthefunctionS(U)characterizethethermalsystemasafamilyofisolatedsystems.Thus,wecancountthenumberofquantumstatesofeachmemberisolatedsysteminthefamily.Debyemodel(1912).ToillustratethedeterminationofthecharacteristicfunctionS(U),considertheDebyemodel.Nearabsolutezero,theinternalenergyofasolidtakestheformU=aT4,whereaisaconstant.Debyeobtainedthisexpressionfromamicroscopicmodel.HereweregardtheU(T)asacurveobtainedfromexperimentalmeasurement.

Page 42: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Inverttheaboveequation,andwehaveT=(U/a)1/4.IntegratingdS=T-1dU,weobtainthatS(U)=(4/3)a1/4U3/4.WehaveusedtheconditionS=0atT=0.Exercise.CalculatethefunctionC(U)fortheDebyemodel.

Melting

EmpiricalfactsIceandliquidarecalledtwophasesofwater.Themeltingoficeiscalledaphasetransition.Afixednumberofwatermoleculesisathermalsystem.Itsthermodynamicstatesarecapableofoneindependentvariation.Werepresentthethermodynamicstatesbyacurve,T(U),onthetemperature-energyplane,withenergyasthehorizontalaxis,andtemperatureastheverticalaxis.

Solid.Inablockofsolidwater,ice,watermoleculesformacrystal—aperiodiclatticeofwatermolecules.Individualwatermoleculesvibratearoundtheirlatticesites,butchangeneighborsrarely.Theblockoficeusuallycontainsmanygrainsofthesamecrystal.Betweentwograins,alayerofwatermoleculesdonotbelongtothelatticeofeithergrain,andiscalledagrainboundary.Thegrainboundaryisthin,andthethicknessisnomorethanafewmolecules.Consequently,thewatermoleculesinthegrainboundarycontributenegligiblytotheextensivequantities(i.e.,entropy,energy,andvolume)oftheblock.Asablockoficereceivesenergy,itstemperatureincreases.Icehasanapproximatelyconstantvalueofspecificthermalcapacity:cs=2.06kJ/kg/K.

Page 43: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Thesolidphasecorrespondstoalineofthisslopeintheenergy-temperatureplane.Eachpointonthelinecorrespondstoonethermodynamicstateofthesolidphase.Inthisthermodynamicstate,oncethegrainboundariesareneglected,allpartsoftheblockaresimilar.Theblockoficeissaidtobeinahomogeneousthermodynamicstate.Liquid.Inabottleofliquidwater,watermoleculesdonotformalattice.Thewatermoleculestouchoneanotherandchangeneighborsreadily.Astheliquidreceivesmoreenergy,thetemperatureincreasesagain.Waterhasanapproximatelyconstantvalueofspecificthermalcapacity:cf=4.18kJ/kg/K.Thesubscriptfstandsforflüssigkeit,theGermanwordforliquid.Theliquidphasecorrespondstoalineofthisslopeintheenergy-temperatureplane.Eachpointonthelinecorrespondstoonethermodynamicstateoftheliquidphase.Inthisthermodynamicstate,allpartsoftheliquidinthebottlearesimilar.Thebottleofwaterissaidtobeinahomogeneousthermodynamicstate.Mixtureofsolidandliquid.Whenthetemperatureincreasestoacertainlevel,astheblockoficereceivesmoreenergy,itstemperatureremainsfixed,butsomewatermoleculesbecomeliquidwater.Thefixedtemperatureiscalledthemeltingtemperature,Tm.Forwater,themeltingtemperatureisTm=273.15K.Amixtureoficeandwater,whenisolated,conservestheamountofenergyandthenumberofwatermolecules.Afterbeingisolatedforalongtime,thetwophasescoexistinequilibrium:somewatermoleculesformthesolid,andtheremainingwatermoleculesformtheliquid.Thesolidandtheliquidaretwothermalsystems,inthermalcontactandinthermalequilibrium.Thecoexistentsolidandtheliquidhavethesametemperature,Tm.Amixtureofsolidandliquidinequilibriumiscalledaheterogeneousthermodynamicstate.Whenamixtureofsolidandliquidequilibrate,denotetheenergypermoleculeinthesolidbyus,andtheenergypermoleculeintheliquidbyuf.OfatotalnumberofNmoleculesinthemixture,Nsmoleculesformthesolid,andNfmoleculesformtheliquid.ThetotalenergyofthemixtureisU=Nsus+Nfuf.Thisequationiscalledtheruleofmixture.Wecanaddenergytothemixture,whilekeepingthetotalnumberofwatermoleculesinthemixturefixed.Astheenergyofthemixtureincreases,somewatermoleculesgofromthesolidtotheliquid.

Page 44: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Thus,meltingcorrespondstoahorizontallineintheenergy-temperatureplane.Thelevelofthelineisfixedatthemeltingtemperature,Tm.Thelineendsontheleftwhenallmoleculesformthesolid,andendsontherightwhenallmoleculesformtheliquid.Latentenergy.Definethelatentenergypermoleculebythejumpinenergy,uf−us.Often,wereportlatentenergyperunitmass,orspecificlatentenergy.Wewillusethesamesymboluforboththeenergypermoleculeandenergyperunitmass.Thetwoquantitiesareconvertedbyrecallingthat6×1023watermolecules=1moleofwatermolecules=18gramsofwatermolecules.Thespecificlatentenergyofwaterisuf−us=334kJ/kg.Thelatentenergyiscommonlyknownbyitshistoricalname,latentheat(Black,1750).Thishistoricalnameisnolongerappropriate.Latentenergyisajumpinenergy(afunctionofstate),andshouldnotbenamedusingthewordheat,amethodofenergytransfer.Wecanmeltablockoficebywork,suchasmovingtheblockagainstfriction.Thatis,wecanformtheconceptoflatentenergyandmeasureitexperimentallywithouteverinvokingheat.FunctionT(U).Insummary,apuresubstancenearmeltingischaracterizedbyacurveonthetemperature-energyplaneusingfourquantities:themeltingtemperatureTm,thelatentenergyuf−us,thespecificthermalcapacityofthesolidcs,andthespecificthermalcapacityoftheliquidcf.Belowthemeltingtemperatureandabovethetemperature,thefunctionT(U)iscurved,andbothcsandcfchangewithtemperature.Inmanyestimateinvolvingwater,wewillassumeapproximateconstantvalues,cs=2.06kJ/kg/Kandcf=4.18kJ/kg/K.TheapproximatefunctionT(U)summarizesathermodynamicmodelofwater.Exercise.Calculatetheenergyneededtobring1kgoficeat-50degreeCelsiustoliquidwaterat50degreeCelsius.Exercise.1kgoficeatthefreezingtemperatureismixedwith1kgofwaterattheboilingtemperature.Themixtureisinsulated.Whatwillbethetemperatureinequilibrium?

PrimitivecurvesWenowtracetheexperimentalobservationofmeltingbacktothefundamentalpostulate.Wemodelfixedamountofapuresubstanceasathermalsystem.Thismodelassumesthatthepuresubstancecanchangeenergy,butignoresthatthepuresubstancecanalsochangevolume.Themodelisagoodapproximationforsolidandliquid,butnotforgas. InphaseA,theenergypermoleculeisuA,theentropypermoleculeissA,andthecharacteristicfunctionissA(uA).Similarly,wemodelphaseBasathermalsystemofcharacteristicfunctionsB(uB).ThefunctionssA(uA)andsB(uB)aretwocurvesintheenergy-entropyplane.Thetwo

Page 45: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

curvesarecalledtheprimitivecurvesofthepuresubstance.Eachpointonaprimitivecurvecorrespondstoahomogeneousthermodynamicstateofthepuresubstance.

RuleofmixtureAmixtureoftwohomogeneousstates.Wenowconsideramixtureoftwohomogeneousstates:state(uA,sA)isapointononeprimarycurve,andstate(uB,sB)isapointontheotherprimarycurve.ThemixturehasatotalofNmolecules,ofwhichNAmoleculesareinstateA,andNBmoleculesareinstateB.DenotethenumberfractionsofthemoleculesinthetwohomogeneousstatesbyyA=NA/N,yB=NB/N.BothyAandyBarenonnegativenumbers.Thenumberofmoleculesinthemixtureisconserved:N=NA+NB.DividingtheaboveequationbyN,weobtainthatyA+yB=1.Themixtureisalsoathermalsystem.Letuandsbetheenergyandentropyofthemixturedividedbythetotalnumberofmolecules.Energyisanextensivevariable,sothattheenergyofthemixtureisthesumoftheenergiesofthetwohomogeneousstates:Nu=NAuA+NBuB.DividingtheaboveequationbyN,weobtainthatu=yAuA+yBuB.Thesameistrueforentropy:s=yAsA+yBsB.Graphtherulesofmixture.Theserulesofmixturecanbegraphedontheenergy-entropyplane.HomogeneousstateAisapoint(uA,sA)ontheprimitivecurvesA(uA).HomogeneousstateBisapoint(uB,sB)ontheprimitivecurvesB(uB).Themixtureisapoint(u,s)onthelinesegmentjoiningthetwopoints(uA,sA)and(uB,sB),locatedatthecenterofgravity,dependingonthefractionofmoleculesyAandyBallocatedtothetwophases.Ingeneral,themixture(u,s)isapointofftheprimitivecurves,andmaynotbeastateofequilibrium.

Page 46: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Amixtureofanynumberofhomogeneousstates.Nowconsideramixtureofanynumberofhomogenousstates.Thehomogeneousstatescanbeononeprimitivecurve,oronbothprimitivecurves.Forexample,consideramixtureofthreehomogeneousstates,A,B,andC.ApuresubstancehasatotalofNmolecules,ofwhichNA,NB,andNCmoleculesareinthethreehomogeneousstates.DenotethenumberfractionsbyyA=NA/N,yB=NB/N,andyC=NC/N.HereyA,yBandyCarenon-negativenumbers.Themixtureconservesthenumberofmolecules:NA+NB+NC=N.DividethisequationbyN,andweobtainthatyA+yB+yC=1.Thethreehomogeneousstates,(uA,sA),(uB,sB),and(uC,sC),arethreepointsononeortwoprimitivecurves.Thethreepointsformatriangleintheenergy-entropyplane.Theenergyandenergypermoleculeofthemixture(u,s)aregivenbyu=yAuA+yBuB+yCuC,s=yAsA+yBsB+yCsC.Themixture,(u,s),isapointintheenergy-entropyplane,locatedatthecenterofgravityinthetriangle,dependingonthefractionofmoleculesyA,yBandyCallocatedtothethreehomogeneousstatesattheverticesofthetriangle.Ingeneral,themixture(u,s)isapointofftheprimitivecurves.Neglectthespatialarrangementofpiecesofhomogeneousstates.Therulesofmixturedependonthenumberofmoleculesineachhomogenousstate,butnotonhowthepiecesofhomogenousstatesarearrangedinspace.Therulesofmixturealsoneglectmoleculesattheinterfacesbetweenpiecesofhomogenousstates.Themoleculesattheinterfaceshavetheirownthermodynamicproperties,differentfromthoseofthehomogeneousstates.Theinterfacescontributetoenergyandentropynegligibly,solongasthepiecesofthehomogenousstatesaremuchlargerthanthesizeofindividualmolecules.Convexhull.Eachpointontheprimitivecurvescorrespondstoahomogenousstate.Amixturecorrespondstoapointatthecenterofgravityofsomenumberofhomogeneousstates.Allpossiblemixturesofarbitrarynumbersofhomogeneousstatesconstitutearegionintheenergy-entropyplane.Eachmixtureintheregionmaynotbeastateofequilibrium.Incidentally,inthelanguageofconvexanalysis,theenergy-entropyplaneiscalledavectorspace,andeachpointintheplaneiscalledavector.Allthehomogeneousstatesontheprimary

Page 47: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

curvesdefineasetofvectors.Amixtureiscalledaconvexcombinationofthehomogenousstates,andthesetofallmixturesiscalledtheconvexhullofthehomogenousstates.

DerivedcurveTheregionofallpossiblemixtures(i.e.,theconvexhull)isboundedfromabovebyasinglecurve,calledthederivedcurve.Thederivedcurveisformedbyrollingtangentlinesontheprimitivecurves.Atangentlinecantouchtheprimitivecurvesatonepointortwopoints,butnotthreeormorepoints.Thederivedcurveisconvex.Sofarenergyandentropyplaysimilarroles.Allwehaveinvokedisthattheyareextensivequantities.Wenextapplythebasicalgorithm.Afixedamountofmixtureofafixedamountofenergyisanisolatedsystem.Theisolatedsystemhasanenormousnumberofinternalvariables:thenumberofhomogeneousstates,thelocationofeachhomogeneousstateononeoftheprimitivecurves,andthenumberfractionofmoleculesallocatedtoeachhomogeneousstate.Theisolatedsystemhasafixedamountofenergyu,representedbyaverticallineontheenergy-entropyplane.Theverticallineintersectsthederivedcurveatonepoint,whichmaximizethesubsetentropy.Astheenergyofapuresubstancevaries,thederivedcurverepresentsallthermodynamicstatesofthepuresubstance.

Page 48: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

EquilibriumofasinglehomogeneousstateIfalinetangenttoonepointonaprimitivecurvedoesnotcutanyprimitivecurves,thispointbelongstothederivedcurve.Thesetofallsuchpointsiscalledthecurveofabsolutestability.Thetangentlinecanrollontheprimitivecurvetochangetheslopeofthetangentline.Thus,thecurveofabsolutestabilityhasonedegreeoffreedom.Recall1/T=ds(u)du.Theslopeofthetangentlinecorrespondstotemperature.

