An approach to decrease dimensions of drift

27
International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014 DOI:10.5121/ijcsa.2014.4503 25 AN APPROACH TO DECREASE DIMENSIONS OF DRIFT HETERO-BOPOLAR TRANSISTORS E.L.Pankratov 1,3 and E.A.Bulaeva 1,2 1 Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia 2 Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky street, Nizhny Novgorod, 603950, Russia 3 Nizhny Novgorod Academy of the Ministry of Internal Affairs of Russia, 3 Ankudi- novskoe Shosse, Nizhny Novgorod, 603950, Russia ABSTRACT In this paper based on recently introduced approach we formulated some recommendations to optimize manufacture drift bipolar transistor to decrease their dimensions and to decrease local overheats during functioning. The approach based on manufacture a heterostructure, doping required parts of the hetero- structure by dopant diffusion or by ion implantation and optimization of annealing of dopant and/or radia- tion defects. The optimization gives us possibility to increase homogeneity of distributions of concentrations of dopants in emitter and collector and specific inhomogenous of concentration of dopant in base and at the same time to increase sharpness of p-n-junctions, which have been manufactured framework the transistor. We obtain dependences of optimal annealing time on several parameters. We also introduced an analytical approach to model nonlinear physical processes (such as mass- and heat transport) in inhomogenous me- dia with time-varying parameters. KEYWORDS Drift heterobipolar transistor, analytical approach to model technological process, decreasing of dimen- sions of transistor 1.INTRODUCTION In the present time performance of elements of integrated circuits (p-n-junctions, field-effect and bipolar transistors, ...) and their discrete analogs are intensively increasing [1-14]. To solve the problem they are using several ways. One of them is manufacturing new materials with higher speed of charge carriers [1-18]. Another way to increase the performance is elaboration of new technological processes or modification of existing one [1-14,19,20]. In this paper we introduce one of approaches of modification of technological to increase performance of bipolar transistor. To solve our aim we consider hetero structure, which consist of a substrate and three epitaxial layers (see Fig. 1). One section have been manufactured in every epitaxial layer by using another materials so as it is presented on Fig. 1. After manufacturing of the section in the first epitaxial layer the section has been doped by diffusion or ion implantation to produce required type of conductivity (p or n) in the section. Farther we consider annealing of dopant and/or radiation de-

description

In this paper based on recently introduced approach we formulated some recommendations to optimize manufacture drift bipolar transistor to decrease their dimensions and to decrease local overheats during functioning. The approach based on manufacture a heterostructure, doping required parts of the heterostructure by dopant diffusion or by ion implantation and optimization of annealing of dopant and/or radiation defects. The optimization gives us possibility to increase homogeneity of distributions of concentrations of dopants in emitter and collector and specific inhomogenous of concentration of dopant in base and at the same time to increase sharpness of p-n-junctions, which have been manufactured framework the transistor. We obtain dependences of optimal annealing time on several parameters. We also introduced an analytical approach to model nonlinear physical processes (such as mass- and heat transport) in inhomogenous media with time-varying parameters.

Transcript of An approach to decrease dimensions of drift

Page 1: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

DOI:10.5121/ijcsa.2014.4503 25

AN APPROACH TO DECREASE DIMENSIONS OF DRIFT

HETERO-BOPOLAR TRANSISTORS

E.L.Pankratov1,3

and E.A.Bulaeva1,2

1Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950,

Russia

2Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky

street, Nizhny Novgorod, 603950, Russia

3Nizhny Novgorod Academy of the Ministry of Internal Affairs of Russia, 3 Ankudi-

novskoe Shosse, Nizhny Novgorod, 603950, Russia

ABSTRACT

In this paper based on recently introduced approach we formulated some recommendations to optimize

manufacture drift bipolar transistor to decrease their dimensions and to decrease local overheats during

functioning. The approach based on manufacture a heterostructure, doping required parts of the hetero-

structure by dopant diffusion or by ion implantation and optimization of annealing of dopant and/or radia-

tion defects. The optimization gives us possibility to increase homogeneity of distributions of concentrations

of dopants in emitter and collector and specific inhomogenous of concentration of dopant in base and at the

same time to increase sharpness of p-n-junctions, which have been manufactured framework the transistor.

We obtain dependences of optimal annealing time on several parameters. We also introduced an analytical

approach to model nonlinear physical processes (such as mass- and heat transport) in inhomogenous me-

dia with time-varying parameters.

KEYWORDS

Drift heterobipolar transistor, analytical approach to model technological process, decreasing of dimen-

sions of transistor

1.INTRODUCTION

In the present time performance of elements of integrated circuits (p-n-junctions, field-effect and

bipolar transistors, ...) and their discrete analogs are intensively increasing [1-14]. To solve the

problem they are using several ways. One of them is manufacturing new materials with higher

speed of charge carriers [1-18]. Another way to increase the performance is elaboration of new

technological processes or modification of existing one [1-14,19,20]. In this paper we introduce

one of approaches of modification of technological to increase performance of bipolar transistor.

To solve our aim we consider hetero structure, which consist of a substrate and three epitaxial

layers (see Fig. 1). One section have been manufactured in every epitaxial layer by using another

materials so as it is presented on Fig. 1. After manufacturing of the section in the first epitaxial

layer the section has been doped by diffusion or ion implantation to produce required type of

conductivity (p or n) in the section. Farther we consider annealing of dopant and/or radiation de-

Page 2: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

26

fects. After that we consider manufacturing of the second and the third epitaxial layers, which

also including into itself one section in each new epitaxial layer. The sections are also been manu-

factured by using another materials. Both new sections have been doped by diffusion or ion im-

plantation to produce required type of conductivity (p or n) in the sections. Farther we consider

microwave annealing of dopant and/or radiation defects. Main aim of the paper is analysis of do-

pand and radiation defects in the considered heterostructure.

Substrate

Dopant 1 Dopant 2 Dopant 3

Epitaxial layers

Fig. 1. Heterostructure, which consist of a substrate and three epitaxial layers with sections, manufactured

by using another materials. View from side

2. Method of solution

To solve our aims we determine spatio-temporal distribution of concentration of dopant.

We determine the required distribution by solving the second Fick's law [1,3-5]

( ) ( ) ( ) ( )

++

+

=

z

tzyxCD

zy

tzyxCD

yx

tzyxCD

xt

tzyxCCCC

∂ ,,,,,,,,,,,, (1)

with boundary and initial conditions

( )0

,,,

0

=∂

=xx

tzyxC,

( )0

,,,=

= xLxx

tzyxC,

( )0

,,,

0

=∂

=yy

tzyxC,

( )0

,,,=

= yLxy

tzyxC,

( )0

,,,

0

=∂

=zz

tzyxC,

( )0

,,,=

= zLxz

tzyxC, C (x,y,z,0)=f (x,y,z). (2)

Here C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant, T is the temperature

of annealing, DС is the dopant diffusion coefficient. Value of dopant diffusion coefficient depends

on properties of materials of the considered hetero structure, speed of heating and cooling of hete-

ro structure (with account Arrhenius law). Dependences of dopant diffusion coefficient could be

approximated by the following relation [3,21]

Page 3: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

27

( ) ( )( )

( ) ( )( )

++

+=

2*

2

2*1

,,,,,,1

,,,

,,,1,,,

V

tzyxV

V

tzyxV

TzyxP

tzyxCTzyxDD

LCςςξ

γ

γ

, (3)

where DL (x,y,z,T) is the spatial (due to inhomogeneity of hetero structure) and temperature (due to

Arrhenius law) dependences of diffusion coefficient; P (x,y,z,T) is the limit of solubility of do-

pant; value of parameter γ depends on materials of heterostructure and could be integer in the fol-

lowing interval γ ∈[1,3] [3]; V (x,y,z,t) is the spatio-temporal distribution of concentration of va-

cancies; V* is the equilibrium distribution of concentration of vacancies. Concentrational depen-

dence of dopant diffusion coefficient has been discussed in details in [3]. It should be noted, that

using diffusion type of doping and radiation damage is absent in the case (i.e. ζ1= ζ2= 0). We de-

termine spatio-temporal distributions of concentrations of point radiation defects by solving of the

following system of equations [21,22]

( ) ( ) ( ) ( ) ( )+

∂+

∂=

y

tzyxITzyxD

yx

tzyxITzyxD

xt

tzyxIII

,,,,,,

,,,,,,

,,,

( ) ( ) ( ) ( ) ( )−−

∂+ tzyxVtzyxITzyxk

z

tzyxITzyxD

zVII

,,,,,,,,,,,,

,,, ,

( ) ( )tzyxITzyxkII

,,,,,, 2

,− (4)

( ) ( ) ( ) ( ) ( )+

∂+

∂=

y

tzyxVTzyxD

yx

tzyxVTzyxD

xt

tzyxVVV

,,,,,,

,,,,,,

,,,

( ) ( ) ( ) ( ) ( )−−

∂+ tzyxVtzyxITzyxk

z

tzyxVTzyxD

zVIV

,,,,,,,,,,,,

,,, ,

( ) ( )tzyxVTzyxkVV

,,,,,, 2

,−

with initial

ρ (x,y,z,0)=fρ (x,y,z) (5a)

and boundary conditions

( )0

,,,

0

=∂

=xx

tzyxρ,

( )0

,,,=

= xLxx

tzyxρ,

( )0

,,,

0

=∂

=yy

tzyxρ,

( )0

,,,=

= yLyy

tzyxρ,

( )0

,,,

0

=∂

=zz

tzyxρ,

( )0

,,,=

= zLzz

tzyxρ. (5b)

Here ρ =I,V; I (x,y,z,t) is the spatio-temporal distribution of concentrations of interstitials; Dρ(x,

y,z,T) are the diffusion coefficients of interstitials and vacancies; terms V2(x,y,z,t) and I2(x,y,z,t)

correspond to generation of divacancies and diinterstitials; kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,

z,T) are the parameters of recombination of point radiation defects and generation appropriate

their complexes, respectively.