EquilibriumoftwohomogeneousstatesIfalinetangenttotwopointsontheprimitivecurvesdoesnotcutanyprimitivecurves,thestraight-linesegmentconnectingthetwotangentpointsbelongstothederivedcurve.Thestraight-linesegmentiscalledatieline.Thecommontangentlinecannotrollontheprimitivecurves,isfixedintheenergy-entropyplane,andhasnodegreeoffreedom.Thetwotangentpointsattheendsofthetielinearecalledthelimitsofabsolutestability.LetthetangentlinetouchoneprimitivecurvesA(uA)atpoint(uA,sA),andtouchtheotherprimitivecurvesB(uB)atpoint(uB,sB).Thetwotangentpointscorrespondtothetwohomogeneousstatesinequilibrium.Theslopeofthetangentlinedefinesthemeltingtemperature.Thus,1/Tm=(sB-sA)/(uB-uA)=dsB(uB)/duB=dsA(uA)/duA.Giventhetwoprimitivecurves,sA(uA)andsB(uB),theaboveequationssolveforthemeltingtemperatureTm,aswellasthetwohomogeneousstatesinequilibrium,(uA,sA)and(uB,sB).

Temperature-entropycurveWenowsketchthecurveT(S)nearthemeltingtemperature.RecalldS=T-1dU=C(T)T-1dT.Icemeltsattemperature273.15K.Atthemeltingtemperature,thespecificthermalcapacityforiceiscs=2.06kJ/kg/K.Thus,theslopeofthetemperature-entropycurveforicenearthemeltingtemperatureiscs/Tm=(2.06kJ/kg/K)/(273.15K)=0.0075kJ/kg/K

2. Atthemeltingtemperature,thespecificthermalcapacityforliquidwateriscf=4.18kJ/kg/K.Thus,theslopeofthetemperature-entropycurveforliquidwaternearthemeltingtemperatureiscf/Tm=(4.18kJ/kg/K)/(273.15K)=0.015kJ/kg/K

2.

Page 49: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Recallthatsf-ss=(uf-us)/Tm.Thespecificlatentenergyis334kJ/kg.Thechangeinspecificentropyissf-ss=(334kJ/kg)/(273.15K)=1.2kJ/kg/K.

Exercise.Canthemodelofthermalsystemdescribesthreehomogenousstatesinequilibrium?Exercise.Forwater,wehavesketchedcurvesT(u)andT(s)nearthemeltingtemperature.Nowcalculateandsketchthecurves(u)nearthemeltingtemperature.Exercise.Forwater,themeltingtemperatureis273.15K,thespecificlatentenergyis334kJ/kg.Calculatetheratioofthenumberofquantumstatesintheliquidtothatinthesolid.

Thermalsystemofanonconvexcharacteristicfunctions(u).Inhindsight,weshouldnothaveacceptedsoreadilythatthecharacteristicfunctionofathermalsystem,s(u),isaconvexfunction,orthatu(T)isanincreasingfunction,orthatthermalcapacityispositive.Infact,athermalsystemmayhaveanonconvexprimarycurves(u).Wecanformatangentlinetouchingtwopointsonthecurves(u).Thetwopointscorrespondtoequilibriumoftwohomogeneousstates.Itturnsoutthatasolid-liquidtransitionismodeledwithtwoconvexprimitivecurves,butaliquid-gastransitionismodeledwithasinglenonconvexprimitivecurve.Wewillseethiseffectclearlylaterinamodelthatallowsthepuresubstancetovarybothenergyandvolume.

MetastabilityAprimitivecurvemaycontainaconvexpartandanon-convexpart.Thepointseparatingthetwopartsiscalledtheinflectionpointincalculus,andiscalledthelimitofmetastabilityinthermodynamics.Ifaconvexpartoftheprimitivecurveliesbelowthederivedcurve,thepartoftheprimitivecurveisbeyondthelimitofabsolutestability.Eachpointofthispartoftheprimitivecurveiscalledametastablestate.Ametastablestateisstableinregardtocontinuouschanges

Page 50: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

ofstate,butisunstableinregardtodiscontinuouschangesofstate.Watchavideoonsupercooledwater.

TemperatureasanindependentvariableAthermalsystemhasasingleindependentvariation.Sofarwehavespecifiedthethermodynamicstatesofthethermalsystemusingenergyasanindependentvariable.Anyoneofthefunctionsofstatecanserveasanindependentvariable.Apopularchoiceistemperature.

U(T)andT(U)Asdescribedabove,wecanmeasuretheenergy-temperaturecurveofathermalsystem,T(U).Forthetimebeing,weassumethatthefunctionT(U)isanincreasingfunction.Thatis,onreceivingenergy,athermalsystemincreasestemperature.Fromcalculuswehavelearnedthatanymonotonicfunctionisinvertible.WritetheinversefunctionasU(T).Thetwofunctions,U(T)andT(U),correspondtothesamecurveontheenergy-temperatureplane,andcontainthesameinformation.

ThermostatAthermostatisadevicethatmeasurestemperatureandswitchesheatingorcoolingequipmenton,sothatthetemperatureiskeptataprescribedlevel.Thermostatsarewidelyusedinrefrigeratorsandhome-heatingand-coolingunits.Sous-vide(/suːˈviːd/;Frenchfor"undervacuum")isamethodofcooking.Food(e.g.,apieceofmeat)issealedinanairtightplasticbag,andplacedinawaterbathforalongertimeandatalowertemperaturethanthoseusedfornormalcooking.Thetemperatureisfixedbyafeedbacksystem.Becauseofthelongtimeandlowtemperature,sous-videcookingheatsthefoodevenly;theinsideisproperlycookedwithoutovercookingtheoutside.Theairtightbagretainsmoistureinthefood.

ThermalreservoirAthermalreservoirisathermalsystemofafixedtemperature.Weusethethermalreservoirtofixthetemperatureofanotherthermalsystembythermalcontact.Theotherthermalsystemhasamuchsmallerthermalcapacitythanthethermalreservoir,sothatthetemperatureofthereservoir,TR,isfixedasthethermalreservoirandtheotherthermalsystemexchangeenergy.Inthermalequilibrium,theotherthermalsystemhasthesametemperatureasthethermalreservoir.Wecanrealizeathermalreservoirbyusingalargetankofwater.Whenwaterlosesorgainsasmallamountofthermalenergy,thetemperatureofwaterisnearlyunchanged.

Page 51: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Thesituationisanalogoustoawaterreservoir.Awaterreservoirhasalotofwater.Itswaterlevelremainsnearlyunchangedwhenwetakeasmallcupofwaterfromthereservoir.Thethermalreservoirisathermalsystem,andinteractswiththerestoftheworldinonemode:transferenergy.WhentheenergyofthereservoirisfixedatavalueUR,thereservoirbecomesanisolatedsystem,andhasacertainnumberofquantumstates,ΩR(UR).AsURvaries,thefunctionΩR(UR),oritsequivalent,SR(UR)=logΩR(UR),characterizesthereservoirasafamilyofisolatedsystems.Whenthereservoirisinthermalcontactwithasmallthermalsystem,thecompositeofthereservoirandthesystemisanisolatedsystemandhasaconstantenergy,Ucomposite.LetUbetheenergyofthesmallthermalsystem.Theenergyofthecompositeisasumofparts:Ucomposite=UR+U.Recallthedefinitionoftemperature,1/TR=dSR(UR)/dUR.BecauseTRisconstant,integrating,wefindthatSR(UR)=SR(Ucomposite)-(Ucomposite-UR)/TR.Thus,athermalreservoirisathermalsystemcharacterizedbyalinearfunctionSR(UR).

IsothermalprocessAprocessthatoccursataconstanttemperatureiscalledanisothermalprocess.Forexample,thesous-videcookinginanisothermalprocess.Thetemperatureisfixedwhilethefoodcooks.Wecanfixthetemperaturebyathermostat,orbyathermalreservoir.Sofarasthefoodisconcerned,themethodoffixingtemperaturemakesnodifference. Wemodelanisothermalprocessbyasystemoftwovariables:energyUandaninternalvariablex.WhenbothUandxarefixed,thesystemisanisolatedsystemhavingacertainnumberofthequantumstates,Ω(U,x).LetS(U,x)=logΩ(U,x).Wefixthetemperatureofthesystembythermalcontactwithareservoir.Thecompositeofthesystemandthereservoirisanisolatedsystem.Theentropyofthecompositeisthesumoftheentropiesofthereservoirandthesystem:Scomposite=SR(Ucomposite)-U/T+S(U,x).Theisolatedsystemhastwointernalvariables:theenergyUinthesystem,andtheinternalvariablex.ThetotalenergyofthecompositeUcompositeisfixed.

Page 52: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Theisolatedsystemisinthermalequilibrium,sothat∂Scomposite/∂U=0.Thisconditionrecoversafamiliarcondition:1/TR=∂S(U,x)/∂U.Thatis,inthermalequilibrium,thereservoirandthethermalsystemhavethesametemperature.WewilldropthesubscriptRandwritethetemperatureasTinthefollowing.ThefunctionS(U,x)isknown,theaboveconditionofthermalequilibriumdefinesthefunctionU(T,x).WecanalsowritetheentropyasafunctionS(T,x).Massieufunction.TheenergyofthecompositeUcompositeisfixed,sothatSR(Ucomposite)isaconstant.Thecompositeisanisolatedsystemofasingleinternalvariable,x.TheprocessproceedstochangextoincreaseScomposite,orequivalently,increasethefunctionJ=S(T,x)-U(T,x)/T.ThisfunctioniswrittenasJ(T,x).Thisfunctioncontainsquantitiesofthethermalsystemalone,andwasintroducedbyMassieu(1869).Intheisothermalprocess,thetemperatureisnotavariable,butisfixedbythethermalreservoir.Asidefromanadditiveconstant,theMassieufunctionisthesubsetentropyofanisolatedsystem:thecompositeofathermalsystemandathermalreservoir.

AlgorithmofthermodynamicsforisothermalprocessWenowparaphrasethebasicalgorithmofthermodynamicsforanisothermalprocess.

1. Constructathermalsystemwithaninternalvariablex.2. IdentifythefunctionJ(T,x).3. Equilibrium.FindthevalueoftheinternalvariablexthatmaximizesthefunctionJ(T,x).4. Irreversibility.Changethevalueoftheinternalvariablexinasequencethatincreases

thefunctionJ(T,x).

HelmholtzfunctionBecausethetemperatureisconstantandpositive,maximizingtheJ(T,x)isthesameasminimizingthefollowingfunction:F=U−TS.ThisfunctioniswrittenasF(T,x).Thisfunctioncontainsquantitiesofthethermalsystemalone,andiscalledtheHelmholtzfunction,orfreeenergy.ThefunctionwasintroducedbyGibbs(1865).NotethatUhasanarbitraryadditiveconstant,whichalsoappearsinF.

Page 53: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

ObservethatF=-J/T.Whenthesystemisheldatafixedtemperature(i.e.,inthermalequilibriumwiththereservoir),ofallvaluesoftheinternalvariablex,themostprobablevalueminimizestheHelmholtzfunctionF(T,x).Inthisminimization,temperatureisnotavariable,butisfixedbythethermalreservoir.Shadowoftherealthing.TheHelmholtzfunctioncomesfromthesubsetentropyofanisolatedsystem:thecombinationofasystemandathermalreservoir.TheHelmholtzfunctioncontainsnonewfundamentalprinciple,andisashadowofentropy.Inthepracticeofthermodynamics,theHelmholtzfunctionissocommonlyusedthatmanypeopleareenamoredbytheshadow,andforgettherealthing—entropy.DerivativeofHelmholtzfunction.Atfixedx,dF=dU-TdS-SdT.Recallthedefinitionoftemperature,dU=TdS.WehavethatdF=-SdT. Thus,-S=∂F(T,x)/∂T.BecauseSispositive,FdecreasesasTincreases.BecauseSincreasesasTincreases,FisaconvexfunctionofT.WecanparaphrasethealgorithmofthermodynamicsforisothermalprocessinusingtheHelmholtzfunctionF(T,x).Letususethealgorithmtoanalyzemelting.

MeltinganalyzedusingtheHelmholtzfunctionLettheHelmholtzfunctionpermoleculeinthesolidbefA(T),andthatintheliquidbefB(T).TheHelmholtzfunctionpermoleculeinamixtureofsolidandliquidisf=yAfA(T)+yBfB(T).Thechangeofphaseismodeledasanisothermalprocess.RecallthatyA+yB=1.Thefractionofmoleculesinthesolid,yA,istheindependentinternalvariable,whichisvariedtominimizetheHelmholtzfunctionofthemixture.ThetwocurvesfA(T)andfB(T)aredecreasingandconvexfunctions.TheequationfA(T)=fB(T).

Page 54: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

determinesthemeltingtemperatureTm.WhenT<Tm,theHelmholtzfunctionofthemixtureminimizesifallmoleculesfreeze.WhenT>Tm,theHelmholtzfunctionofthemixtureminimizesifallmoleculesmelt.RecallthedefinitionoftheHelmholtzfunction,f=u−Ts.TheconditionofequilibriumofthesolidandliquidgivesthatuA-TmsA=uB-TmsB.Thisexpressionrecoverswhatwehaveobtainedbefore.TheHelmholtzfunctiongivesusaslickderivationoftheequilibriumcondition,butpushesusastepawayfromtheleadingrole,entropy.

ClosedsystemNowentersasecondsupportingrole—volume.Inthermodynamics,energyandvolumeplayanalogoussupportingroles.

AfamilyofisolatedsystemsoftwoindependentvariationsAclosedsystemanditssurroundingsdonottransfermatter,buttransferenergyandvolume.Considerahalfcylinderofwatersealedwithapiston.Abovethepistonisaweight,andbeneaththecylinderisafire.Insidethecylinder,liquidoccupiessomevolume,andvaporoccupiestherest.Thewatermoleculesinsidethecylinderconstituteaclosedsystem.CharacteristicfunctionS(U,V).LetUbetheenergyandVbethevolumeofaclosedsystem.WhentheenergyUandvolumeVarefixed,theclosedsystembecomesanisolatedsystem.Forthehalfcylinderofwater,wefixUandVbythermallyinsulatethecylinderandlockthepositionofthepiston.DenotethenumberofquantumstatesofthisisolatedsystembyΩ(U,V).AsUandVvary,thefunctionΩ(U,V),oritsequivalent,S(U,V)=logΩ(U,V),characterizestheclosedsystemasafamilyofisolatedsystems,capableoftwoindependentvariations,UandV.Thermodynamicstate.Eachmemberisolatedsystem,inequilibrium,definesathermodynamicstateoftheclosedsystem,specifiedbyfixedvaluesofthetwothermodynamicproperties,UandV.Intheenergy-volumeplane,apointrepresentsathermodynamicstate.Athermodynamicstateissynonymoustoamemberisolatedsysteminequilibrium.Thermodynamicprocess.Acurveintheenergy-volumeplanerepresentsathermodynamicprocess.Athermodynamicprocessissynonymoustoasequenceofmemberisolatedstates,eachbeinginequilibrium.Aclosedsystemisafamilyofisolatedsystems.Athermodynamicprocessoftheclosedsystemisasubfamilyofisolatedsystems.Becausetheclosedsystemiscapableoftwoindependentvariations,thereareinfinitelymanytypesofthermodynamicprocesses.

Page 55: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Energy-volume-entropyspace.Thecharacteristicfunctionofaclosedsystem,S(U,V),isasurfaceintheenergy-volume-entropyspace,withenergyandvolumeasthehorizontalaxesandentropyastheverticalaxis.CharacterizingaclosedsystembyasurfaceS(U,V)intheenergy-volume-entropyspacestartswithGibbs(1873).Forafunctionoftwovariables,S(U,V),recallafactofcalculus:dS(U,V)=(∂S(U,V)/∂U)dU+(∂S(U,V)/∂V)dV.Furtherrecallthemeaningsofthetwopartialderivativeincalculus:∂S(U,V)/∂U=(S(U+dU,V)-S(U,V))/dU,∂S(U,V)/∂V=(S(U,V+dV)-S(U,V))/dV.DrawaplanetangenttothesurfaceatapointonthesurfaceS(U,V).Thetangentplanehastheslope∂S(U,V)/∂UwithrespecttotheUaxis,andtheslope∂S(U,V)/∂VwithrespecttotheVaxis.Wenextinterpretthetwopartialderivativesintermsofexperimentalmeasurements.

Constant-volumeprocessWhenthevolumeVisfixedandtheenergyUisvaried,theclosedsystembecomesathermalsystem.Forthehalfcylinderofwater,welockthepositionofthepiston,sothatthevolumeinthecylinderisfixed.Weallowthewatertoreceiveenergyfromthefire,sothattheenergyinthecylinderisvaried.Intheenergy-volumeplane,theconstant-volumeprocesscorrespondstoalineparalleltotheenergyaxis.Forathermalsystem,wehavedefinedtemperatureTby1/T=∂S(U,V)/∂U.Thisequationrelatesonepartialderivativetoanexperimentallymeasurablequantity—temperatureT.

AdiabaticprocessWenextlookattheotherpartialderivative,∂S(U,V)/∂V.Wemakeboththecylinderandthepistonusingmaterialsthatblockthetransferofmatterandblockthetransferofenergybyheat.Butwecanmovethepistonandtransferenergybywork.

Page 56: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Whenaclosedsystemtransfersenergywithitssurroundingsbyworkbutnotbyheat,theclosedsystemissaidtoundergoanadiabaticprocess.Whenweaddweights,thegaslosesvolumebutgainsenergy.Addingweightscompressesthegasandcausesadiabaticheating.Whenweremoveweights,thegasgainsvolumebutlosesenergy.Removingweightsexpandsthegasandcausesadiabaticcooling.Thehalfcylinderofwaterandtheweighttogetherconstituteanisolatedsystem.Theisolatedsystemhastwointernalvariables,thevolumeofthecylinder,V,andtheenergyinthewatermolecules,U.Thetwointernalvariablesarerelated.Thepistonisassumedtomovewithnofriction.LetPbethepressureinsidethecylinder,andAbetheareaofthepiston.Theweightappliesaforcetothepiston,PA.Whenthepistonmovesupbyadistancedz,thevolumeinsidethecylinderincreasesbydV=Adz,thepotentialenergyoftheweightincreasesbyPAdz=PdV,andtheenergyofthewaterincreasesbydU.Theenergyoftheisolatedsystemisthesumofthethermalenergyofthewaterandthepotentialenergyoftheweight.Theisolatedsystemconservesenergy,dU+PdV=0.ThisequationrelatesthetwointernalvariablesUandV.Whenthepistonmoves,theheightofweightchanges,buttheentropyoftheweight,Sweight,doesnotchange.AtfixedUandV,theentropyoftheisolatedsystemisthesumoftheentropyofthewatermoleculesandtheentropyoftheweight:S(U,V)+Sweight.WhenUandVvary,thesubsetentropymaximizesinequilibrium,sothatT-1dU+(∂S(U,V)/∂V)dV=0.Theisolatedsystemundergoesanisentropicprocess.Thisisentropiccondition,togetherwiththeconservationofenergy,dU+PdV=0,yieldsthatP/T=∂S(U,V)/∂V.Thisequationrelatesthepartialderivativetoexperimentallymeasurablequantities—pressurePandtemperatureT.TheratioP/Tisthechildoftheunionofentropyandvolume,justasthetemperatureisthechildoftheunionofentropyandenergy.Pressureisanintensivethermodynamicproperty.Exercise.WhenIstretcharubberbandrapidly,energyhasnotimetodiffuseout,andtherubberbandapproximatelyundergoesadiabaticheating.Mylipscanfeelanincreaseofthetemperatureoftherubberband.Aftersometime,someenergydoesdiffuseout,andthetemperatureoftherubberbandbecomesthesameasthatofmylips.WhenIrapidlyreleasethestretch,therubberbandapproximatelyundergoesadiabaticcooling,andmylipsfeeladecreaseintemperature.Trytheseexperimentsyourself.

ExperimentaldeterminationofthefunctionS(U,V)Theaboveequationsgive

Page 57: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

dS=(1/T)dU+(P/T)dV.ThisequationrelatesthecharacteristicfunctionS(U,V)toexperimentallymeasurablequantities,U,V,P,T.Byincrementallychangingtheenergyandvolume,wecanmeasurethefunctionS(U,V).Forexample,wecanprescribeavalueofthevolume,V1,regardtheclosedsystemasathermalsystem,andmeasurethecurveS(U,V1)usingtheprocedurethesameasthatforanythermalsystem.Thatis,wemeasurethefunctionT(U,V1)byincrementallyaddingenergybutfixingvolumeV1.Wethenintegrate1/T=∂S(U,V1)/∂U,startingwithS(U,V1)=0asT(U,V1)→0.Wethenprescribeanothervalueofthevolume,V2,etc.Thesemeasurementsdetermineafamilyofcurvesontheenergy-entropyplane,S(U,V1),S(U,V2),...Eachcurvecharacterizesathermalsystemofafixedvolume.Becausetheenergyisarelativequantity,eachcurvecantranslatehorizontallybyanarbitraryamountwithoutaffectingthebehaviorofthethermalsystem.Buttwocurvesofdifferentvolumes,S(U,V1)andS(U,V2),shouldnottranslaterelativetoeachotherbyanarbitraryamount.Rather,thefamilyofcurvesconstituteasinglesurface,S(U,V),intheenergy-volume-entropyspace.Theentiresurfacecantranslatealongtheaxisofenergybyonearbitraryamountwithoutaffectingthebehavioroftheclosedsystem.WecaneliminatethearbitrarytranslationbetweenthetwocurvesS(U,V1)andS(U,V2)byintegratingP/T=∂S(U,V)/∂V.Thisprocedurerequiresmeasurementsofbothpressureandtemperature.ThefunctionS(U,V)characterizetheclosedsystemasafamilyofisolatedsystems.Thus,wecanexperimentallycountthenumberofquantumstatesforeachmemberisolatedsysteminthefamily.

GeneralfeaturesofthefunctionS(U,V)NotethefollowingfeaturesofthesurfaceS(U,V)commontoallclosedsystems.

1. Becauseenergyisrelativetoanarbitraryreference,thesurfaceS(U,V)cantranslateinthedirectionofenergybyanarbitraryamountwithoutaffectingthebehavioroftheclosedsystem.

2. Becauseentropyisabsolute,thesurfacestartsatS=0,andcannotbetranslatedupanddown.

3. Volumeisalsoabsoluteandpositive.4. WhenaplaneistangenttothesurfaceS(U,V)atapoint,thetwoslopesofthetangent

planerepresent1/TandP/T.5. ForeachfixedV,asSapproacheszero,S(U,V)isacurvethatapproachestheUaxis

vertically.Thatis,∂S(U,V)/∂UapproachesinfinityasSapproacheszero.

Page 58: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

6. Themoreenergyandvolume,themorequantumstates.Thus,Ω(U,V)isanincreasingfunctionwithrespecttobothUandV.Becauselogarithmisanincreasingfunction,S(U,V),isalsoanincreasingfunction.Thatis,theslopes∂S(U,V)/∂Uand∂S(U,V)/∂Varepositive.

7. Forthetimebeing,weassumethatS(U,V)isaconvexfunction.

Idealgas

ThemodelofidealgasAbottleofvolumeVcontainsNmoleculesandenergyU.Themoleculesarecalledanidealgasiftheyarefarapartonaverage.Themoleculesfly,collide,andseparate.WhenU,V,Narefixed,thegasisanisolatedsystem.DenotethenumberofquantumstatesofthisisolatedsystembyΩ(U,V,N).Becausethemoleculesarefarapart,eachmoleculecanflytoanywhereinthebottleasifallothermoleculesarenotthere.Consequently,thenumberofquantumstatesofeachmoleculeisproportionaltothevolumeV,andthenumberofquantumstatesofNmoleculesisproportionaltoVN.TheproportionalfactordependsonUandN,butnotonV.WriteΩ(U,V,N)=VNf(U,N),wheref(U,N)isafunctionofUandN.Bydefinition,theentropyisS=klogΩ,sothatS(U,V,N)=NklogV+klogf(U,N).

IdealgaslawInsertingtheaboveexpressionforentropyintothegeneralequationP/T=∂S(U,V,N)/∂V,weobtainthatPV=NkT.Thisequationofstateiscalledtheidealgaslaw.Historically,theidealgaslawwasdiscoveredexperimentally,beforethediscoveryofentropy.Afterthediscoveryofentropy,theidealgaslawisderivedfromthissimplemodel.

Page 59: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

EnergyofanidealgasInsertingtheexpressionforentropyintothedefinitionoftemperature,1/T=∂S(U,V,N)/∂U,weobtainthat1/T=∂(logf(U,N))/∂U.ThisequationshowsthattheenergyUisafunctionoftemperatureTandnumberN,andisindependentofthevolumeV.Theenergyisanextensiveproperty,andislinearinthenumberofmoleculesN.Write U=Nu(T). Hereu(T)isthethermalenergypermolecule.Thisfunctionhasbeendeterminedformanyspeciesofmolecules.DefinethethermalcapacitypermoleculeundertheconditionofconstantvolumebycV=du(T)/dT.Ingeneral,thethermalcapacityisafunctionoftemperature,cV(T).Thus,dU=NcV(T)dT.Asanapproximation,theenergyistakentobelinearintemperature,andcVisaconstantindependentoftemperature.

EntropyofanidealgasRecallthegeneralequationforaclosedsystemdS=(1/T)dU+(P/T)dV.Insertingtheequationsspecifictoanidealgas,dU=NcV(T)dTandPV=NkT,weobtainthatdS=(NcV(T)/T)dT+(Nk/V)dV.AssumingthatcVisindependentoftemperatureandintegrating,weobtainthatS(T,V)=NcVlog(T/T0)+Nklog(V/V0)+S(T0,V0).Entropyisafunctionofstate.Athermodynamicstateoftheclosedsystemisspecifiedbytwoindependentvariables,sayTandV.Intheaboveequationforidealgases,thefirsttermisduetothechangeintemperature,andthesecondisduetothechangeinvolume.

Page 60: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

EnergytransferbyworkandbyheatforafixedamountofanidealgasAfixedamountofanidealgasisaclosedsystem,characterizedbytwoequations:PV=NkT,dU=NcV(T)dT.TheenergytransferbyworkfromthegastothesurroundingsisdW=PdV.ThefirstlawofthermodynamicsdefinestheenergytransferbyheatfromthesurroundingstothegasasdQ=dU+PdV.Thetemperature,pressure,volume,energy,andentropyarefunctionsofstate.Neithertheenergytransferbyworknortheenergytransferbyheatisafunctionofstate;theydependonprocess.Wenextconsiderseveralprocesses. Constant-volumeprocess.Subjecttoaconstantvolume,thegasdoesnowork.Theenergytransferbyheatequalsthechangeininternalenergy:dQ=NcV(T)dT.WhenthetemperaturechangesfromT1toT2,assumingthethermalcapacityisindependentoftemperature,theenergytransferbyheatisQ=NcV(T2-T1).Constant-pressureprocess.WhenthevolumechangesbydV,thegasdoesworkdW=PdV.WhenthevolumechangesfromV1toV2underaconstantpressureP,thegasgoesworkW=P(V2-V1).Ingeneral,theenergytransferbyheatbothchangestheinternalenergyandvolume:dQ=dU+PdV.Subjecttoaconstantpressure,thisexpressionbecomesthatdQ=d(U+PV).