We determine spatio-temporal distributions of concentrations of divacancies ΦV (x, y,z,t) and diin-

terstitials ΦI (x,y,z,t) by solving the following system of equations [21,22]

Page 4: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

28

( )( )

( )( )

( )+

Φ+

Φ=

ΦΦΦ

y

tzyxTzyxD

yx

tzyxTzyxD

xt

tzyxI

I

I

I

I

∂ ,,,,,,

,,,,,,

,,,

( )( )

( ) ( ) −+

Φ+ Φ tzyxITzyxk

z

tzyxTzyxD

zII

I

I,,,,,,

,,,,,, 2

,∂

( ) ( )tzyxITzyxkI ,,,,,,− (6)

( )( )

( )( )

( )+

Φ+

Φ=

ΦΦΦ

y

tzyxTzyxD

yx

tzyxTzyxD

xt

tzyxV

V

V

V

V

∂ ,,,,,,

,,,,,,

,,,

( )( )

( ) ( ) −+

Φ+ Φ tzyxVTzyxk

z

tzyxTzyxD

zVV

V

V,,,,,,

,,,,,, 2

,∂

( ) ( )tzyxVTzyxkV ,,,,,,−

with boundary and initial conditions

( )0

,,,

0

=∂

Φ∂

=xx

tzyxρ,

( )0

,,,=

Φ∂

= xLxx

tzyxρ,

( )0

,,,

0

=∂

Φ∂

=yy

tzyxρ,

( )0

,,,=

Φ∂

= yLyy

tzyxρ,

( )0

,,,

0

=∂

Φ∂

=zz

tzyxρ,

( )0

,,,=

Φ∂

= zLzz

tzyxρ, ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). (7)

Here DΦI(x,y,z,T) and DΦV(x,y,z,T) are the diffusion coefficients of simplest complexes of radia-

tion defects; kI(x,y,z,T) and kV (x,y,z,T) are the parameters of decay of simplest complexes of radi-

ation defects.

We described distribution of temperature by the second law of Fourier [23]

( ) ( ) ( ) ( ) ( ) ( )+

∂+

∂=

y

tzyxTTzyx

yx

tzyxTTzyx

xt

tzyxTTc

,,,,,,

,,,,,,

,,,λλ

( ) ( ) ( )tzyxpz

tzyxTTzyx

z,,,

,,,,,, +

∂+ λ (8)

with boundary and initial conditions

( )0

,,,

0

=∂

=xx

tzyxT,

( )0

,,,=

= xLxx

tzyxT,

( )0

,,,

0

=∂

=yy

tzyxT, (9)

( )0

,,,=

= yLxy

tzyxT,

( )0

,,,

0

=∂

=zz

tzyxT,

( )0

,,,=

= zLxz

tzyxT, T (x,y,z,0)=fT (x,y,z),

where T(x,y,z,t) is the spatio-temporal distribution of temperature; c (T)=cass[1-η exp(-T(x,y,z,t)/

Td)] is the heat capacitance (in the most interesting case, when temperature of annealing is ap-

proximately equal or larger, than Debay temperature Td, one can assume c (T)≈cass [23]); λ is the

heat conduction coefficient, which depends on properties of materials and current temperature of

annealing; temperature dependence of heat conduction coefficient in the most interesting tem-

perature interval could be approximated by the following function λ(x,y,z,T)=λass(x,y,z) [1+µ

(Td/T(x,y,z,t))ϕ] (see, for example, [23]); p(x,y,z,t) is the volumetric density of heat power, gener-

Page 5: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

29

ated in heterostructure during annealing; α (x,y,z,T)=λ(x,y,z,T)/c (T) is the heat diffusivity. First of

all we determine spatio-temporal distribution of temperature. To calculate the distribution of tem-

perature we used recently introduced approach [24-26]. Framework the approach we transform

approximation of heat diffusivity to the following form: α ass (x,y,z) =λass(x,y,z)/cas s=α0ass[1+εT

gT(x,y,z)]. Farther we determine solution of Eq.(8) as the following power series

( ) ( )∑ ∑=∞

=

=0 0

,,,,,,i j

ij

ji

TtzyxTtzyxT µε . (10)

Substitution of the series into Eq.(8) gives us possibility to obtain system of equations for the ini-

tial-order approximation of temperature T00(x,y,z,t) and corrections for them Tij(x,y,z,t) (i≥1, j≥1).

The equations are presented in the Appendix. Substitution of the series (9) into boundary and ini-

tial conditions for temperature gives us possibility to obtain the same conditions for all functions

Tij(x,y,z,t) (i≥0, j≥0). The conditions are presented in the Appendix. The equations for the func-

tions Tij(x,y,z,t) (i≥0, j≥0) with account boundary and initial conditions have been solved by using

standard approaches [27,28] for the second-order approximation of the temperature T (x,y,z,t) on

the parameters ε and µ. The solutions are presented in the Appendix. The second- order is usually

enough good approximation to make qualitative analysis and to obtain some quantitative results

(see, for example, [24-26]). Analytical results give us possibility to make more demonstrative

analysis in comparison with numerical one. To calculate the obtained result with higher exactness

and checking the obtain results by independent approaches we used numerical approaches.

To calculate spatio-temporal distributions of concentrations of point of radiation defects we used

recently introduced approach [24-26] and transform approximations of diffusion coefficients in

the following form: Dρ(x,y,z,T)=D0ρ[1+ερgρ(x,y,z,T)], where D0ρ are the average values of diffu-

sion coefficients, 0≤ερ< 1, |gρ(x,y,z,T)|≤1, ρ =I,V. The same transformations have been used for

approximations of parameters of recombination of point radiation defects and generation of their

complexes: kI,V(x,y,z,T)=k0I,V [1+εI,V gI,V(x,y,z,T)], kI,I(x,y,z,T)=k0I,I[1+εI,I gI,I(x,y,z,T)] and

kV,V(x,y,z,T) = k0V,V [1+εV,V gV,V(x,y,z,T)], where k0ρ1,ρ2 are the appropriate average values of these

parameters, 0≤εI,V< 1, 0≤εI,I< 1, 0≤εV,V< 1, |gI,V(x,y,z,T)|≤1, | gI,I(x,y,z,T)|≤1, |gV,V(x,y,z,T)|≤1. Let us

introduce the following dimensionless variables: ( ) ( ) *,,,,,,~

ItzyxItzyxI = , χ = x/Lx, η = y/Ly, φ

= z/Lz, ( ) ( ) *,,,,,,~

VtzyxVtzyxV = , VIVI

DDkL00,0

2=ω , VI

DDkL00,0

2

ρρρ =Ω ,

2

00LtDD

VI=ϑ . The introduction leads to the following transformation of equations (4) and

conditions (5)

( ) ( )[ ] ( )×+

∂+

∂=

VI

I

II

VI

I

DD

DITg

DD

DI

00

0

00

0 ,,,~

,,,1,,,

~

χ

ϑφηχφηχε

χϑ

ϑφηχ

( )[ ] ( ) ( )[ ] ×+∂

∂+

∂+

∂× Tg

DD

DITg

II

VI

I

II,,,1

,,,~

,,,1

00

0 φηχεφη

ϑφηχφηχε

η

( ) ( )[ ] ( ) ( )−+−

∂× ϑφηχϑφηχφηχεω

φ

ϑφηχ,,,

~,,,

~,,,1

,,,~

,, VITgI

VIVI

( )[ ] ( )ϑφηχφηχε ,,,~

,,,1 2

,,ITg

IIIII+Ω− (11)

( ) ( )[ ] ( )×+

∂+

∂=

VI

V

VV

VI

V

DD

DVTg

DD

DV

00

0

00

0 ,,,~

,,,1,,,

~

χ

ϑφηχφηχε

χϑ

ϑφηχ

Page 6: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

30

( )[ ] ( ) ( )[ ] ×+∂

∂+

∂+

∂+ Tg

DD

DVTg

VV

VI

V

VV,,,1

,,,~

,,,100

0 φηχεφη

ϑφηχφηχε

η

( ) ( )[ ] ( ) ( )−+−

∂× ϑφηχϑφηχφηχεω

φ

ϑφηχ,,,

~,,,

~,,,1

,,,~

,, VITgV

VIVI

( )[ ] ( )ϑφηχφηχε ,,,~

,,,1 2

,,VTg

VVVVI+Ω−

( )0

,,,~

0

=∂

=χχ

ϑφηχρ,

( )0

,,,~

1

=∂

=χχ

ϑφηχρ,

( )0

,,,~

0

=∂

=ηη

ϑφηχρ,

( )0

,,,~

1

=∂

=ηη

ϑφηχρ,

( )0

,,,~

0

=∂

=φφ

ϑφηχρ,

( )0

,,,~

1

=∂

=φφ

ϑφηχρ, ( )

( )*

,,,,,,~

ρ

ϑφηχϑφηχρ ρf

= . (12)

We determine solutions of Eqs.(11) as the following power series (see [24-26])

( ) ( )∑ ∑ ∑Ω=∞

=

=

=0 0 0

,,,~,,,~i j k

ijk

kji ϑφηχρωεϑφηχρ ρρ . (13)

Substitution of the series (13) into Eqs. (11) and conditions (12) gives us possibility to obtain eq-

uations for initial-order approximations of concentrations of point defects ( )ϑφηχ ,,,~

000I and

( )ϑφηχ ,,,~

000V and corrections for them ( )ϑφηχ ,,,

~ijk

I and ( )ϑφηχ ,,,~

ijkV , i ≥1, j ≥1, k ≥1. The equa-

tions and conditions for them are presented in the Appendix. The equations have been solved by

standard approaches (see, for example Fourier approach, [27,28]). The equations are presented in

the Appendix.

Farther we determine spatio-temporal distributions of concentrations of complexes of radiation

defects. First of all we transform approximations of diffusion coefficients into the following form:

DΦρ(x,y,z,T)=D0Φρ[1+εΦρgΦρ(x,y,z,T)], where D0Φρ are the average values of diffusion coefficients.

In this situation Eqs.(6) will be transformed to the following form

( ) ( )[ ] ( ) ( )[ ]

×++

Φ

+=Φ

ΦΦΦΦΦ Tzyxgyx

tzyxTzyxg

xD

t

tzyxII

I

III

I ,,,1,,,

,,,1,,,

0 ε∂

∂ε

( )( )[ ] ( )

+

Φ

++Φ

× ΦΦΦΦz

tzyxTzyxg

zDD

y

tzyxI

IIII

I

∂ε

∂ ,,,,,,1

,,,00

( )[ ] ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxkTzyxgIIIII

,,,,,,,,,,,,,,,1 2

, −+

+× ΦΦε

( )( )[ ] ( )

( )[ ]

×++

Φ

+=Φ

ΦΦΦΦΦ Tzyxgyx

tzyxTzyxg

xD

t

tzyxVV

V

VVV

V ,,,1,,,

,,,1,,,

0 ε∂

∂ε

( )( )[ ] ( )

+

Φ

++Φ

× ΦΦΦΦz

tzyxTzyxg

zDD

y

tzyxV

VVVV

V

∂ε

∂ ,,,,,,1

,,,00

( )[ ] ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxkTzyxgVVVVV

,,,,,,,,,,,,,,,1 2

, −+

+× ΦΦε .

Page 7: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

31

Farther we determine solutions of the above equations as the following power series

( ) ( )∑ Φ=Φ∞

0

,,,,,,i

i

itzyxtzyx ρρρ ε . (11)

Substitution of the series (14) into Eqs. (6) and appropriate boundary and initial conditions gives

us possibility to obtain equations for initial-order approximations of concentrations of complexes

of radiation defects Φρ0(x,y,z,t) and corrections for them Φρi(x,y,z,t) (i ≥1) and appropriate condi-

tions for all functions Φρi(x,y,z,t) (i ≥0). The equations and conditions are presented in the Appen-

dix. The obtained equations have been solved by standard approaches (see, for example, [27,28])

with account boundary and initial conditions. The solutions are presented in the Appendix.

We calculate spatio-temporal distribution of dopant concentration by using the same approach,

which have been used for calculation spatio-temporal distribution of concentrations of radiation

defects. In this situation we transform approximation of dopant diffusion coefficient to the fol-

lowing form: DL(x,y,z,T)=D0L[1+εLgL(x,y,z,T)], where D0L is the average value of dopant diffusion

coefficient, 0≤εL< 1, |gL(x,y,z,T)|≤1. Farther we determine solution of Eq.(1) in the following form

( ) ( )∑ ∑=∞

=

=0 1

,,,,,,i j

ij

ji

LtzyxCtzyxC ξε .

Substitution of the series into Eq.(1) and conditions (2) gives us possibility to obtain equation for

initial-order approximation of the concentration of dopant C00(x,y,z,t) and corrections for them

Cij(x,y,z,t) (i ≥1, j ≥1) and boundary and initial conditions for them. The equations and conditions

are presented in the Appendix. The solutions have been calculated by standard approaches (see,

for example, [27,28]). The solutions are presented in the Appendix.

Analysis of spatio-temporal distributions of concentrations of dopant and radiation defects have

been done analytically by using the second-order approximations on all parameters, which are

used in appropriate series. The approximation is usually enough good approximation to make qu-

alitative analysis and to obtain some quantitative results. Results of analytical calculations have

been checked with comparison with numerical one.

3.Discussion

In this section we analyzed redistribution of dopant and radiation defects by using relations, cal-

culated in the previous section. Typical distributions of concentrations of dopant near interface

between materials of hetero structure are presented on Figs. 2 and 3 for diffusion and ion types of

doping, respectively. The distributions have been calculated for the case, when value of dopant

diffusion coefficient in doped area is larger, than value of dopant diffusion coefficient in nearest

areas. The figures show, that presents of interface between materials gives us possibility to in-

crease sharpness of p-n-junctions, which included into the considered heterobipolar transistor. At

the same time homogeneity of distribution of concentration of dopant increases. Increasing of

sharpness of p-n-junctions gives us possibility to decrease their switching time. Increasing of ho-

mogeneity of distribution of concentration of dopant gives us possibility to decrease value of lo-

cal overheats during functioning of the p-n-junctions or to decrease dimensions of p-n-junctions

with fixed maximal value of the overheats. To accelerate transport of charge carriers it is attracted

an interest inhomogenous distribution of dopant in base. In this case it is electrical field has been

generated in the base. This electrical field gives us possibility to accelerate transport of charge

carriers in base of transistors. To manufacture in homogenous distribution of dopant in base it is

practicably to dope required area (section) of the first (nearest to the substrate) epitaxial layer.

After that it is practicably to anneal dopant and/or radiation defects. Farther they are attracted an

Page 8: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

32

interest the following steps: (i) manufacturing of the second epitaxial layer with section, manufac-

tured by using another materials; (ii) doping the section of the second epitaxial layer by diffusion

or ion implantation; (iii) manufacturing of the third epitaxial layer with section, manufactured by

using another materials; (iv) doping the section of the third epitaxial layer by diffusion or ion im-

plantation. After that we consider microwave annealing of dopant and/or radiation defects. Ad-

vantage of the approach of annealing is formation of inhomogenous distribution of temperature.

In this situation it is practicably to choose parameters of annealing so, that thickness of scin-layer

became larger, than thickness of the third (external) epitaxial layer and smaller, than total of

thickness of the third and the second epitaxial layers. In this case dopant diffusion in nearest to

the substrate side became slower, than in farther side. This is a reason to inhomogeneity of distri-

bution of concentration of dopant in depth of hetero structure. After finishing of manufacturing of

bipolar transistor the section of the average epitaxial layer with inhomogenous distribution of

concentration of dopant assumes function of base.

Fig. 2. Distributions of concentrations of infused dopant in hetero structure from Fig. 1 in direc-

tion, which is perpendicular to interface between layers of heterostructure. Increasing of number

of curves corresponds to increasing of difference between values of dopant diffusion coefficient

in layers of heterostructure. The curves have been calculated under condition, when dopant diffu-

sion coefficient in doped layer is larger, than in nearest layer.

x

0.0

0.5

1.0

1.5

2.0

C(x

,Θ)

23

4

1

0 L/4 L/2 3L/4 L

Epitaxial layer Substrate

Page 9: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

33

Fig. 3. Spatial distributions of implanted dopant concentration after annealing with continuous Θ

= 0.0048(Lx2+Ly

2+Lz2)/D0 (curves 1 and 3) and Θ = 0.0057(Lx

2+Ly2+Lz

2)/ D0 (curves 2 and 4).

Curves 1 and 2 are calculated distributions of dopant concentration in homogenous structure.

Curves 3 and 4 are calculated distributions of dopant concentration in hetero structure under con-

dition, when dopant diffusion coefficient in doped layer is larger, than in nearest layer.

Using of the considered approach to manufacture of transistors leads to necessity of optimization

of annealing time. To optimize the annealing time we used recently introduced criterion

[24,26,29-33]. Framework the approach we approximate real distributions of concentration of

dopant by step-wise function. Farther we determine the required optimal values of annealing time

by minimization of the following mean- squared error

( ) ( )[ ]∫ ∫ ∫ −Θ=x y zL L L

zyx

xdydzdzyxzyxCLLL

U0 0 0

,,,,,1

ψ , (15)

where ψ (x) is the approximation function, Θ is the required value of annealing time.