Page 61: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Foranidealgasunderaconstantpressure,theenergytransferbyheatisdQ=N(cV+k)dT.ThequantitycV+kisthethermalcapacitypermoleculeunderconstantpressure,andisdesignatedascP.Isothermalprocess.Aconstant-temperatureprocessisalsocalledanisothermalprocess.Becauseoftheidealgaslaw,theisothermalprocessischaracterizedbyacurvePV=constant.Foranidealgas,theisothermalprocessdoesnotchangetheinternalenergy,sothattheenergytransferbyheattotheclosedsystemisthesameastheworkdonebytheclosedsystem:dW=dQ=(NkT/V)dV.WhenthevolumechangesfromV1toV2,theenergytransferbyheatisW=Q=NkTlog(V2/V1).Adiabaticprocess.Aclosedsystemissaidtoundergoanadiabaticprocessifthesystemisthermallyinsulated,sothatnoenergytransfersbyheatbetweentheclosedsystemandthesurroundings:dU+PdV=0.Foranidealgas,thisequationbecomescV(T)dT+(kT/V)dV=0.Wefurtherassumethatthethermalcapacityisindependentoftemperature.IntegrationyieldscVlogT+klogV=constant,orTVb=constant,whereb=k/cV.Theconstantisdeterminedbyonestateintheprocess,saytheinitialstate(Ti,Vi).Thus,constant=TiVi

b.TheresultTVb=constantexplainsadiabaticcoolingwhenagasexpandsinanadiabaticprocess.RecalltheidealgaslawPV=NkT.TheadiabaticprocessalsoobeysthatPVb+1=constant.

Page 62: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

WhenthevolumechangesbydV,theadiabaticprocesstransfersenergybywork:dW=PdV=(constant)V-b-1dV.IntegrationyieldsW=(constant/b)(V1

-b-V2-b)

Exercise.AssumethatanidealgashasaconstantthermalcapacitypermoleculecV.Onemoleoftheidealgaschangesfromaninitialstate(Pi,Vi)toafinalstate(Pf,Vf)alongastraightlineonthe(P,V)plane.Calculatetheenergytransferbyworkandenergytransferbyheat.Calculatethechangesininternalenergyandentropy.Exercise.Anidealgasundergoesanadiabaticprocessfromaninitialstate(Pi,Vi)toafinalstateofvolumeVf.Calculatethevolumeofthefinalstate,Vf.Calculatetheenergytransferbyworkintheadiabaticprocess.Exercise.Inaheliumgas,eachmoleculeconsistsofasingleheliumatom.Forsuchagasofsingle-atommolecules,cV=1.5k.Calculatehowtemperaturechangeswhenpressuredoublesinanadiabaticprocess.

EntropicelasticityWhenaspringmadeofsteelispulledbyaforce,thespringelongates.Whentheforceisremoved,thespringrecoversitsinitiallength.Thiselasticityisduetoadistortionoftheelectroncloudofatoms.Suchelasticityiscalledenergeticelasticity. Abagofairactslikeaspring.Thevolumedecreaseswhenthepressureincreases,andrecoverswhenthepressuredrops.Thiselasticityclearlydoesnotresultfromdistortionofatomicbondsinthemolecules,butfromthechangeofthenumberofquantumstateswithvolume.Suchelasticityiscalledentropicelasticity.

ThermoelasticcouplingThebagofairalsoillustratesthermoelasticcoupling.DefineelasticmodulusbyB=-V∂P/∂V.Thisdefinitionisincomplete;weneedtospecifywhatistakentobeconstantwhenwetakethepartialderivative.Letusconsidertwoexamples.

Page 63: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Isothermalelasticmodulus.Undertheisothermalcondition,temperatureisconstant.Recalltheidealgaslaw,P=NkT/V.Takingthepartialderivative,weobtaintheisothermalelasticmodulusBT=P.Adiabaticelasticmodulus.Undertheadiabaticcondition,PVb+1=constant.Takingthepartialderivative,weobtaintheadiabaticelasticmodulusBad=(b+1)P.Agasisstifferundertheadiabaticconditionthanundertheisothermalcondition.

OsmosisConsiderNparticlesdispersedinabagofwaterofvolumeV.Theparticlesaredifferentfromwatermolecules,andcanbeofanysize.Theparticlescanbeofmanyspecies.Whentheparticlesaremolecules,wecallthemsolutes.Whentheparticlesaresomewhatlarger,sayfrom10nmto10µm,wecallthemcolloids.Thebagisimmersedinatankofpurewater.Thebagismadeofasemipermeablemembrane:watercanpermeatethroughthemembranebuttheparticlescannot.

TheoryofosmosisThephysicsofthissituationisanalogoustotheidealgas,providedthattheconcentrationoftheparticlesisdilute.Everyparticleisfreetoexploretheentirevolumeinthebag.Thenumberofquantumstatesofthewater-particlesystemscalesasΩ∝VN.Aswaterpermeatesthroughthemembrane,thevolumeofthebagVchanges.RecallS=klogΩandtheP/T=∂S(U,V)/∂V,weobtainthatP=kTN/V.Thispressureiscalledtheosmoticpressure.Thelawofosmosisisidenticaltothelawofidealgas.

Page 64: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

BalanceofosmosisTheosmoticpressurecanbebalancedinseveralways.Forexample,thetensioninthemembranecanbalancetheosmosispressure.Onecanalsodisperseparticlesinthetankofwateroutsidethebag.Thedifferenceintheconcentrationofparticlesinthebagandthatofparticlesinthetankcausesadifferenceinthepressuresinthebagandinthetank.Thedifferenceinpressurecanbebalancedbythetensioninthemembrane.Asyetanotherexample,weplacearigid,semi-permeablewallintheliquid,withtheparticlesononeside,butnottheother.Waterisonbothsidesofthewall,butalcoholisonlyononeside.Themoleculesoftheliquidcandiffuseacrossthewall,buttheparticlescannot.Fortheparticlestoexploremorevolume,theliquidmoleculeshavetodiffuseintothesidewhereparticlesare.Ifthisexperimentwerecarriedoutinthezero-gravityenvironment,theinfusionwouldcontinueuntilthepureliquidisdepleted.Inthegravitationalfield,however,theinfusionstopswhenthepressureinthesolutionbalancesthetendencyoftheinfusion.

Phasesofapuresubstance

EmpiricalfactsPhases.Apuresubstanceconsistsofasinglespeciesofmolecules,andcanformthreephases:solid,liquid,andgas.(Apuresubstancemayhavemorethanthreephases.Forexample,waterhasmultiplesolidphases.Forthetimebeing,ignorethisfact.)Ineachphase,thepuresubstancecanchangethermodynamicstatebychangingtwoindependentthermodynamicproperties,suchastemperatureandpressure.Inthesolidphase,moleculesformaperiodiclattice,calledacrystal.Manysmallgrainsofthecrystalformabulksolid.Individualmoleculesvibrateneartheirsitesinthelattice,andrarelyjumpoutofthesites.Intheliquidphase,moleculesstilltouchoneanother,butdonotformaperiodiclattice.Moleculeschangeneighborsreadily.Inthegasphase,moleculesonaveragearefarapart.Theyfly,collide,andseparate.Thermodynamicstatesoftwoindependentvariations.Afixedamountofapuresubstanceisaclosedsystem.Itsthermodynamicstatesarecapableoftwoindependentvariations.Forexample,afixedamountofapuresubstancecanbeanisolatedsystemofafixedvolumeVandafixedenergyU.Theisolatedsystemhasacertainnumberofquantumstates.Denotethe

Page 65: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

numberofquantumstatesbyΩ(U,V),andwriteS(U,V)=logΩ(U,V).RecalltheidentitydS(U,V)=(1/T)dU+(P/T)dV.Steamtables.Thedataforwatermoleculesarepresentedbytables,calledthesteamtables.Inconstructingthesteamtables,theenergyandentropyoftheliquidatthetriplepointaretypicallysettobezero.Theextensivequantities,S,U,V,arelistedasvaluesperunitamountofthesubstance.

Temperature-pressureplane.Temperatureandpressurearebothintensivequantities.Eachpointonthetemperature-pressureplanerepresentsapairoftemperatureandpressure.Inthetemperature-pressureplane,wemarktriplepointandcriticalpoint,alongwiththreephaseboundaries.Suchadiagramiscalledaphasediagramofapuresubstance.Seephasediagramofwater.Theexperimentalsignificanceofthephasediagramisexplainedasfollows.Wewillignoremanyphasesoficeathighpressure.Equilibriumofasinglehomogeneousstate.Whenthesubstanceequilibratesinahomogenousstate,thethermodynamicstatecorrespondstoapointinthetemperature-pressureplane.Inthevicinityofasinglehomogeneousstateinequilibrium,thethermodynamicstatecanchangecontinuouslybyindependentchangeoftemperatureandpressure.Thesteamtablesthenlistvolume,energy,andentropyasfunctionsoftwoindependentvariables,temperatureandpressure.Forexample,atT=400KandP=100kPa,watermoleculesformagas,withspecificvolume,specificenergy,andspecificentropy:u=2967.85kJ/kgv=3.10263m3/kgs=8.5434kJ/kg/KEquilibriumoftwohomogeneousstates.Whenthesubstanceequilibratesasamixtureoftwohomogeneousstates,theyhavethesametemperatureandthesamepressure.Inthetemperature-pressureplane,allthermodynamicstatesoftwohomogeneousstatesfallona

Page 66: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

curve,calledaphaseboundary.Apointonthephaseboundaryrepresentsmanythermodynamicstates;eachthermodynamicstateisamixtureofthetwohomogeneousstatesofsomeproportion.Therearethreephaseboundaries:gas-liquid,liquid-solid,andsolid-gas.Forsuchaphaseboundary,givenapressure,thesteamtableslistthetemperature,aswellasthespecificvolumes,energy,andentropyofthetwohomogeneousstates.Forexample,atP=100kPa,liquidwaterandgaseouswaterequilibrateattemperature99.62degreeCelsius.Thespecificvolumes,energies,andentropiesofthetwophasesareuf=417.33kJ/kg,ug=2506.06kJ/kgvf=0.001043m

3/kg,vg=1.69400m3/kg

sf=1.3025kJ/kg/K,sg=7.3593kJ/kg/KEquilibriumofthreehomogenousstates.Whenthesubstanceequilibratesasamixtureofthreehomogeneousstates,theyhavethesametemperatureandthesamepressure.Inthetemperature-pressureplane,allthermodynamicstatesofthreehomogeneousstatescollapsetoasinglepoint,calledthetriplepoint.Thetriplepointrepresentsmanythermodynamicstates;eachthermodynamicstateisamixtureofthethreehomogeneousstatesofsomeproportions.Forwatermolecules,thetriplepointoccursatT=273.16KP=611.657PaThespecificvolumes,energies,andentropiesofthethreehomogeneousstatesinequilibriumarelistedinthefollowingtable.

volumem3/kg

energykJ/kg

entropykJ/kg/K

solid 0.001091 -334 -1.2

liquid 0.001000 0 0

gas 206.132 2375.33 9.1562

Criticalpoint.Weaddafewmorefactsofthephaseboundariesinthetemperature-pressureplane.Thethreephaseboundariesmeetatthetriplepoint.Theliquid-solidphaseboundaryextendsindefinitelyasthepressureincreases.Thegas-solidphaseboundaryextendsastemperatureandpressurereduces,butmustterminatewhentemperatureapproachesabsolutezero.Thegas-liquidphaseboundaryterminatesatapoint,calledthecriticalpoint.Thus,aliquidstatecancontinuouslychangetoagaseousstate,withoutcrossingtheliquid-gasphaseboundary.Thecriticalpointisathermodynamicstate.

Page 67: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Forwatermoleculesatthecriticalpoint,thefunctionsofstatetakethefollowingvalues:T=374.1degreeCelsiusP=22.089MPau=2029.58kJ/kgv=0.003155m3/kgs=4.4297kJ/kg/KNoequilibriumoffourormorehomogeneousstates.Apuresubstancecannotequilibrateasamixtureoffourormorehomogeneousstates.Pressure-volumeplane.Pressureisanintensivevariable,butvolumeisanextensivevariable.Weusethespecificvolumevasthehorizontalaxis,andthepressurePastheverticalaxis.EachpointintheP-vplanecorrespondstoathermodynamicstateofaunitmassofapuresubstance,saywater.AllthermodynamicstatesofafixedtemperaturecorrespondtoacurveintheP-vplane,calledanisotherm.ConsideranisothermofT=300K.Atahighpressure,waterisintheliquidphase.Thevolumeoftheliquidincreasesasthepressuredrops.

Temperature-entropyplane.

Page 68: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Exercise.Foraunitmassofwatermolecules,athermodynamicstateisspecifiedbytwoofthermodynamicpropertiesamongmany,suchastemperatureT,pressureP,specificenergyu,specificvolumev,specificentropys,specificenthalpyh,andqualityx.Foreachofthethermodynamicstatesspecifiedbelow,usethesteamtablestodeterminetheotherthermodynamicproperties.(a)T=100degreesCelsius,x=0.9.(b)T=100degreesCelsius,P=10kPa.(c)T=100degreesCelsius,P=500kPa.(d)T=50degreesCelsius,v=0.00050m2/kg.

PrimitivesurfacesWenowdescribethethermodynamictheoryofphasesofapuresubstanceduetoGibbs(1873).BeforeGibbsdevelopedthistheory,theempiricalfactsofpuresubstancesdescribedabovewereknown.Theyweresonumerousandcalledforatheory.Energy,volume,andentropyareextensiveproperties.Letu,v,andsbetheenergy,volume,andentropyofthesubstancepermolecule.Thevariablesu,v,sformtheaxesofathree-dimensionalspace.Becausethethermodynamicstateofafixedamountofapuresubstancehastwoindependentvariations,oncethesubstanceisspecifiedinastatebythevaluesofenergyuandvolumev,thevalueofentropysisfixed.Forthetimebeing,letusrepresenteachphasebyitsownenergy-volume-entropyrelation,s(u,v),correspondingtoasurfaceintheenergy-volume-entropyspace.Thethreephasescorrespondtothreesurfaces.Gibbscalledthemtheprimitivesurfaces.Apointononeofthethreeprimitivesurfacescorrespondstoahomogeneousstateofthesubstance.