0.0 0.1 0.2 0.3 0.4 0.5a/L, ξ, ε, γ

0.0

0.1

0.2

0.3

0.4

0.5

Θ D

0 L

-2

3

2

4

1

Fig.4. Dependences of dimensionless optimal annealing time for doping by diffusion, which have

been obtained by minimization of mean-squared error, on several parameters. Curve 1 is the de-

pendence of dimensionless optimal annealing time on the relation a/L and ξ = γ = 0 for equal to

each other values of dopant diffusion coefficient in all parts of hetero structure. Curve 2 is the

dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2 and ξ =

γ = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ

for a/L=1/2 and ε = γ = 0. Curve 4 is the dependence of dimensionless optimal annealing time on

value of parameter γ for a/L=1/2 and ε = ξ = 0

Page 10: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

34

0.0 0.1 0.2 0.3 0.4 0.5a/L, ξ, ε, γ

0.00

0.04

0.08

0.12

Θ D

0 L

-2

3

2

4

1

Fig.5. Dependences of dimensionless optimal annealing time for doping by ion implantation,

which have been obtained by minimization of mean-squared error, on several parameters. Curve 1

is the dependence of dimensionless optimal annealing time on the relation a/L and ξ = γ = 0 for

equal to each other values of dopant diffusion coefficient in all parts of hetero structure. Curve 2

is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2

and ξ = γ = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of

parameter ξ for a/L=1/2 and ε = γ = 0. Curve 4 is the dependence of dimensionless optimal an-

nealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0

Dependences of optimal values of annealing time are presented in Fig. 4 for diffusion type of

doping. Using ion implantation leads to necessity of annealing of radiation defects. In the ideal

case after finishing of annealing of radiation defects dopant achieves interface between materials

of hetero structure. If the dopant did not achieves the interface during the annealing, it is practica-

bly to use additional annealing of dopant. Dependences of optimal values of additional annealing

time are presented in Fig. 5. Optimal value of time of additional annealing of implanted dopant is

smaller, than in optimal value of infused dopant. Reason of this difference is necessity of anneal-

ing of radiation defects.

4. CONCLUSIONS

In this paper we introduce an approach to manufacture a heterobipolar transistor with inhomo-

genous doping of base. At the same time the introduced approach to manufacture of bipolar tran-

sistors gives us possibility to increase their compactness and to increase sharpness of p-n-

junctions, which included into the transistor. The approach based on manufacturing of a hetero-

structure with special construction, doping of special areas of the hetero structure and optimiza-

tion of annealing of dopant and/or radiation defects.

ACKNOWLEDGEMENTS

This work is supported by the contract 11.G34.31.0066 of the Russian Federation Government,

grant of Scientific School of Russia, the agreement of August 27, 2013 02.В.49.21.0003 be-

tween The Ministry of education and science of the Russian Federation and Lobachevsky State

University of Nizhni Novgorod and educational fellowship for scientific research of Nizhny Nov-

gorod State University of Architecture and Civil Engineering.

Page 11: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

35

APPENDIX

Equations for the functions Tij(x,y,z,t) (i≥0, j≥0) have been obtained by substitution the power se-

ries (10) in the equation (8) and equating terms with equal powers of parameters εT and µ. The

equations could be written as

( ) ( ) ( ) ( ) ( )

ass

ass

tzyxp

z

tzyxT

y

tzyxT

x

tzyxT

t

tzyxT

να

,,,,,,,,,,,,,,,2

00

2

2

00

2

2

00

2

0

00 +

∂+

∂+

∂=

( ) ( ) ( ) ( )×+

∂+

∂+

∂=

∂ass

iii

ass

i

z

tzyxT

y

tzyxT

x

tzyxT

t

tzyxT02

0

2

2

0

2

2

0

2

0

0,,,,,,,,,,,,

αα

( ) ( ) ( ) ( )

+∂

∂+

∂× −−

2

10

2

2

10

2,,,

,,,,,,

,,,y

tzyxTTzyxg

x

tzyxTTzyxg i

T

i

T

( ) ( )

∂+ −

z

tzyxTTzyxg

z

i

T

,,,,,, 10 , i ≥1

( ) ( ) ( ) ( )( )

×+

∂+

∂+

∂=

tzyxT

T

z

tzyxT

y

tzyxT

x

tzyxT

t

tzyxTdass

ass,,,

,,,,,,,,,,,,

00

0

2

01

2

2

01

2

2

01

2

0

01

ϕ

ϕαα

( ) ( ) ( )( )

( )

+

∂−

∂+

∂+

∂×

+

2

00

1

00

0

2

00

2

2

00

2

2

00

2 ,,,

,,,

,,,,,,,,,

x

tzyxT

tzyxT

T

z

tzyxT

y

tzyxT

x

tzyxTdass

ϕ

ϕαϕ

( ) ( )

∂+

∂+

2

00

2

00,,,,,,

z

tzyxT

y

tzyxT

( ) ( ) ( ) ( )( )

×+

∂+

∂+

∂=

tzyxT

T

z

tzyxT

y

tzyxT

x

tzyxT

t

tzyxTdass

ass,,,

,,,,,,,,,,,,

00

0

2

02

2

2

02

2

2

02

2

0

02

ϕ

ϕαα

( ) ( ) ( )( )

( ) ( )

+

∂−

∂+

∂+

∂×

+x

tzyxT

x

tzyxT

tzyxT

T

z

tzyxT

y

tzyxT

x

tzyxTdass

,,,,,,

,,,

,,,,,,,,,0100

1

00

0

2

01

2

2

01

2

2

01

2

ϕ

ϕαϕ

( ) ( ) ( ) ( )

∂+

∂+

z

tzyxT

z

tzyxT

y

tzyxT

y

tzyxT ,,,,,,,,,,,,01000100

( ) ( ) ( )( )

( )( ) ( )

×∂

∂+

∂+

∂=

∂2

00

2

2

00

2

00

01

02

11

2

0

11,,,,,,

,,,,,,

,,,,,,,,,

y

tzyxT

x

tzyxTTzyxg

tzyxT

tzyxT

x

tzyxT

t

tzyxTTassass

αα

( ) ( )( )

( )( )

+

∂+

∂+×

x

tzyxTTzyxg

xz

tzyxTTzyxg

zTzyxg

TassTT

,,,,,,

,,,,,,,,, 01

0

00 α

( )( )[ ] ( )

( )[ ] ( )+

∂++

∂++

∂+

2

01

2

2

01

2

2

01

2 ,,,,,,1

,,,,,,1

,,,

z

tzyxTTzyxg

y

tzyxTTzyxg

x

tzyxTTT

( )( )

( ) ( )( )

( ) ( )( )

×+

∂+

∂+

+++tzyxT

tzyxT

y

tzyxT

tzyxT

tzyxT

x

tzyxT

tzyxT

tzyxTT

dass,,,

,,,,,,

,,,

,,,,,,

,,,

,,,1

00

10

2

00

2

1

00

10

2

00

2

1

00

10

0 ϕϕϕ

ϕα

Page 12: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

36

( )( )

( ) ( ) ( )+

∂+

∂+

∂+

∂×

2

10

2

2

10

2

2

10

2

00

0

2

00

2 ,,,,,,,,,

,,,

,,,

z

tzyxT

y

tzyxT

x

tzyxT

tzyxT

T

z

tzyxTdass

ϕ

ϕα

( )( )

( )( )

( )

×+

∂+

∂+ Tzyxg

z

tzyxTTzyxg

zx

tzyxTTzyxg

TTT,,,

,,,,,,

,,,,,, 00

2

10

2

( )( ) ( ) ( ) ( )

×

∂+

∂−

∂×

y

tzyxT

x

tzyxT

x

tzyxT

y

tzyxT

tzyxT

Tdass

,,,,,,,,,,,,

,,,

100010

2

10

2

00

0

ϕ

ϕα

( ) ( ) ( )( )

( )( )

×−

∂+

∂×

++tzyxT

TzyxgT

tzyxT

T

z

tzyxT

z

tzyxT

y

tzyxTT

dass

dass

,,,

,,,

,,,

,,,,,,,,,1

00

01

00

0001000

ϕ

ϕ

ϕ

ϕ

ϕααϕ

( ) ( ) ( )

∂+

∂+

∂×

2

00

2

00

2

00 ,,,,,,,,,

z

tzyxT

y

tzyxT

x

tzyxT.

Conditions for the functions Tij(x,y,z,t) (i≥0, j≥0) have been obtained by the same procedure as appropriate equations and could be written as

( )0

,,,

0

=∂

=x

ij

x

tzyxT,

( )0

,,,=

= xLx

ij

x

tzyxT,

( )0

,,,

0

=∂

=y

ij

y

tzyxT,

( )0

,,,=

= yLx

ij

y

tzyxT,

( )0

,,,

0

=∂

=z

ij

z

tzyxT,

( )0

,,,=

= zLx

ij

z

tzyxT, T00(x,y,z,0)=fT(x,y,z), Tij(x,y,z,0)=0, i ≥1, j ≥1.