Page 69: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

RuleofmixtureConsidertwohomogeneousstates,AandB,whichcanbetwopointseitherononeprimitivesurface,orontwoprimitivesurfaces.AmixtureofthetwohomogeneousstateshasatotalofNmolecules,ofwhichNAmoleculesareinonehomogeneousstate,andNBmoleculesareintheotherhomogeneousstate.DenotethenumberfractionsofthemoleculesbyyA=NA/NandyB=NB/N.Thetotalnumberofmoleculesinthemixtureisconserved:N=NA+NB.DividethisequationbyN,andweobtainthatyA+yB=1.BothyAandyBarenon-negativenumbers. Denotetheenergies,volumes,andentropiesofthetwohomogeneousstatesby(uA,vA,sA)and(uB,vB,sB).Letu,v,andsbetheenergy,volume,andenergyofthemixturedividedbythetotalnumberofmolecules.Energyisanextensivevariable,sothattheenergyofthemixtureisthesumoftheenergiesofthetwohomogeneousstates:Nu=NAuA+NBuB.DividethisequationbyN,andweobtainthatu=yAuA+yBuB.Thesameruleappliestovolumeandentropy:v=yAvA+yBvB,s=yAsA+yBsB.Therulesofmixturehaveagraphicinterpretationintheenergy-volume-entropyspace.Thetwohomogeneousstates,(uA,vA,sA)and(uB,vB,sB),aretwopointsononeortwoprimitivesurfaces.Themixture,(u,v,s),isapointonthelinejoiningthetwopoints(uA,vA,sA)and(uB,vB,sB),locatedatthecenterofgravity,dependingonthefractionofmoleculesyAandyBallocatedtothetwohomogeneousstates.Ingeneral,themixture(u,v,s)isapointofftheprimitivesurfaces.Wecangeneralizetherulesofmixturetoamixtureofthreehomogeneousstates.ApuresubstancehasatotalofNmolecules,ofwhichNA,NB,andNCmoleculesareinthethreehomogeneousstates.DenotethenumberfractionsbyyA=NA/N,yB=NB/N,andyC=NC/N.HereyA,yBandyCarenon-negativenumbers.Themixtureconservesthenumberofmolecules:

Page 70: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

NA+NB+NC=N.DividethisequationbyN,andweobtainthatyA+yB+yC=1.Thethreehomogeneousstates,(uA,vA,sA),(uB,vB,sB),and(uC,vC,sC),arethreepointsononeortwoprimitivecurves.Thethreepointsformatriangleintheenergy-volume-entropyspace.Theenergy,volume,andentropypermoleculeofthemixture(u,v,s)aregivenbyu=yAuA+yBuB+yCuC,v=yAvA+yBvB+yCvC,s=yAsA+yBsB+yCsC.Themixture,(u,v,s),isapointintheenergy-volume-entropyspace,locatedatthecenterofgravityinthetriangle,dependingonthefractionofmoleculesyA,yBandyCallocatedtothethreehomogeneousstatesattheverticesofthetriangle.Ingeneral,themixture(u,v,s)isapointofftheprimitivesurfaces.Wecanfurthergeneralizetherulesofmixturetoamixtureofanynumberofhomogenousstates.Nowconsiderallpossiblemixturesofarbitrarynumbersofhomogeneousstates.Giventheprimitivesurfaces,therulesofmixturecreateasetofpoints,whichconstituteasolidfigureintheenergy-volume-entropyspace.Ingeneral,eachpointinthesolidfigurerepresentsamixture.Inthelanguageofconvexanalysis,theenergy-volume-entropyspaceiscalledavectorspace,andeachpointinthevectorspaceiscalledavector.Allthehomogeneousstatesontheprimitivesurfacesformasetofvectors.Amixtureiscalledaconvexcombinationofthehomogenousstates,andthesetofallmixturesiscalledtheconvexhullofhomogenousstates.

DerivedsurfaceGibbscalledtheupper-boundsurfaceofallmixturesthederivedsurface.Thissurfaceisderivedbyrollingplanestangenttotheprimitivesurfaces.Intheenergy-volume-entropyspace,atangentplanecantouchtheprimitivesurfacesatone,two,orthreepoints,butnotfourormorepoints.Whenatangentplanetouchesthethreeprimitivesurfacesatthreepoints,thethreetangentpointsarethevertexofatriangle.Fromeachedgeofthetrianglewerolloutthetangentplanetotouchtwoprimitivesurfacesattwopoints.Thetwotangentpointsaretheendsofastraight-linesegment,calledthetieline.

Page 71: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Fromeachvertexofthetriangle,weretainaconvexpartofaprimitivesurface.Thederivedsurfacehasasinglesheet,andisaconvexsurface.Sofar,thethreequantities—energy,volume,andentropy—playsimilarroles.Allwehaveinvokedisthattheyareextensivequantities.Wenextisolateafixedamountofapuresubstancebyfixingenergyandvolume.Thisisolatedsystemhasanenormousnumberofinternalvariables:thenumberofhomogeneousstates,thelocationofeachhomogeneousstateonaprimitivesurface,andthenumberfractionofmoleculesallocatedtoeachhomogeneousstate.Whenafixedamountofasubstanceisisolatedwithafixedenergyandafixedvolume,thesubstanceingeneralisamixture,correspondingtoapointonaverticalline.Suchamixtureingeneralisnotinathermodynamicstate.Theisolatedsystemreachesequilibrium—thatis,reachathermodynamicstate—atthepointwheretheverticallineintersectsthederivedsurface.

EquilibriumofasinglehomogeneousstateIfaplanetangenttoonepointonaprimitivesurfacedoesnotcutanyprimitivesurfaces,thispointoftheprimitivesurfacebelongstothederivedsurface.Thepointcorrespondstoasinglehomogenousstateinequilibrium.Gibbscalledthesetofallsuchpointsthesurfaceofabsolutestability.Thetangentplanecanrollontheprimitivesurfacetochangethetwoslopesofthetangentplaneindependently.Theslopesofthetangentplanedeterminesthetemperatureandpressureofthestate.Thus,thesurfaceofabsolutestabilityhastwodegreesoffreedom.

EquilibriumoftwohomogeneousstatesIfaplanetangenttotwopointsontheprimitivesurfacesdoesnotcutanyprimitivesurfaces,thestraight-linesegmentconnectingthetwopointsbelongstothederivedsurface.Thestraight-linesegmentiscalledatieline.Thecommontangentplanecanrollonthetwoprimitivesurfacestochangeitsslopebyasingledegreeoffreedom.Asthecommontangentplanerolls,thetielinesformadevelopablesurface,andthetwotangentpointstraceouttwocurvesontheprimitivesurfaces.Gibbscalledthetwocurvesthelimitsofabsolutestability.

EquilibriumofthreehomogeneousstatesIfaplanetangenttothreepointsontheprimitivesurfacesanddoesnotcutanyprimitivesurfaces,thetriangleconnectingthesethreepointsbelongstothederivedsurface.Thetangentplanehasnodegreeoffreedomtoroll,andisfixedintheenergy-volume-entropyspace.

Page 72: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

CriticalpointGibbs(1873)introducedthetheoryofcriticalpoint.HecitedapaperbyAndrews(1869),whichreportedtheexperimentalobservationofasubstancechangingcontinuouslyfromaliquidtoagas.Gibbsthenwrote,“...thederivedsurfacewhichrepresentsacompoundofliquidandvaporisterminatedasfollows:asthetangentplanerollsupontheprimitivesurface,thetwopointsofcontactapproachoneanotherandfinallyfalltogether.Therollingofthedoubletangentplanenecessarilycometoanend.thepointwherethetwopointsofcontactfalltogetheristhecriticalpoint.”Insummary,Gibbsmodeledapuresubstancewithtwoprimitivesurfaces:aconvexsurfaceforthesolidphase,andanonconvexsurfacefortheliquidandgasphases.YoucanwatchavideoontheGibbssurface.

MetastabilityAprimitivesurfacemaycontainaconvexpartandanon-convexpart.Thecurveseparatingthetwopartsiscalledthelimitofmetastability.Ifaconvexpartoftheprimitivesurfaceliesbelowatangentplaneofthederivedsurface,thepartoftheprimitivesurfaceisbeyondthelimitofabsolutestability.Eachpointofthispartoftheprimitivesurfaceiscalledametastablestate.Gibbsnotedthatsuchastateisstableinregardtocontinuouschangesofstate,butisunstableinregardtodiscontinuouschangesofstate.

Energy-volumeplaneGibbsprojectedthederivedsurfaceontothevolume-entropyplane.Hedrewthetriangleforthestatesofcoexistencethreephases,limitsofabsolutestability,limitsofmetastability,andcriticalpoint.Hedidnot,however,drawtheprimitivesurfacesandthederivedsurfaceintheenergy-volume-entropyspace.Maxwelldrewthesurfaceintheenergy-volume-entropyspaceinalatereditionofhistextbook,TheoryofHeat.Planckprojectedthederivedsurfaceontheenergy-volumeplane(Figure4)inhistextbook,TreatiseonThermodynamics.Planckmadeamistakeofaddingacriticalpointforthesolid-liquidtransition.Suchacriticalpointdoesnotexist.HereIsketchtheprojectionofthederivedsurfacetotheenergy-volumeplane.Bothenergyandvolumeareextensivequantities,sothateachthermodynamicstatecorrespondstoadistinctpointintheenergy-volumeplane.

Page 73: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Exercise.Findthedatafortodrawthewater-steamdomeontheenergy-volumeplane.Includetheequilibriumice-water-steamtriangle,thecriticalpoint,andseveraltielines.

TemperatureandpressureIntheabove,wehavedevelopedtheentiretheoryusingonlythreefunctionsofstate:energy,volume,andentropy.Eachisanextensivequantity,andobeystheruleofmixture.Wenextdiscusstherolesoftheothertwofunctionsofstate:temperatureandpressure.Theyareintensivequantities,andobeydifferentmathematicalrules.Writethederivedsurfaceasafunctions(u,v).Recallthemeaningsfortheslopesofthesurfaces(u,v):1/T=∂s(u,v)/∂u,P/T=∂s(u,v)/∂v.Whenthesubstanceequilibratesinamixtureoftwohomogeneousstates,atangentplanecontactstheprimitivesurfacesattwopoints,(uA,vA,sA)and(uB,vB,sB).Thetangentplanehasthesameslopesatthetwopoints,sothatthetwohomogeneousstateshavethesametemperatureandpressure:1/T=∂sA(uA,vA)/∂uA=∂sB(uB,vB)/∂uB,P/T=∂sA(uA,vA)/∂vA=∂sB(uB,vB)/∂vB.Thetangentplanecutstheverticalaxisofentropyatsomepoint.Theinterceptcanbecalculatedusingthequantitiesateitherthestate(uA,vA,sA)orthestate(uB,vB,sB),sothatsA-(1/T)uA-(P/T)vA=sB-(1/T)uB-(P/T)vB.Theaboveequationstranscribethegeometricalexpressionsoftheconditionofequilibriumintoanalyticalexpressions.

Page 74: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Exercise.Wehavedescribedtheconditionsoftheequilibriumofthreehomogeneousstatesingeometricterms.Transcribetheseconditionsinanalyticexpressions.

Alternativeindependentvariables

EntropyS(U,V)WehavesofarusedenergyUandvolumeVasindependentvariablestospecifythermodynamicstatesofaclosedsystem.Withthischoice,thethermodynamicsofaclosedsystemischaracterizedbythefunctionS(U,V).Theothertwofunctionsofstate—temperatureT(U,V)andpressureP(U,V)—aredeterminedfromtheslopes:1/T=∂S(U,V)/∂U,P/T=∂S(U,V)/∂V.Thus,oncethefunctionS(U,V)isdeterminedbyexperimentalmeasurement,thefunctionT(U,V)isdeterminedbycalculation.Theotherwayaroundisuntrue.OncewemeasurethefunctionT(U,V),thefunctionT(U,V)doesnotletuscalculateS(U,V).ThefunctionS(U,V)letsuscalculateallfunctionsdefinedbyit,includingtemperature,pressure,thermalcapacity,latentenergy,enthalpy,compressibility,andmanymore.Thisisanenormousreductionofexperimentalwork.Thisfactrevealsthelongarmofentropy.Wenextconsiderotherchoicesofindependentvariables.Themathematicsofchangeofvariablesmaybringconvenience,butaddsnonewphysics.

EnergyU(S,V)RecallthatS(U,V)isanincreasingfunctionwithrespecttoU.WecanthusinvertthisfunctiontoobtainthefunctionU(S,V).Thisinversionispurelymathematical,andaddsorlosesnoinformation.BothfunctionsS(U,V)andU(S,V)characterizethesameclosedsystem,andcorrespondtothesamesurfaceintheenergy-volume-entropyspace.RearrangetheequationdS=(1/T)dU+(P/T)dVasdU=TdS-PdV.ThisequationinterpretsthepartialderivativesofthefunctionU(S,V):T=∂U(S,V)/∂S,-P=∂U(S,V)/∂V.

Page 75: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Onepartialderivativereproducesthedefinitionoftemperature,andtheotherpartialderivativecomesfromthemechanicsofadiabaticprocess.Thischoiceofindependentvariables,SandV,placesthetemperatureandpressureinthesymmetricrolesofthetwoslopesofthesurfaceU(S,V).ThechoicecomesfromGibbs(1873)andhasbeenadoptedinmanytextbooks.Thischoiceofindependentvariablesisconvenienttodiscussanisentropicprocess,butentropyisrarelyusedasanindependentvariableinexperiments.Wewillnotconsiderthischoiceanyfurther.

HelmholtzfunctionF(T,V)Manyexperimentschoosetemperatureandvolumeasindependentvariables.Asnotedbefore,wecansetthetemperatureofasystemasanindependentvariablebybringingtheclosedsysteminthermalcontactwithathermalreservoir.DefinetheHelmholtzfunctionbyF=U-TS.NotethatdF=dU-TdS-SdT.Thisequation,togetherwiththeequationdS=(1/T)dU+(P/T)dV,givesdF=-SdT-PdV.ThisequationsuggeststhattheHelmholtzfunctionoftheclosedsystemshouldbeafunctionoftemperatureandvolume,F(T,V),withpartialderivatives-S=∂F(T,V)/∂T,-P=∂F(T,V)/∂V.Thus,oncethefunctionF(T,V)isknown,theaboveequationsdeterminethetwofunctionofstatesS(T,V)andP(T,V).Maxwellrelation.Forafunctionoftwoindependentvariables,F(T,V),recallanidentityincalculus:∂(∂F(T,V)/∂T)/∂V=∂(∂F(T,V)/∂V)/∂T.Weobtainthat∂S(T,V)/∂V=∂P(T,V)/∂T.