Solutions of the equations for the functions Tij(x,y,z,t) (i≥0, j≥0) with account boundary and initial

conditions have been obtained by standard Fourier approach. By using the approach one can ob-

tain the functions Tij(x,y,z,t) in the following form

( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫+∫ ∫ ∫=∞

=1 00 0 000

2,,

1,,,

n

L

nnTnnn

zyx

L L L

T

zyx

xx y z

uctezcycxcLLL

udvdwdwvufLLL

tzyxT

( ) ( ) ( ) ( )×+∫ ∫ ∫ ∫+∫ ∫×

zyx

t L L L

asszyx

L L

TnnLLL

dudvdwdwvup

LLLudvdwdwvufwcvc

x y zy z 2,,,1,,

0 0 0 00 0

τν

τ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∫ ∫ ∫ ∫−×∞

=1 0 0 0 0

,,,

n

t L L L

ass

nnnnTnTnnn

x y z

dudvdwdwvup

wcvcucetezcycxc τν

ττ ,

where cn(χ) = cos (π nχ/L), ( )

++−=

2220

22 111exp

zyx

assnTLLL

tnte απ ;

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−=∞

=1 0 0 0 02

0

0,,,2,,,

n

t L L L

TnnnnTnTnnn

zyx

ass

i

x y z

TwvugwcvcusetezcycxcnLLL

tzyxT ταπ

( )( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−+

∂×

=

1 0 0 02

010 2,,,

n

t L L

nnnTnTnnn

zyx

assix y

vsucetezcycxcnLLL

dudvdwdu

wvuTτ

απτ

τ

Page 13: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

37

( ) ( )( )

( ) ( ) ( )×∑+∫∂

∂×

=

12

0

0

10 2,,,

,,,n

nnn

zyx

assL

i

Tnzcycxcn

LLLdudvdwd

v

wvuTTwvugwc

z απτ

τ

( ) ( ) ( ) ( ) ( ) ( )( )

∫ ∫ ∫ ∫∂

∂−× −

t L L Li

TnnnnTnT

x y z

dudvdwdw

wvuTTwvugwsvcucete

0 0 0 0

10 ,,,,,, τ

ττ , i ≥1,

where sn(χ) = sin (π n χ/L);

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−=∞

=1 0 0 0 02001

2,,,

n

t L L L

nnnnTnTnnn

zyx

d

ass

x y z

wcvcusetezcycxcnLLL

TtzyxT τ

πα

ϕ

( )( )

( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−+∂

∂×

=1 0 020

00

2

00

22

,,,

,,,

n

t L

nnTnTnnn

zyx

d

ass

x

ucetezcycxcLLL

T

wvuT

dudvdwd

u

wvuTτ

πα

τ

ττ ϕ

ϕ

( ) ( ) ( )( )

( ) ( ) ( ) ( )×∑+∫ ∫∂

∂×

=120

0 0 00

2

00

22

,,,

,,,

nnTnnn

zyx

d

ass

L L

nntezcycxc

LLL

T

wvuT

dudvdwd

v

wvuTwcvsn

y zϕ

ϕ

πα

τ

ττ

( ) ( ) ( ) ( ) ( )( )

( )×∑−∫ ∫ ∫ ∫∂

∂−×

=1

0

0 0 0 0 00

2

00

2

2,,,

,,,

nn

zyx

ass

d

t L L L

nnnnTxc

LLLT

wvuT

dudvdwd

u

wvuTwsvcucen

x y z αϕ

τ

τττ ϕ

ϕ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

−∫ ∫ ∫ ∫

∂−×

+

t L L L

nnnnTnTnn

x y z

wvuT

dudvdwd

u

wvuTwcvcucetezcyc

0 0 0 01

00

2

00

,,,

,,,

τ

τττ

ϕ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫

∂−−

=1 0 0 0 0

2

000 ,,,2

n

t L L L

nnnnTnTnnn

zyx

assx y z

v

wvuTwcvcucetezcycxc

LLL

ττ

αϕ

( )( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−−×

=+

1 0 0 0

0

1

00

2,,, n

t L L

nnnTnTnnn

zyx

ass

dd

x y

vcucetezcycxcLLL

TwvuT

dudvdwdT τ

αϕ

τ

τ ϕ

ϕ

ϕ

( ) ( )( )∫

∂×

+

zL

nwvuT

dudvdwd

w

wvuTwc

01

00

2

00

,,,

,,,

τ

ττϕ

;

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−=∞

=1 0 0 0 02002

2,,,

n

t L L L

nnnnTnTnnn

zyx

d

ass

x y z

wcvcusetezcycxcnLLL

TtzyxT τ

πα

ϕ

( )( )

( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−+∂

∂×

=1 0 020

00

2

01

2 2

,,,

,,,

n

t L

nnTnTnnn

zyx

d

ass

x

ucetezcycxcnLLL

T

wvuT

dudvdwd

u

wvuTτ

πα

τ

ττ ϕ

ϕ

( ) ( ) ( )( )

( ) ( ) ( ) ( )×∑+∫ ∫∂

∂×

=120

0 0 00

2

01

22

,,,

,,,

nnTnnn

zyx

d

ass

L L

nntezcycxcn

LLL

T

wvuT

dudvdwd

v

wvuTwcvs

y zϕ

ϕ

πα

τ

ττ

( ) ( ) ( ) ( ) ( )( )

( ) ×∑−∫ ∫ ∫ ∫∂

∂−×

=12

0

0 0 0 0 00

2

01

2

2,,,

,,,

nn

zyx

ass

d

t L L L

nnnnTxc

LLLT

wvuT

dudvdwd

w

wvuTwsvcuce

x y z απ

τ

τττ ϕ

ϕ

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

×∫ ∫ ∫ ∫∂

∂−×

+

t L L L

nnnnTn

x y z

wvuT

dudvdwd

u

wvuT

u

wvuTwcvcuceyc

0 0 0 01

00

0100

,,,

,,,,,,

τ

ττττ

ϕ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫−−×∞

=1 0 0 0 02

02n

t L L L

nnnnTnTnnn

zyx

ass

dnTn

x y z

wcvcucetezcycxcLLL

Ttezc ταπϕ

Page 14: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

38

( ) ( )( )

( ) ( ) ( ) ( )×∑−∂

∂×

=+

12

0

1

00

0100 2,,,

,,,,,,

nnTnnn

zyx

ass tezcycxcLLLwvuT

dudvdwd

v

wvuT

v

wvuT απ

τ

τττϕ

( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫ ∫ ∫

∂−×

+

t L L L

nnnnTd

x y z

wvuT

dudvdwd

w

wvuT

w

wvuTwcvcuceT

0 0 0 01

00

0100

,,,

,,,,,,

τ

ττττ

ϕ

ϕ ;

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∫ ∫ ∫ ∫ ×−=∞

=1 0 0 0 0

0

11 ,,,2

,,,n

t L L L

TnnnTnTnnn

zyx

assx y z

TwvugvcucetezcycxcLLL

tzyxT τα

( ) ( ) ( ) ( ) ( ) ( )×

∂+

∂+

∂× wc

w

wvuTwg

wv

wvuTTwvug

w

wvuTnTT

τττ ,,,,,,,,,

,,,00

2

00

2

2

00

2

( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−+×∞

=1 0 0 0

0

00

012

,,,

,,,

n

t L L

nnnTnTnnn

zyx

assx y

vcucetezcycxcLLL

dudvdwdwvuT

wvuTτ

ατ

τ

τ

( ) ( )[ ] ( ) ( )[ ] ( )∫

+∂

∂++

∂++

∂×

zL

TTv

wvuTTwvug

u

wvuTTwvug

u

wvuT

02

01

2

2

01

2

2

01

2,,,

,,,1,,,

,,,1,,, τττ

( ) ( ) ( ) ( ) ( ) ( ) ×∑+

∂+

=1

001 2,,,

,,,n

nnn

zyx

dass

nTzcycxc

LLL

Tdudvdwdwc

w

wvuTTwvug

w

ϕατ

τ

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( )∫ ∫ ×∫ ∫

+

∂−×

++

t L L L

nnnnTnT

x y z

wvuT

wvuT

u

wvuT

wvuT

wvuTwcvcucete

0 0 0 01

00

10

2

00

2

1

00

10

,,,

,,,,,,

,,,

,,,

τ

ττ

τ

ττ

ϕϕ

( ) ( )( )

( ) ( ) ( ) ( )×∑+

∂+

∂×

=+

12

00

2

1

00

10

2

00

2

2,,,

,,,

,,,,,,

nnnn

zcycxcdudvdwdw

wvuT

wvuT

wvuT

v

wvuTτ

τ

τ

ττϕ

( ) ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫ ∫

∂+

∂+

∂−×

t L L L

nnnnT

x y z

w

wvuT

v

wvuT

u

wvuTwcvcuce

0 0 0 02

10

2

2

10

2

2

10

2 ,,,,,,,,, ττττ

( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫−+×∞

=1 0 0 0

0

00

0 2,,, n

t L L

nnnTnTnnn

zyx

dass

zyx

dass

nT

x y

vcucetezcycxcLLL

T

wvuT

dudvdwd

LLL

Tte τ

α

τ

τα ϕ

ϕ

ϕ

( ) ( ) ( ) ( ) ( ) ( )∫

×+

∂+

∂×

zL

TTTnTwvug

w

wvuTTwvug

wu

wvuTTwvugwc

0

00

2

00

2

,,,,,,

,,,,,,

,,,ττ

( )( )

( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−−

∂×

=1 0 0

0

00

2

00

2

2,,,

,,,

n

t L

nnTnTnnn

zyx

dassx

ucetezcycxcLLL

T

wvuT

dudvdwd

v

wvuTτ

αϕ

τ

ττ ϕ

ϕ

( ) ( ) ( ) ( ) ( ) ( )∫ ∫

×

∂+

∂+

∂×

y zL L

nw

wvuT

v

wvuT

v

wvuT

u

wvuT

u

wvuTvc

0 0

1000100010,,,,,,,,,,,,,,, τττττ

( )( )

( )( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫−−

∂×

=+

1 0 0

0

1

00

00 2,,,

,,,

n

t L

nnTnTnnn

zyx

dass

n

x

ucetezcycxcLLL

T

wvuT

dudvdwdwc

w

wvuTτ

αϕ

τ

ττ ϕ

ϕ

( ) ( ) ( ) ( ) ( )( )∫ ∫

∂+

∂+

∂×

+

y zL L

nnwvuT

dudvdwd

w

wvuT

v

wvuT

u

wvuTwcvc

0 01

00

2

00

2

00

2

00

,,,

,,,,,,,,,

τ

ττττϕ

.