Page 76: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

ThisequationiscalledaMaxwellrelation.ThermalcapacityCV(T,V).Whenthevolumeofaclosedsystemisfixed,theclosedsystembecomesathermalsystem.Recallthedefinitionofthethermalcapacity:CV=∂U(T,V)/∂T.ThesubscriptVindicatesthatthevolumeisfixed.FunctionS(T,V).Wehavejustregardtheentropyasafunctionoftemperatureandvolume,S(T,V).Recallafactincalculus:dS=(∂S(T,V)/∂T)dT+(∂S(T,V)/∂V)dVRecallthedefinitionoftemperature:dS=T-1dUatconstantvolume.Thus,∂S(T,V)/∂T=T-1∂U(T,V)/∂T=CV(T,V)/T.Thisrelation,alongwiththeMaxwellrelation∂S(T,V)/∂V=∂P(T,V)/∂T,givesthatdS=(CV(T,V)/T)dT+(∂P(T,V)/∂T)dV.ThisrelationindicatesthatwecandeterminethefunctionS(T,V)bymeasuringthetwofunctionsU(T,V)andP(T,V).FunctionU(T,V).Theaboveequation,alongwiththeequationdS=(1/T)dU+(P/T)dV,givesthatdU=CV(T,V)dT+(T∂P(T,V)/∂T-P)dV.Thisequationsuggestsanidentity:∂U(T,V)/∂V=T∂P(T,V)/∂T-P.

EnthalpyH(S,P)Onceagainconsiderahalfcylinderofwater.Aweightisplacedontopofthepiston,andthewaterisinthermalcontactwithafire.Constant-pressureprocess.LetPbethepressureinsidethecylinder,andAbetheareaofthepiston.Thepistonmoveswithoutfriction.Thepressureinthecylinderpushesthepistonup.ThebalanceofforcesrequiresthattheweightabovethepistonshouldbePA.Whentheweightisconstant,thepressureinsidethecylinderisalsoconstant.

Page 77: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Whentheweightisataheightz,thevolumeofthecylinderisV=Az,andthepotentialenergyoftheweightisPAz=PV.Thewaterandtheweighttogetherconstituteathermalsystem.Theenergyofthecompositeisthesumoftheinternalenergyofthewatermoleculesinthecylinder,U,andthepotentialenergyoftheweight,PV:H=U+PV.ThequantityHiscalledtheenthalpyofthewatermoleculesinthecylinder.Thus,thesameexperimentalsetupcanbeviewedasaclosedsystemorathermalsystem.Enthalpyisusedtomeasureenergytransferbyheattoaclosedsysteminaconstant-pressureprocess.FunctionH(S,P).NowletthepressurePbeanindependentvariable.Recalltheproductruleincalculus,andweobtainthatdH=dU+PdV+VdP.CombiningwithdS=(1/T)dU+(P/T)dV,weobtainthatdH=TdS+VdP.Weregardtheenthalpyasafunctionofentropyandpressure,H(S,P).Theaboveequationinterpretsthepartialderivatives:T=∂H(S,P)/∂S,V=∂H(S,P)/∂P.Entropyisrarelyusedasanindependentvariableinpractice,sothefunctionH(S,P)isseldomuseful.

GibbsfunctionG(T,P)Gibbsfunctionofaclosedsystem.ThehalfcylinderofwaterandtheweightabovethepistontogetherconstituteathermalsystemofenergyU+PV.TheHelmholtzfunctionofthisthermalsystemisG=U+PV-TS.ThisquantityiscalledtheGibbsfunction.TheenergyUhasanarbitraryadditiveconstant,whichalsoappearsinG.TheGibbsfunctionisanextensivequantity,andisafunctionofstate.PartialderivativesoftheGibbsfunction.Notethat

Page 78: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

dG=dU+PdV+VdP-TdS-SdT.CombiningwithdS=(1/T)dU+(P/T)dV,weobtainthatdG=-SdT+VdP.WeregardtheGibbsfunctionasafunctionofpressureandtemperature,G(T,P).Theaboveequationinterpretsthepartialderivatives:-S=∂G(T,P)/∂T,V=∂G(T,P)/∂P.TheseequationssuggestaMaxwellrelation:-∂S(T,P)/∂P=∂V(T,P)/∂T.ThermalcapacityCP(T,P).Whenthepressureofaclosedsystemisfixedbyaweight,thecompositeoftheclosedsystemandtheweightbecomesathermalsystem.DefinetheenthalpyH=U+PV.Recallthedefinitionofthethermalcapacity:CP=∂H(T,P)/∂T.ThesubscriptPindicatesthatthepressureisfixed.FunctionS(T,P).Wehavejustregardtheentropyasafunctionoftemperatureandpressure,S(T,P).Recallafactincalculus:dS=(∂S(T,P)/∂T)dT+(∂S(T,P)/∂P)dPRecallthedefinitionoftemperature:dS=T-1dHatconstantpressure.Thus,∂S(T,P)/∂T=T-1∂H(T,P)/∂T=CP(T,P)/T.Thisrelation,alongwiththeMaxwellrelation∂S(T,P)/∂P=-∂V(T,P)/∂T,givesthatdS=(CP(T,P)/T)dT-(∂V(T,P)/∂T)dP.ThisrelationindicatesthatwecandeterminethefunctionS(T,P)bymeasuringthetwofunctionsH(T,P)andV(T,P).FunctionH(T,P).Theaboveequation,alongwiththeequationsH=U+PVanddS=(1/T)dU+(P/T)dV,givesthatdH=CP(T,P)dT+(V-T∂V(T,P)/∂T)dP.Thisequationsuggestsanidentity:

Page 79: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

∂H(T,P)/∂P=V-T∂V(T,P)/∂T.

Constant-pressureandconstant-temperatureprocessConsideraclosedsystemwithaninternalvariablex.Forexample,theclosedsystemcanbeahalfcylinderofwatersealedbyafrictionlesspiston,andtheinternalvariablecanbethenumberofwatermoleculesinthevaporinsidethecylinder.Thewatermoleculesareinmechanicalequilibriumwiththeweightabovethepiston.Theweightisconstant,andisrelatedtothepressureinsidethecylinderasPA.ThewatermoleculesareinthermalequilibriumwithathermalreservoirofconstanttemperatureT.Weidentifythecompositeofthewatermolecules,theweight,andthethermalreservoirasanisolatedsystemwiththreeinternalvariables:theinternalenergyofthewatermoleculesU,thevolumeenclosedbythecylinderV,andx.TheenergyoftheisolatedsystemisUcomposite=U+PV+UR.HereUistheinternalenergyofthewatermolecules,PVisthepotentialenergyoftheweight,andURistheinternalenergyofthethermalreservoir.Theisolatedsystemconservesenergy,sothatUcomposite=constant.Thewatermoleculesconstituteaclosedsystem,characterizedbyafunctionS(U,V,x).TheentropyoftheweightSweightisconstantThethermalreservoirreservoirisathermalsystemofconstanttemperatureT,characterizedbyafunctionSR(UR),sothatSR(UR)=SR(Ucomposite)+(UR-Ucomposite)/T.TheentropyofthecompositeisScomposite=S(U,V,x)+Sweight+SR(Ucomposite)-(U+PV)/T.Theisolatedsystemisinthermalandmechanicalequilibrium,sothat∂Scomposite/∂U=0and∂Scomposite/∂V=0.WhenpressurePandtemperatureTareconstant,thetwoconditionsrecoverthefamiliarconditions:1/T=∂S(U,V,x)/∂UandP/T=∂S(U,V,x)/∂V.GiventhefunctionS(U,V,x),thesetwoequationssolvethefunctionU(T,P,x)andV(T,P,x).WecanalsowritetheentropyasafunctionS(T,P,x).

Page 80: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Thus,xistheonlyremaininginternalvariable.ThebasicalgorithmrequiresxtochangetoincreaseScomposite,orequivalently,toincreasethefunctionY=S-(U+PV)/T.InmaximizingthisfunctionY(T,P,x),TandParefixedbythethermalreservoirandtheweight,andonlyxisvariable.Asidefromadditiveconstants,thisthefunctionY(T,P,x)isthesubsetentropyofanisolatedsystem:thecompositeofaclosedsystem,aweightthatfixesthepressureP,andathermalreservoirthatfixesthetemperatureT.BoththefunctionJ=S-U/TandthefunctionY=S-(U+PV)/TwereintroducedbyMassieu(1869),andthefunctionYwasextensivelyusedlaterbyPlanck.WewillcallJtheMassieufunction,andYthePlanckfunction.

Algorithmofthermodynamicsforconstant-pressureandconstant-temperatureprocessWenowparaphrasethebasicalgorithmofthermodynamicsforaconstant-pressureandconstant-temperatureprocess.

1. Constructaclosedsystemwithaninternalvariablex.2. IdentifythefunctionY(T,P,x).3. Equilibrium.FindthevalueoftheinternalvariablexthatmaximizesthefunctionY(T,P,x).4. Irreversibility.Changethevalueoftheinternalvariablexinasequencethatincreases

thefunctionY(T,P,x).MaximizingtheMassieufunctionisequivalenttominimizingU+PV-ST.ThisistheGibbsfunctionG(T,P,x).Inthisminimization,TandPareconstant,andxisvariable.TheabovealgorithmcanbeparaphrasedintermsofminimizingG(T,P,x).

EquilibriumoftwohomogeneousstatesbyequatingtheGibbsfunctionTwohomogeneousstatesinequilibriumhaveequalvaluesoftemperatureTandpressureP,buthavedifferentvaluesofenergy,volume,andentropypermolecule.Thephaseboundarybetweentwophasesofapuresubstancehasasingledegreeoffreedom.WecanregardTastheindependentvariable.Alongthephaseboundary,P,sA,sB,uA,uB,vA,andvBarefunctionsofT.

Page 81: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

LettheGibbsfunctionpermoleculeinhomogeneousstateAbegA(T,P)=uA+PvA-TsA.LettheGibbsfunctionpermoleculeinhomogeneousstateBbegB(T,P)=uB+PvB-TsB.TheGibbsfunctionpermoleculeofamixtureofthetwohomogeneousstatesisg=yAgA(T,P)+yBgB(T,P).Thechangeofphaseismodeledasaprocessofconstanttemperatureandconstantpressure.RecallthatyA+yB=1.Thefractionofmoleculesinonehomogenousstate,yA,istheindependentinternalvariable,whichisvariedtominimizetheGibbsfunctionofthemixture.TheconditionofequilibriumisgA(T,P)=gB(T,P)ThisequationisthesameasuA+PvA-TsA=uB+PvB-TsB.Thisconditionreproduceswhatwehaveobtainedbymaximizingentropy.

ClapeyronequationRecalltheidentities:dgA=-sAdT+vAdP,dgB=-sBdT+vBdP.Alongthephaseboundary,thetwophaseshavetheequalvalueoftheGibbsfunction,sothatdgA=dgB.Thus,-sAdT+vAdP=-sBdT+vBdP.Rearranging,weobtainthatdP/dT=(sB-sA)/(vB-vA).ThisresultiscalledtheClapeyronequation.

Page 82: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Liquid-solidphaseboundary.Therightsideoftheequationisapproximatelyindependentoftemperature.Thus,theliquid-solidphaseboundaryisapproximatelyastraightline,withtheslopegivenbytherightsideoftheClapyronequation.Forwatermolecules,thespecificvolumeissmallerinliquidwaterthaninice,vl-vs=-0.09m

3/kg.Thespecificentropyislargerinliquidwaterthaninice:sl-ss=0.09kJ/K/kg.InsertingthesevaluesintotheClapyronequation,weobtaintheslopefortheice-waterphaseboundary:dP/dT=13MPa/K.Liquid-gasandsolid-gasphaseboundaries.

Regelation

VanderWaalsmodelofliquid-gasphasetransitionTheidealgasmodelrepresentsrealgaseswellathightemperaturesandlowpressures,whenindividualmoleculesarefarapartonaverage.However,atlowtemperaturesandhighpressures,whenthemoleculesarenearcondensation,theidealgasmodelgreatlydeviatesfromthebehaviorofrealgases.WenowdescribeanequationofstateduetovanderWaals(1873):(P+aN2/V2)(V-Nb)=NkT,whereaandbareconstantsforagivensubstance.Whena=0andb=0,thevanderWaalsequationreducestotheequationofidealgases.Wenextexaminethephysicalsignificanceofthetwomodifications.

Page 83: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

(FiguretakenfromtheWikipediapageonvanderWaalsequation)

IsothermsWritethevanderWaalsequationasP=NkT/(V-Nb)-aN2/V2.ForafixednumberofmoleculesNandaconstanttemperatureT,thisequationcorrespondstoacurveonthepressure-volumeplane.Thecurveiscalledanisotherm.Anisothermatahightemperatureisamonotoniccure.Anisothermalatalowtemperaturehasaminimumandamaximum.

CriticalpointThecriticalpointtakesplaceontheisothermwheretheminimumandthemaximumcollide,sothat∂P(T,V)/∂V=0,∂2P(T,V)/∂V2=0.Thus,thecriticalpointsatisfythreeequations:P=NkT/(V-Nb)-aN2/V2,-NkT/(V-Nb)2+2aN2/V3=0,2NkT/(V-Nb)3-6aN2/V4=0.Solvingthesethreeequations,weobtainthat

Page 84: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Vc=3Nb,kTc=8a/(27b),Pc=a/(27b

2).Theseequationsexpressthecriticalvolume,temperature,andpressureintermsoftheconstantsaandb.