Page 15: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

39

Equations for the functions ( )ϑφηχ ,,,~

ijkI and ( )ϑφηχ ,,,

~ijk

V , i ≥0, j ≥0, k ≥0 and conditions for

them have been obtain by the same procedure as for the functions Tij(x,y,z,t)

( ) ( ) ( ) ( )2

000

2

0

0

2

000

2

0

0

2

000

2

0

0000,,,

~,,,

~,,,

~,,,

~

φ

ϑφηχ

η

ϑφηχ

χ

ϑφηχ

ϑ

ϑφηχ

∂+

∂+

∂=

∂ I

D

DI

D

DI

D

DI

V

I

V

I

V

I

( ) ( ) ( ) ( )2

000

2

0

0

2

000

2

0

0

2

000

2

0

0000,,,

~,,,

~,,,

~,,,

~

φ

ϑφηχ

η

ϑφηχ

χ

ϑφηχ

ϑ

ϑφηχ

∂+

∂+

∂=

∂ V

D

DV

D

DV

D

DV

I

V

I

V

I

V ;

( ) ( ) ( ) ( )+

∂+

∂+

∂=

∂2

00

2

2

00

2

2

00

2

0

000,,,

~,,,

~,,,

~,

~

φ

ϑφηχ

η

ϑφηχ

χ

ϑφηχ

ϑ

ϑχiii

V

IiIII

D

DI

( )( )

( )( )

+

∂+

∂+ −−

η

ϑφηχφηχ

ηχ

ϑφηχφηχ

χ

,,,~

,,,,,,

~

,,, 100

0

0100

0

0 i

I

V

Ii

I

V

II

TgD

DITg

D

D

( )( )

∂+ −

φ

ϑφηχφηχ

φ

,,,~

,,, 100

0

0 i

I

V

II

TgD

D, i ≥1,

( ) ( ) ( ) ( )+

∂+

∂+

∂=

∂2

00

2

2

00

2

2

00

2

0

000 ,,,~

,,,~

,,,~

,~

φ

ϑφηχ

η

ϑφηχ

χ

ϑφηχ

ϑ

ϑχiii

I

ViVVV

D

DV

( )( )

( )( )

+

∂+

∂+ −−

η

ϑφηχφηχ

ηχ

ϑφηχφηχ

χ

,,,~

,,,,,,

~

,,, 100

0

0100

0

0 i

V

I

Vi

V

I

VV

TgD

DVTg

D

D

( ) ( )

∂+ −

φ

ϑφηχφηχ

φ

,,,~

,,, 100

0

0 i

V

I

VV

TgD

D, i ≥1;

( ) ( ) ( ) ( )−

∂+

∂+

∂=

∂2

010

2

2

010

2

2

010

2

0

0010,,,

~,,,

~,,,

~,,,

~

φ

ϑφηχ

η

ϑφηχ

χ

ϑφηχ

ϑ

ϑφηχ III

D

DI

V

I

( )[ ] ( ) ( )ϑφηχϑφηχφηχε ,,,~

,,,~

,,,1000000,,

VITgVIVI

+−

( ) ( ) ( ) ( )−

∂+

∂+

∂=

∂2

010

2

2

010

2

2

010

2

0

0010,,,

~,,,

~,,,

~,,,

~

φ

ϑφηχ

η

ϑφηχ

χ

ϑφηχ

ϑ

ϑφηχ VVV

D

DV

I

V

( )[ ] ( ) ( )ϑφηχϑφηχφηχε ,,,~

,,,~

,,,1000000,,

VITgVIVI

+− ;

( ) ( ) ( ) ( )−

∂+

∂+

∂=

∂2

020

2

2

020

2

2

020

2

0

0020,,,

~,,,

~,,,

~,,,

~

φ

ϑφηχ

η

ϑφηχ

χ

ϑφηχ

ϑ

ϑφηχ III

D

DI

V

I

( )[ ] ( ) ( ) ( ) ( )[ ]ϑφηχϑφηχϑφηχϑφηχφηχε ,,,~

,,,~

,,,~

,,,~

,,,1010000000010,,

VIVITgVIVI

++−

( ) ( ) ( ) ( )−

∂+

∂+

∂=

∂2

020

2

2

020

2

2

020

2

0

0020,,,

~,,,

~,,,

~,,,

~

φ

ϑφηχ

η

ϑφηχ

χ

ϑφηχ

ϑ

ϑφηχ VVV

D

DV

V

I

( )[ ] ( ) ( ) ( ) ( )[ ]ϑφηχϑφηχϑφηχϑφηχφηχε ,,,~

,,,~

,,,~

,,,~

,,,1010000000010,,

VIVITgVIVI

++− ;

Page 16: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

40

( ) ( ) ( ) ( )−

∂+

∂+

∂=

∂2

001

2

2

001

2

2

001

2

0

0001,,,

~,,,

~,,,

~,,,

~

φ

ϑφηχ

η

ϑφηχ

χ

ϑφηχ

ϑ

ϑφηχ III

D

DI

V

I

( )[ ] ( )ϑφηχφηχε ,,,~

,,,1 2

000,,ITg

IIII+−

( ) ( ) ( ) ( )−

∂+

∂+

∂=

∂2

001

2

2

001

2

2

001

2

0

0001,,,

~,,,

~,,,

~,,,

~

φ

ϑφηχ

η

ϑφηχ

χ

ϑφηχ

ϑ

ϑφηχ VVV

D

DV

I

V

( )[ ] ( )ϑφηχφηχε ,,,~

,,,1 2

000,,VTg

IIII+− ;

( ) ( ) ( ) ( )+

∂+

∂+

∂=

∂2

110

2

2

110

2

2

110

2

0

0110,,,

~,,,

~,,,

~,,,

~

φ

ϑφηχ

η

ϑφηχ

χ

ϑφηχ

ϑ

ϑφηχ III

D

DI

V

I

( ) ( ) ( ) ( )

+

∂+

∂+

η

ϑφηχφηχ

ηχ

ϑφηχφηχ

χ

,,,~

,,,,,,

~

,,, 010010

0

0I

TgI

TgD

DII

V

I

( )( )

( )[ ] ( ) ( )[ ++−

∂+ ϑφηχϑφηχφηχε

φ

ϑφηχφηχ

φ,,,

~,,,

~,,,1

,,,~

,,,000100,,

010 VITgI

TgIIIII

( ) ( )]ϑφηχϑφηχ ,,,~

,,,~

100000 VI+

( ) ( ) ( ) ( )+

∂+

∂+

∂=

∂2

110

2

2

110

2

2

110

2

0

0110 ,,,~

,,,~

,,,~

,,,~

φ

ϑφηχ

η

ϑφηχ

χ

ϑφηχ

ϑ

ϑφηχ VVV

D

DV

I

V

( ) ( ) ( ) ( )

+

∂+

∂+

η

ϑφηχφηχ

ηχ

ϑφηχφηχ

χ

,,,~

,,,,,,

~

,,, 010010

0

0V

TgV

TgD

DVV

I

V

( ) ( ) ( )[ ] ( )[ ×+−

∂+ ϑφηχφηχε

φ

ϑφηχφηχ

φ,,,

~,,,1

,,,~

,,, 100,,

010 VTgV

TgVVVVV

( ) ( ) ( )]ϑφηχϑφηχϑφηχ ,,,~

,,,~

,,,~

100000000 IVI +× ;

( ) ( ) ( ) ( )−

∂+

∂+

∂=

∂2

002

2

2

002

2

2

002

2

0

0002,,,

~,,,

~,,,

~,,,

~

φ

ϑφηχ

η

ϑφηχ

χ

ϑφηχ

ϑ

ϑφηχ III

D

DI

V

I

( )[ ] ( ) ( )ϑφηχϑφηχφηχε ,,,~

,,,~

,,,1000001,,

IITgIIII

+−

( ) ( ) ( ) ( )−

∂+

∂+

∂=

∂2

002

2

2

002

2

2

002

2

0

0002,,,

~,,,

~,,,

~,,,

~

φ

ϑφηχ

η

ϑφηχ

χ

ϑφηχ

ϑ

ϑφηχ VVV

D

DV

I

V

( )[ ] ( ) ( )ϑφηχϑφηχφηχε ,,,~

,,,~

,,,1000001,,

VVЕgVVVV

+− ;

( ) ( ) ( ) ( )+

∂+

∂+

∂=

∂2

101

2

2

101

2

2

101

2

0

0101,,,

~,,,

~,,,

~,,,

~

φ

ϑφηχ

η

ϑφηχ

χ

ϑφηχ

ϑ

ϑφηχ III

D

DI

V

I

( ) ( ) ( ) ( )

+

∂+

∂+

η

ϑφηχφηχ

ηχ

ϑφηχφηχ

χ

,,,~

,,,,,,

~

,,, 001001

0

0I

TgI

TgD

DII

V

I

Page 17: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

41

( ) ( ) ( )[ ] ( ) ( )ϑφηχϑφηχφηχεφ

ϑφηχφηχ

φ,,,

~,,,

~,,,1

,,,~

,,,000100

001 VITgI

TgIII

+−

∂+

( ) ( ) ( ) ( )+

∂+

∂+

∂=

∂2

101

2

2

101

2

2

101

2

0

0101 ,,,~

,,,~

,,,~

,,,~

φ

ϑφηχ

η

ϑφηχ

χ

ϑφηχ

ϑ

ϑφηχ VVV

D

DV

I

V

( ) ( ) ( ) ( )

+

∂+

∂+

η

ϑφηχφηχ

ηχ

ϑφηχφηχ

χ

,,,~

,,,,,,

~

,,, 001001

0

0V

TgV

TgD

DVV

I

V

( )( )

( )[ ] ( ) ( )ϑφηχϑφηχφηχεφ

ϑφηχφηχ

φ,,,

~,,,

~,,,1

,,,~

,,,100000

001 VITgV

TgVVV

+−

∂+ ;

( ) ( ) ( ) ( )−

∂+

∂+

∂=

∂2

011

2

2

011

2

2

011

2

0

0011 ,,,~

,,,~

,,,~

,,,~

φ

ϑφηχ

η

ϑφηχ

χ

ϑφηχ

ϑ

ϑφηχ III

D

DI

V

I

( )[ ] ( ) ( ) ( )[ ] ×+−+− TgIITgVIVIIIII

,,,1,,,~

,,,~

,,,1,,010000,,

φηχεϑφηχϑφηχφηχε

( ) ( )ϑφηχϑφηχ ,,,~

,,,~

000001VI×

( ) ( ) ( ) ( )−

∂+

∂+

∂=

∂2

011

2

2

011

2

2

011

2

0

0011 ,,,~

,,,~

,,,~

,,,~

φ

ϑφηχ

η

ϑφηχ

χ

ϑφηχ

ϑ

ϑφηχ VVV

D

DV

I

V

( )[ ] ( ) ( ) ( )[ ]×+−+− tgVVTgVIVIVVVV

,,,1,,,~

,,,~

,,,1,,010000,,

φηχεϑφηχϑφηχφηχε

( ) ( )ϑφηχϑφηχ ,,,~

,,,~

001000VI× ;

( )0

,,,~

0

=∂

=x

ijk

χ

ϑφηχρ,

( )0

,,,~

1

=∂

=x

ijk

χ

ϑφηχρ,

( )0

,,,~

0

=∂

=ηη

ϑφηχρijk

, ( )

0,,,~

1

=∂

=ηη

ϑφηχρijk

,

( )0

,,,~

0

=∂

=φφ

ϑφηχρijk

, ( )

0,,,~

1

=∂

=φφ

ϑφηχρijk

(i ≥0, j ≥0, k ≥0);

( ) ( ) *

000,,0,,,~ ρφηχφηχρ ρf= , ( ) 00,,,~ =φηχρ

ijk (i ≥1, j ≥1, k ≥1).

Solutions of the above equations have been obtained by standard Fourier approach and could be

written as

( ) ( ) ( ) ( ) ( )∑+=∞

=1000

21,,,~

nnn ecccF

LLϑφηχϑφηχρ ρρ ,

where ( ) ( ) ( ) ( )∫ ∫ ∫=1

0

1

0

1

0*

,,coscoscos1

udvdwdwvufwnvnunFnn ρρ πππ

ρ, cn(χ) = cos (π n χ),

( ) ( )IVnI

DDne00

22exp ϑπϑ −= , ( ) ( )VInV

DDne00

22exp ϑπϑ −= ;

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−=∞

=1 0

1

0

1

0

1

00

0

00 ,,,2,,,~

nInnnInIn

V

I

iTwvugvcuseecccn

D

DI

ϑ

τϑφηχπϑφηχ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫−−∂

∂×

=

1 0

1

00

0100 2,,,

~

nnnInIn

V

Ii

nuceecccn

D

Ddudvdwd

u

wvuIwc

ϑ

τϑφηχττ

Page 18: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

42

( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑−∫ ∫∂

∂×

=

10

01

0

1

0

100 2,,,

~

,,,n

n

V

Ii

Inncccn

D

Ddudvdwd

v

wvuITwvugwcvs φηχπτ

τπ

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫

∂−× −

ϑ

ττ

τϑ0

1

0

1

0

1

0

100,,,

~

,,, dudvdwdw

wvuITwvugwsvcucee i

InnnnInI, i ≥1,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ×∫ ∫ ∫ ∫−−=∞

=1 0

1

0

1

0

1

00

0

00,,,2,,,

~

nVnnnInVn

I

V

iTwvugvcuseecccn

D

DV

ϑ

τϑφηχπϑφηχ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ×∫ ∫ ∫−−∂

∂×

=

1 0

1

0

1

00

0100,

~

nnnnInVn

I

Vi

nvsuceecccn

D

Ddudvdwd

u

uVwc

ϑ

τϑφηχττ

( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ×−∫∂

∂×

=

10

01

0

100 2,

~

,,,2n

nVn

I

Vi

Vnecccn

D

Ddudvdwd

v

uVTwvugwc ϑφηχπτ

τπ

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫

∂−× −

ϑ

ττ

τ0

1

0

1

0

1

0

100,

~

,,, dudvdwdw

uVTwvugwsvcuce i

VnnnnI, i ≥1,

where sn(χ) = sin (π n χ);

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∫ ∫ ∫ ∫ ×−−=∞

=1 0

1

0

1

0

1

0010

2,,,~n

nnnnnnnnwcvcuceeccc

ϑ

ρρ τϑφηχϑφηχρ

( )[ ] ( ) ( ) τττε dudvdwdwvuVwvuITwvugVIVI

,,,~

,,,~

,,,1000000,,

+× ;

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−=∞

=1 0

1

0

1

0

1

00

0

0202,,,~

nnnnnnnnn

V

I wcvcuceecccD

D ϑ

ρρ τϑφηχϑφηχρ

( ) ( ) ( ) ( )[ ]×+× ττττ ,,,~

,,,~

,,,~

,,,~

010000000010wvuVwvuIwvuVwvuI

( )[ ] τε dudvdwdTwvugVIVI

,,,1,,

+× ;

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−=∞

=1 0

1

0

1

0

1

0001

2,,,~n

nnnnnnnnwcvcuceeccc

ϑ

ρρ τϑφηχϑφηχρ

( )[ ] ( ) ττρε ρρρρ dudvdwdwvuTwvug ,,,~,,,1 2

000,,+× ;

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∫ ∫ ×∫ ∫−−=∞

=1 0

1

0

1

0

1

0002

2,,,~n

nnnnnnnnwcvcuceeccc

ϑ

ρρ τϑφηχϑφηχρ

( )[ ] ( ) ( ) ττρτρε ρρρρ dudvdwdwvuwvuTwvug ,,,~,,,~,,,1 000001,,+× ;

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−=∞

=1 0

1

0

1

0

1

00

0

1102,,,

~

nnnnnInInnn

V

I ucvcuseecccnD

DI

ϑ

τϑφηχπϑφηχ

( ) ( ) ( ) ( ) ( ) ( ) ×∑−∂

∂×

=

10

0100 2,,,

~

,,,n

nInnn

V

Ii

Iecccn

D

Ddudvdwd

u

wvuITwvug ϑφηχπτ

τ

( ) ( ) ( ) ( ) ( ) ( )×−∫ ∫ ∫ ∫

∂−× −

V

Ii

InnnnID

Ddudvdwd

v

wvuITwvugucvsuce

0

0

0

1

0

1

0

1

0

100 2,,,

~

,,, πττ

τϑ

( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫

∂−×

=

1 0

1

0

1

0

1

0

100,,,

~

,,,n

i

InnnnInIdudvdwd

w

wvuITwvugusvcuceen

ϑ

ττ

τϑ

Page 19: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

43

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[∑ ∫ ∫ ∫ ∫ ×+−−×∞

=1 0

1

0

1

0

1

0,

12n

VInnnnInnnInnnnvcvcuceccecccc

ϑ

ετφηϑχφηχ

( )] ( ) ( ) ( ) ( )[ ] τττττ dudvdwdwvuVwvuIwvuVwvuITwvugVI

,,,~

,,,~

,,,~

,,,~

,,,100000000100,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−=∞

=1 0

1

0

1

0

1

00

0

1102,,,

~

nnnnnVnVnnn

I

V ucvcuseecccnD

DV

ϑ

τϑφηχπϑφηχ

( ) ( ) ( ) ( ) ( ) ( ) ×∑−∂

∂×

=

10

0100 2,,,

~

,,,n

nVnnn

I

Vi

Vecccn

D

Ddudvdwd

u

wvuVTwvug ϑφηχπτ

τ

( ) ( ) ( ) ( ) ( ) ( )×−∫ ∫ ∫ ∫

∂−× −

I

Vi

VnnnnVD

Ddudvdwd

v

wvuVTwvugucvsuce

0

0

0

1

0

1

0

1

0

100 2,,,

~

,,, πττ

τϑ

( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫

∂−×

=

1 0

1

0

1

0

1

0

100,,,

~

,,,n

i

VnnnnVnVdudvdwd

w

wvuVTwvugusvcuceen

ϑ

ττ

τϑ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[∑ ∫ ∫ ∫ ∫ ×+−−×∞

=1 0

1

0

1

0

1

0,

12n

VInnnnVnnnInnnnvcvcuceccecccc

ϑ

ετφηϑχφηχ

( )] ( ) ( ) ( ) ( )[ ] τττττ dudvdwdwvuVwvuIwvuVwvuITwvug VI ,,,~

,,,~

,,,~

,,,~

,,, 100000000100, +× ;