EnergyRecallanidentityforaclosedsystem:∂U(T,V)/∂V=T∂P(T,V)/∂T-P.Weobtainthat∂U(T,V)/∂V=aN2/V2.Integrating,weobtainthatU(T,V)=-aN2/V+Nu(T).Hereu(T)isthesameasthethermalenergypermoleculeforanidealgas.ThetermaN2/Vrepresentstheeffectofcohesionbetweenthemolecules.ThevanderWaalsmodelassumesthatthecohesionreducesthethermalenergybyanamountproportionaltothenumberdensityofthemolecules.Thisseemstobeareasonablefirst-orderapproximation.InthevanderWaalsmodel,thethermalcapacityisindependentofvolume:CV=∂U(T,V)/∂T=Ndu(T)dT=NcV(T),wherecV(T)isthesameasthethermalcapacitypermoleculeinanidealgas.

EntropyRecallanotheridentityforaclosedsystem:dS=(CV(T,V)/T)dT+(∂P(T,V)/∂T)dV.ForthevanderWaalsmodel,thisequationreducestodS=(NcV(T)/T)dT+(kN/(V-Nb))dV.ThetermNbrepresentstheeffectoffinitevolumeofthemolecules.Atafixedtemperature,thenumberofquantumstatesisproportionalto(V-Nb)N.Intheabove,wehavestartedfromthevanderWaalsequation,andexamineditsconsequencesforenergyandentropy.SincethephysicalinterpretationofthetwotermsaN2/VandNbarequitereasonable,wemayaswellusethemasastartingpointtoderivethevanderWaalsequation.

Page 85: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Entropy-energycompetitionAfixednumberofmoleculesformsaclosedsystem,whichwecharacterizeusingtheHelmholtzfunctionF(T,V).RecallthatdF=-SdT-PdV.Atafixedtemperature,theHelmholtzfunctionisafunctionofvolume,F(V).PlotthefunctionF(V)asacurveintheplanewithVasthehorizontalaxisandFastheverticalaxis.WhenthevolumechangebydV,theHelmholtzfunctionchangesbydF=-PdV.Thus,-PistheslopeofthecurveF(V).BecausePispositive,FdecreasesasVincreases. Whenthepressuredecreasesasthevolumeincreases,thecurveF(V)isconvexdownward.Whenthepressureincreasesasthevolumeincreases,thecurveF(V)isconvexupward.Thatis,anonmonotonicP(V)curvecorrespondstoanonconvexF(V)curveHowdoesthevanderWaalsmodelproduceanonconvexHelmholtzfunction?RecallthedefinitionoftheHelmholtzfunction,F=U-TS.ForthevanderWaalsmodel,theHelmholtzfunctiontakestheformF(V)=-aN2/V-NkTlog(V-Nb).HerewehavedroppedadditivetermswhicharepurelyfunctionsofT.EntropyandenergycompetetobendthecurveF(V).Thesecondtermcomesfromtheentropyofthemolecules,andisconvexdownward,whichstabilizesahomogeneousstate.Thefirsttermcomesfromthecohesionofthemolecules,andisconvexupward,whichdestabilizesahomogeneousstate.Theentropytendstodispersemolecules,buttheenergytendstoattractmoleculestogether.Atahightemperature,theentropyprevailsforallvaluesofvolume,sothattheentirecurveF(V)isconvexdownward,andtheentirecurveP(V)ismonotonic.Atalowtemperature,theentropyprevailsforsmallandlargevaluesofvolume,sothatonlythesepartsofthecurveF(V)isconvexdownward,andonlythesepartsofthecurveP(V)ismonotonic.

Page 86: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

MaxwellruleAconvex-upwardpartoftheF(V)curvecorrespondstoaphasetransition.DrawalinetangenttotheF(V)curveattwopointsAandB.Thetwopointscorrespondtotwohomogeneousstatesinequilibriumatthesamepressure,Psatu.Thispressurecorrespondstotheslopeofthetangentline:FA-FB=Psatu(VB-VA).Thisequationcanbeinterpretedonthepressure-volumeplane:FA-FBistheareaunderthecurveP(V)betweenstatesAandB,andPsatu(VB-VA)istheareaofarectangle.TheequalityofthetwoareasrequiresthatPsatubeplacedatthelevelthatequatethetwoshadedareas.ThisconstructioniscalledtheMaxwellrule.OfthetotalofNmolecules,NAmoleculesareinhomogeneousstateA,andNBmoleculesareinhomogeneousstateB.Themixtureofthetwohomogeneousstatescorrespondtoapointonthetangentline,locatedatthecenterofgravityaccordingtoNAandNB.

Page 87: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

OpensystemNowentersanothersupportingrole—thenumberofaspeciesofmolecules.Inthermodynamics,thenumberofaspeciesofmolecules,energy,andvolumeplayanalogoussupportingroles.

AfamilyofisolatedsystemsofmanyindependentvariationsAnopensystemanditssurroundingstransferenergy,volume,andmolecules.Themoleculescanbeofmanyspecies.Toillustratebasicideas,considerthatonlytwospeciesofmolecules,1and2,transferbetweentheopensystemanditssurroundings.Allotherspeciesofmoleculesareblocked.LettheenergybeU,volumebeV,thenumberofmolecularspecies1beN1,andthenumberofmolecularspecies2beN2.WhenU,V,N1,N2arefixed,theopensystembecomesanisolatedsystem.DenotethenumberofquantumstatesofthisisolatedsystembyΩ(U,V,N1,N2).AsU,V,N1,N2vary,thefunctionΩ(U,V,N1,N2),oritsequivalent,S(U,V,N1,N2)=logΩ(U,V,N1,N2),characterizestheopensystemasafamilyofisolatedsystems.Thefamilyofisolatedsystemshasfourindependentvariations,U,V,N1,N2.

DefinitionofchemicalpotentialsForthefunctionoffourvariables,S(U,V,N1,N2),recallafactofcalculus:dS=(∂S(U,V,N1,N2)/∂U)dU+(∂S(U,V,N1,N2)/∂V)dV+(∂S(U,V,N1,N2)/∂N1)dN1+(∂S(U,V,N1,N2)/∂N2)dN2.Whenweblockthetransferofthemoleculesbetweentheopensystemanditssurroundings,butallowthetransferofenergyandvolume,theopensystembecomesaclosedsystem.Wehavealreadyrelatedtwopartialderivativestoexperimentallymeasurablequantities:1/T=∂S(U,V,N1,N2)/∂U,P/T=∂S(U,V,N1,N2)/∂V.Theothertwopartialderivativesareusedtodefinethechemicalpotentials:-µ1/T=∂S(U,V,N1,N2)/∂N1,-µ2/T=∂S(U,V,N1,N2)/∂N2.Theratioµ1/Tisthechildoftheunionoftheentropyandthenumberofmolecularspecies1,andtheratioµ2/Tisthechildoftheunionoftheentropyandthenumberofmolecularspecies2,justasthetemperatureisthechildoftheunionofentropyandenergy,andastheratioP/Tis

Page 88: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

thechildoftheunionofentropyandvolume.Thechemicalpotentialsareintensivefunctionsofstate.WritedS=(1/T)dU+(P/T)dV-(µ1/T)dN1-(µ2/T)dN2.Flexibilityindefiningchemicalpotentials.Wehavealreadymentionedtheflexibilityindefiningtemperature:anymonotonicallydecreasingfunctionofthederivative∂S(U,V,N1,N2)/∂Ucanbeusedtodefinetemperature.Thisenormousflexibilitycomesaboutbecausetemperaturehasnodefinitionoutsidethermodynamics.Thechoiceadoptedhere,1/T=∂S(U,V,N1,N2)/∂U,isahistoricalaccident.Wedonothaveanyflexibilityindefiningpressure;weinsistthatthedefinitionofpressureshouldrecoverthatinmechanics,force/area.WehaveshownthatP/T=∂S(U,V,N1,N2)/∂V.Indefiningchemicalpotentials,onceagainwehaveenormousflexibility,becausechemicalpotentialshavenodefinitionoutsidethermodynamics.Whatreallymattersisthatthederivatives∂S(U,V,N1,N2)/∂U,∂S(U,V,N1,N2)/∂V,∂S(U,V,N1,N2)/∂N1,and∂S(U,V,N1,N2)/∂N2playanalogousroles.Allthesepartialderivativesareequallysignificantbecausethermodynamicsisaplayofmaximization.Evenifwechoosenottocallthesederivativesbyanyname,wewillstillbedoingthesameexperimentandthesamecalculation.TheparticulardefinitionofchemicalpotentialsadoptedherecomesfromGibbs(1875),andisjustanamegiventoapartialderivative.Wedonotneedanyreasontogiveaparticularnametoachild.Forthisdefinitionofchemicalpotential,wewillfindareasonforthepresenceofthenegativesign,butwecannotfindanyreasonforthepresenceoftemperature.Notethat∂S(U,V,N1,N2)/∂N1isapurenumber.Thenumbermeanstheincreaseofthenumberofquantumstatesassociatedwithaddingonemoleculeofspecies1,whilekeepingtheenergy,volume,andnumberofmoleculesofspecies2fixed.Thequantityhasclearsignificance.Gibbstwistedthisnumberintoaquantitytohavetheunitofenergy/amount.Hewasperhapstooenamoredwiththesupportingactor,energy.Hisreasonwastwisted,buthisdefinitionhasstuck.Usageofwords.Whenwespeakofachemicalpotential,weshouldnameboththemoleculespeciesandtheopensystem.Forexample,wespeakofthechemicalpotentialofwatermoleculesinapieceofcheese,orthechemicalpotentialofwatermoleculesinaglassofwine.WealsospeakofthechemicalpotentialofcarbondioxideinabottleofCocaCola.Wedenotethechemicalpotentialofmolecularspecies1inopensystemAbyµ1,A.

Page 89: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Whenwespeakoftemperature,weonlyneedtonametheplace.Forexample,wespeakofthetemperatureofapieceofcheese,orthetemperatureofaglassofwine.Thisdifferenceinusagecomesfromsomethingbasic:theworldhasmanyspeciesofmolecules,butonlyonespeciesofenergy.

TwoopensystemsincontactTwoopensystems,AandB,exchangeenergy,volume,andtwomolecularspecies,1and2.TheopensystemAischaracterizedbyafunctionSA(UA,VA,N1,A,N2,A),andthesystemBischaracterizedbyanotherfunctionSB(UB,VB,N1,B,N2,B).NotethatN1,Adenotesthenumberofmoleculesofspecies1insystemA.Wemakethecompositeofthetwoopensystemsintoanisolatedsystem.TheprinciplesofconservationrequirethatUA+UB=constant,VA+VB=constant,N1,A+N1,B=constant,N2,A+N2,B=constant.Hereweassumethatthetwospeciesofmoleculesdonotundergoachemicalreaction,sothatthenumberofmoleculesineachspeciesisconserved.Thecompositeisanisolatedsystemoffourindependentinternalvariables,UA,VA,N1,A,N2,A.Whentheinternalvariablesarefixedatparticularvalues,theisolatedsystemcanonlyflipinasubsetofthesamplespace.DenotethesubsetentropybyScomposite(UA,VA,N1,A,N2,A).Entropyisanextensivequantity,sothatScomposite(UA,VA,N1,A,N2,A)=SA(UA,VA,N1,A,N2,A)+SB(UB,VB,N1,B,N2,B).WhentheinternalvariableschangebydUA,dVA,dN1,A,dN1,B,thesubsetentropychangesbydScomposite=(1/TA-1/TB)dUA+(PA/TA-PB/TB)dVA+(-µ1,A/TA+µ1,B/TB)dN1,A+(-µ2,A/TA+µ2,B/TB)dN2,A.Equilibrium.ThefourinternalvariablesUA,VA,N1,A,N2,Acanchangeindependently.Inequilibrium,thesubsetentropymaximizes,dScomposite=0,sothatTA=TB,PA=PB,µ1,A=µ1,B,µ2,A=µ2,B.

Page 90: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Irreversibility.Outofequilibrium,thesubsetentropyincreasesintime,dScomposite(UA,VA,NA)>0.Considerasituationwherethetwoopensystemsareinpartialequilibrium,TA=TB,PA=PB,µ1,A=µ1,B,butnotinequilibriumwithrespecttothetransferofmolecularspecies2.TheinequalitydScomposite(UA,VA,NA)>0reducesto(-µ2,A+µ2,B)dN2,A>0.Thus,molecularspecies2transferfromthesystemofhighchemicalpotentialtothesystemoflowchemicalpotential.Thepresenceofthenegativesigninthedefinitionofchemicalpotentialleadstothisverbalconvenience.

ExperimentaldeterminationofthechemicalpotentialofaspeciesofmoleculesinacomplexsystemHowdoweexperimentallymeasurethechemicalpotentialofaspeciesofmoleculesinacomplexsystem?Whentwosystemscanexchangeenergyandaspeciesofmolecules,thefundamentalpostulatedictatesthatthetwosystemsreachequilibriumwhentheyhavethesametemperatureandthesamechemicalpotentialofthespeciesofmolecules.Consequently,oncethechemicalpotentialofaspeciesofmoleculesinonesystemisdetermined,thesystemcanbeusedtodeterminethechemicalpotentialofthesamespeciesofmoleculesinothersystems.Forexample,wecandeterminethechemicalpotentialofwatermoleculesinaflaskcontainingapurewatervaporasafunctionoftemperatureandpressure,µ(T,P).Wenowwishtomeasurethechemicalpotentialofwatermoleculesinaglassofwine.Wecanbringthewineintocontactwithaflaskofwatervapor.Thecontactismadewithasemipermeablemembranethatallowswatermoleculestogothrough,butblocksallotherspeciesofmolecules.Wethenallowthewinetoequilibratewiththewatervaporintheflask,sothatbothenergyandwatermoleculesstopexchangingbetweenthewineandtheflask.Thetwosystemshavethesametemperatureandthesamechemicalpotential.Areadingofthechemicalpotentialofwaterintheflaskgivesthechemicalpotentialofwaterinthewine.Molecularreservoir.Wecanfixthechemicalpotentialofaspeciesofmoleculesinasystembylettingittransfersthespeciesofmoleculestoamolecularreservoir.Thesituationisanalogoustofixingtemperature.Themolecularreservoirhasafixedchemicalpotentialofthespeciesofmolecules.Forexample,alargetankofanaqueoussolutionofsaltisamolecularreservoirofwater.Asmallamountofwatermoleculescangoinandoutofthetank,thoughthevapor.Thesaltevaporatesnegligibly.Thechemicalpotentialofwaterinthesolutionisfixed.

Page 91: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

ExtensibilityInmathematics,afunctionZ(X,Y)iscalledahomogeneousfunctionifforanynumberathefollowingrelationholds:aZ(X,Y)=Z(aX,aY).Takederivativewithrespectivetoa,andweobtainthatZ(X,Y)=X∂Z(X,Y)/∂X+Y∂Z(X,Y)/∂Y.Thismathematicalidentityholdsforanyhomogeneousfunction.Wenextapplythismathematicalidentitytoanopensystemoftwospeciesofmolecules,characterizedbythefunctionS(U,V,N1,N2).NotethatS,U,V,N1,N2areextensiveproperties.Ifweamplifyeveryextensivepropertybyafactorofa,thecharacteristicfunctionobeystherelation:aS(U,V,N1,N2)=S(aU,aV,aN1,aN2).Thus,thecharacteristicfunctionS(U,V,N1,N2)isahomogeneousfunctionoffourindependentvariables.Takederivativewithrespectivetoa,andweobtainthatS=U/T+PV/T-N1µ1/T-N2µ2/T.ThefourpartialderivativesofthefunctionS(U,V,N1,N2)definefourintensiveproperties.Whenweamplifyeveryextensivepropertybyafactorofa,theopensystemincreasessizeproportionally,butalltheintensivepropertiesremainunchanged.

GibbsfunctionRecallthedefinitionoftheGibbsfunction:G=U-TS+PV.Ofthefivequantitiesontheright-handsideoftheaboveequation,onlyenergyUhasanarbitraryadditiveconstant.ThesameadditiveconstantappearsintheGibbsfunction.ThedefinitionoftheGibbsfunction,alongwiththeequationdS=(1/T)dU+(P/T)dV-(µ1/T)dN1-(µ2/T)dN2,givesthat

Page 92: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

dG=-SdT+VdP+µ1dN1+µ2dN2.ThisequationsuggeststhattheGibbsfunctionberegardedasafunctionG(T,P,N1,N2),withthepartialderivatives-S=∂G(T,P,N1,N2)/∂T,V=∂G(T,P,N1,N2)/∂P,µ1=∂G(T,P,N1,N2)/∂N1,µ2=∂G(T,P,N1,N2)/∂N2.

Gibbs-DuhemrelationForanopensystemoffourextensiblevariables,U,V,N1,N2,oncethesizeofthesystem(i,e.,thetotalnumberofmolecules)isfixed,thesystemhasonlythreeindependentvariations.Thus,thefourintensivequantities,T,P,µ1,µ2,cannotbeindependentvariables.Wenextderivearelationamongthefourintensivequantities.ThedefinitionoftheGibbsfunction,G=U-TS+PV,alongwiththeequationS=U/T+PV/T-N1µ1/T-N2µ2/T,givesthatG=µ1N1+µ2N2.Takingderivative,weobtainthatdG=µ1dN1+µ2dN2+N1dµ1+N2dµ2.Thisequation,alongwiththeequationdG=-SdT+VdP+µ1dN1+µ2dN2,givesthat-SdT+VdP-N1dµ1-N2dµ2=0.Thisequation,calledtheGibbs-Duhemrelation,relatesthechangesinthefourintensivequantities,T,P,µ1,µ2.

ChemicalpotentialofaspeciesofmoleculesinapuresubstanceChemicalpotentialisanintensiveproperty.Wehavespecifiedathermodynamicstateofapuresubstancebytwointensiveproperties,temperatureandpressure.Thus,forapuresubstance,thethreeintensiveproperties,chemicalpotential,temperature,andpressure,arenotindependentproperties.Wenowderivearelationbetweenthem.

Page 93: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

WemodelapieceofapuresubstanceasanopensystemofacharacteristicfunctionS(U,V,N).Thus,dS=(1/T)dU+(P/T)dV-(µ/T)dNThisequationdefinesthetemperatureT,thepressureP,andthechemicalpotentialµ.Wecanincreasethenumberofmoleculesthepiecewithoutchangingthefunctionsofstatepermolecule,u,v,s,andwithoutchangingTandP.WhenweadddNnumberofmoleculestothepiece,theextensivefunctionsofstatechangebydS=sdN,dU=udN,anddV=vdN.TheequationdS=(1/T)dU+(P/T)dV-(µ/T)dNbecomess=(1/T)u+(P/T)v-(µ/T).Rearranging,wefindthatµ=u+Pv−Ts.ThisequationshowsthatthechemicalpotentialofaspeciesofmoleculesinapuresubstanceequalstheGibbsfunctionpermoleculeofthepuresubstance.Wehavealreadylearnedhowtomeasurethefunctions(u,v)forapuresubstanceexperimentally.Onces(u,v)isdetermined,soisthechemicalpotential.Ofthefivequantitiesontheright-handsideoftheaboveequation,onlyenergyuhasanarbitraryadditiveconstant.Thesameadditiveconstantappearsinthechemicalpotentialofthemolecularspeciesinthepuresubstance.Recallthatds=(1/T)du+(P/T)dv.Thisequation,alongwithµ=u+Pv−Ts,givesthatdµ=−sdT+vdP.Thisequationsuggeststhatweregardthechemicalpotentialasafunctionoftemperatureandpressure,µ(T,P),withthepartialderivatives∂µ(T,P)/∂T=−s,∂µ(T,P)/∂P=v.TheseresultsrecoverthesimilarequationswhenweregardthechemicalpotentialofaspeciesofmoleculesinapuresubstanceastheGibbsfunctionpermoleculeofthesubstance.

Page 94: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

ChemicalpotentialofaspeciesofmoleculesinanidealgasAnidealgas,ofNnumberofasinglespeciesofmoleculesinaflaskofvolumeV,issubjecttopressurePandtemperatureT.Recalltheequationsoftheidealgasmodel:PV=NkT.dU=NcV(T)dTdS=(NcV(T)/T)dT+(Nk/V)dV.Thechemicalpotentialµ=u+Pv−Tscanbewrittenasµ(T,P)=µ(T,P0)+kTlog(P/P0).HereP0isanarbitrarypressure.Atafixedtemperature,thisexpressiondeterminesthechemicalpotentialofaspeciesofmoleculesinanidealgasuptoanadditiveconstant.

HumidityAtagiventemperature,whenamoistairisinequilibriumwiththeliquidwater,wesaythattheairissaturatedwithwater.Ifaircontainsfewerwatermoleculesthanthesaturatedairdoes,thenumberofwatermoleculesintheairdividedbythenumberofwatermoleculesinthesaturatedairiscalledtherelativehumidity.WriteRH=N/Nsatu.Whenthevaporismodeledasanidealgas,therelativehumidityisalsogivenbyRH=P/Psatu,wherePisthepartialpressureofwaterintheunsaturatedgas,P<Psatu.Writethechemicalpotentialofwaterintheairasµ=kTlog(P/Psatu)=kTlog(RH),withtheunderstandingthatthechemicalpotentialisrelativetothatofthewatermoleculesinasaturatedwateratthesametemperature.Thelungisalwayssaturatedwithwatervaporatthebodytemperature(37C),buttheatmosphericairmaynotbe.Inwinter,thecoldairoutsidehaslowwatercontentevenat100%relativehumidity.Whenthecoldairentersawarmroom,therelativehumidityintheroomwill

Page 95: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

reducebelow100%atroomtemperature.Wewillfeeluncomfortable.Also,waterinsidethewarmroomwillcondenseoncoldwindowpanes.

IncompressiblepuresubstanceInmanyapplicationsofliquids,thepressureissmall,sothatthevolumepermoleculeintheliquid,v,istakentobeindependentofthepressure,andtheliquidiscalledincompressible.Recallthechemicalpotentialforapuresubstance,µ=u+Pv−Ts.Foranincompressiblesubstance,u,v,andsarefunctionsofT,andareindependentofP.Weobtainthatµ(T,P)=u(T)-Ts(T)+Pv(T).Thechemicalpotentialofaspeciesofmoleculesinanincompressibleliquidislinearinpressure.Often,weassumethatthespecificvolumeisalsoindependentoftemperature.

TheascentofsapHowdoesatreetransportliquidwaterfromthegroundtothetop?Unlikeananimal,thetreedoesnothaveahearttopumpliquid.Thetreedoeshaveasystemoftubes,calledxylums,toconductliquidwater.Thetensilestress.Letusviewacolumnofwaterasafreebody.LetAbethecross-sectionalareaofthecolumn.Thepressureinthewateratthetopofthetree,Ptop,exertsaforceAPtop.Thepressureinthewateratthebottomofthetree,Pbottom,exertsaforceAPbottom.ThecolumnofwaterweighsρghA,whereρisthemassdensity,gistheaccelerationofgravity,andhistheheightofthetree.ThebalanceofthethreeforcesrequiresthatPtop=Pbottom-ρgh.Thebottomofthetreeistakentoequilibratewiththewaterinthesoilthroughtherootsofthetree.Assumethatthesoilissaturatedwithwater,sothatPbottom=Psatu.Weestimatetheothertermfora100mtalltree.ρgh=(1000kg/m3)(10m/s2)(100m)=1MPa.Thepressureatthetopofthetreeisenormousandnegative:Ptop=-0.9MPa.

Page 96: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Anegativepressuremeansatensilestress.Thus,thewaterrisesbyatensileforceappliedatthetopofthetree.Whatappliesthetensilestress?Thelowhumidity!Atthetopofthetree,thechemicalpotentialofwaterintheliquidinsidethetreeisµ=(Ptop-Psatu)v.Thechemicalpotentialofwatermoleculesintheairisµ=kTlog(RH).Whentheliquidwaterequilibrateswiththegaseouswaterintheair,thetwochemicalpotentialsareequal,sothatρgh=-(kT/v)log(RH).Thevolumeperwatermoleculeisv=.AttemperatureT=300K,kT=1.38.thus,kT/v=…

Mixtureofidealgases

Chemicalreaction

StoichiometriccoefficientsAtatmosphericpressure,above100degreeCelsius,watermoleculesformagas.Atthispressureandtemperature,oxygenmoleculesalsoformagas,sodohydrogenmolecules.Whenthethreespeciesofmoleculesareenclosedinthesamecontainer,moleculesflyandcollide.Aftercollision,twomoleculesseparateonsomeoccasions,butformnewmoleculesonotheroccasions.LetusfocusonthechemicalreactionO2+2H2=2H2O.Eachoxygenmoleculeconsistsoftwooxygenatoms,eachhydrogenmoleculeconsistsoftwohydrogenatoms,andeachwatermoleculeconsistsoftwohydrogenatomsandoneoxygenatom.Inthisreaction,theoxygenmoleculesandhydrogenmoleculesarecalledthereactants,andthewatermoleculesarecalledthereactionproducts.

Page 97: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Achemicalreactionrecombineatomsfromonesetofmolecules,thereactants,toanothersetofmolecules,thereactionproducts.Thereactionconservesthenumberofeachspeciesofatoms,butchangesthenumberofeachspeciesofmolecules.Oneoxygenmoleculeandtwohydrogenmoleculesreacttoformtwowatermolecules.Thecoefficientsinfrontofthemoleculesensurethateveryspeciesofatomsisconserved.Thesecoefficientsarecalledthestoichiometriccoefficients.Onceatomiccompositionofeverymoleculeisknown,thestoichiometriccoefficientsaredeterminedbyconservingeveryspeciesofatoms.Exercise.AreactionfundamentaltolifeonEarthisphotosynthesis.Plantsabsorbcarbondioxideandwatertoproduceglucose.Determinethestoichiometriccoefficientsofthereaction.

DegreeofreactionConsiderareactionoffourspeciesofmolecules,A,B,C,andD:2A+3B=5C+7D.Theequationindicatesthestoichiometriccoefficientsofthereaction.Denotethedegreeofreactionbydx,suchthatthenumbersofthefourspeciesofmoleculesA,B,C,andDchangebydNA=-2dx,dNB=-3dx,dNC=5dx,dND=7dx.

ChemicalequilibriumWeassumethatthereactiontakesplaceinacylindersealedwithapiston,sothatboththetemperatureTandthepressureParefixedasthereactionproceeds.LettheGibbsfunctionbeG(T,P,NA,NB,NC,ND).Whenthereactionadvancesbydxundertheconditionofconstanttemperatureandconstantpressure,theGibbsfunctionchangesbydG=(5µC+7µD-2µA-3µB)dx.ReactiongoesinthedirectionthatreducestheGibbsfunction.Thus,thereactionmovestoward,dx>0,when2µA+3µB>5µC+7µD.

Page 98: An introduction to thermodynamics - Mechanics introduction to... · The play of thermodynamics L e a d i n g r o l e . Thermodynamics is often called the science of en e r g y. This

Thereactionmovesbackward,dx<0,when2µA+3µB<5µC+7µD.Thereactionreachesequilibriumwhen2µA+3µB=5µC+7µD.

ReactionofidealgasesWhenallspeciesofmoleculesformidealgases,eachspeciesobeystheidealgaslaw:PA=cAkT,wherecA=NA/VistheconcentrationofspeciesA.Thechemicalpotentialofspeciesinthecylinderisµ(T,PA)=µ(T,P0)+kTlog(PA/P0).(cC

5cD7)/(cA

2cB3)=K.