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−=∞

=1 0

1

0

1

0

1

00

0

1012,,,

~

nnnnnInInnn

V

I wcvcuseecccnD

DI

ϑ

τϑφηχπϑφηχ

( ) ( ) ( ) ( ) ( ) ( ) ×∑−∂

∂×

=10

0001 2,,,

~

,,,n

nInnn

V

I

Iecccn

D

Ddudvdwd

u

wvuITwvug ϑφηχπτ

τ

( ) ( ) ( ) ( ) ( ) ( )×−∫ ∫ ∫ ∫

∂−×

V

I

InnnnID

Ddudvdwd

v

wvuITwvugwcvsuce

0

0

0

1

0

1

0

1

0

001 2,,,

~

,,, πττ

τϑ

( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫

∂−×

=1 0

1

0

1

0

1

0

001,,,

~

,,,n

InnnnInIdudvdwd

w

wvuITwvugwsvcuceen

ϑ

ττ

τϑ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ×∑ ∫ ∫ +−−×∞

=1 0

1

0,,

,,,12n

VIVInInInnnnnnTwvugeecccccc

ϑ

ετϑφηχφηχ

( ) ( ) ( ) τττ dudvdwdwvuVwvuIucn

,,,~

,,,~

000100×

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−=∞

=1 0

1

0

1

0

1

00

0

1012,,,

~

nnnnnVnVnnn

I

V wcvcuseecccnD

DV

ϑ

τϑφηχπϑφηχ

( ) ( ) ( ) ( ) ( ) ( ) ×∑−∂

∂×

=10

0001 2,,,

~

,,,n

nVnnn

I

V

Vecccn

D

Ddudvdwd

u

wvuVTwvug ϑφηχπτ

τ

( ) ( ) ( ) ( ) ( ) ( )×−∫ ∫ ∫ ∫

∂−×

I

V

VnnnnVD

Ddudvdwd

v

wvuVTwvugwcvsuce

0

0

0

1

0

1

0

1

0

001 2,,,

~

,,, πττ

τϑ

( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫

∂−×

=1 0

1

0

1

0

1

0

001,,,

~

,,,n

VnnnnVnVdudvdwd

w

wvuVTwvugwsvcuceen

ϑ

ττ

τϑ

Page 20: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

44

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[∑ ∫ ∫ ∫ ∫ ×+−−×∞

=1 0

1

0

1

0

1

0,

12n

VInnnnVnVnnnnnnwcvcuceecccccc

ϑ

ετϑφηχφηχ

( )] ( ) ( ) τττ dudvdwdwvuVwvuITwvugVI

,,,~

,,,~

,,,100000,

× ;

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∫ ∫ ∫ ∫ ×−−=∞

=1 0

1

0

1

0

1

0011

2,,,~

nnnnnInInnn

wcvcuceecccIϑ

τϑφηχϑφηχ

( )[ ] ( ) ( ) ( )[ ] ×+++× TwvugwvuIwvuITwvugVIVIIIII

,,,1,,,~

,,,~

,,,1,,010000,,

εττε

( ) ( ) τττ dudvdwdwvuVwvuI ,,,~

,,,~

000001×

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∫ ∫ ∫ ∫ ×−−=∞

=1 0

1

0

1

0

1

0011

2,,,~

nnnnnVnVnnn

wcvcuceecccVϑ

τϑφηχϑφηχ

( )[ ] ( ) ( ) ( )[ ] ×+++× TwvugwvuVwvuVTwvugVIVIVVVV

,,,1,,,~

,,,~

,,,1,,010000,,

εττε

( ) ( ) τττ dudvdwdwvuVwvuI ,,,~

,,,~

001000× .

Equations for initial-order approximations of distributions of concentrations of simplest complex-

es of radiation defects Φρ0(x,y,z,t) and corrections for them Φρi(x,y, z,t), i ≥1 and boundary and

initial conditions for them have been obtained as the functions Tij(x,y,z,t) and takes the form

( ) ( ) ( ) ( )+

Φ+

Φ+

Φ=

ΦΦ 2

0

2

2

0

2

2

0

2

0

0,,,,,,,,,,,,

z

tzyx

y

tzyx

x

tzyxD

t

tzyxIII

I

I

( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxkIII

,,,,,,,,,,,, 2

,−+

( ) ( ) ( ) ( )+

Φ+

Φ+

Φ=

ΦΦ 2

0

2

2

0

2

2

0

2

0

0,,,,,,,,,,,,

z

tzyx

y

tzyx

x

tzyxD

t

tzyxVVV

V

V

( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxkVVV

,,,,,,,,,,,, 2

,−+ ;

( ) ( ) ( ) ( )+

Φ+

Φ+

Φ=

ΦΦ 2

2

2

2

2

2

0

,,,,,,,,,,,,

z

tzyx

y

tzyx

x

tzyxD

t

tzyxiIiIiI

I

iI

( )( )

( )( )

+

Φ+

Φ+

Φ

ΦΦy

tzyxTzyxg

yx

tzyxTzyxg

xD

iI

I

iI

II∂

∂ ,,,,,,

,,,,,,

11

0

( )( )

Φ+

Φz

tzyxTzyxg

z

iI

I∂

∂ ,,,,,,

1, i≥1,

( ) ( ) ( ) ( )+

Φ+

Φ+

Φ=

ΦΦ 2

2

2

2

2

2

0

,,,,,,,,,,,,

z

tzyx

y

tzyx

x

tzyxD

t

tzyxiViViV

V

iV

( )( )

( )( )

+

Φ+

Φ+

Φ

ΦΦy

tzyxTzyxg

yx

tzyxTzyxg

xD

iV

V

iV

VV∂

∂ ,,,,,,

,,,,,,

11

0

( )( )

Φ+

Φz

tzyxTzyxg

z

iV

V∂

∂ ,,,,,,

1, i≥1;

Page 21: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

45

( )0

,,,

0

=∂

Φ∂

=x

i

x

tzyxρ,

( )0

,,,=

Φ∂

= xLx

i

x

tzyxρ,

( )0

,,,

0

=∂

Φ∂

=y

i

y

tzyxρ,

( )0

,,,=

Φ∂

= yLy

i

y

tzyxρ,

( )0

,,,

0

=∂

Φ∂

=z

i

z

tzyxρ,

( )0

,,,=

Φ∂

= zLz

i

z

tzyxρ, i≥0;

Φρ0(x,y,z,0)=fΦρ (x,y,z), Φρi(x,y,z,0)=0, i≥1.

Solutions of the above equations could be written as

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑+∑+=Φ∞

=

=ΦΦ

110

221,,,

nnnn

nnnnnn

zyxzyx

zcycxcnL

tezcycxcFLLLLLL

tzyxρρρ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[∫ ∫ ∫ ∫ ×−−× ΦΦ

t L L L

IIInnnnn

x y z

TwvukwvuITwvukwcvcucete0 0 0 0

2

,,,,,,,,,, ττ

ρρ

( )] ττ dudvdwdwvuI ,,,× ,

where ( ) ( ) ( ) ( )∫ ∫ ∫= ΦΦ

x y zL L L

nnnnudvdwdwvufwcvcucF

0 0 0

,,ρρ

, ( )

++−= ΦΦ 2220

22 111exp

zyx

nLLL

tDnteρρ

π ,

cn(x) = cos (π n x/Lx);

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−=Φ∞

=ΦΦ

1 0 0 0 02

2,,,

n

t L L L

nnnnnnnn

zyx

i

x y z

wcvcusetezcycxcnLLL

tzyx τπ

ρρρ

( )( )

( ) ( ) ( ) ( ) ×∑−Φ

×∞

Φ1

2

1 2,,,,,,

nnnnn

zyx

iI

tezcycxcnLLL

dudvdwdu

wvuTwvug

ρ

ρ

ρ

πτ

τ∂

( ) ( ) ( ) ( ) ( )( )

×−∫ ∫ ∫ ∫Φ

−×−

ΦΦ

yx

t L L LiI

nnnnLL

dudvdwdv

wvuTwvugwcvsuce

x y z πτ

τ∂τ ρ

ρρ

2,,,,,,

0 0 0 0

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

×∑ ∫ ∫ ∫ ∫Φ

−×∞

=

ΦΦ1 0 0 0 0

1

2

,,,1

n

t L L LiI

nnnnnnnn

z

x y z

w

wvuwsvcucetezcycxcn

L ∂

τ∂τ ρ

ρρ

( ) τρ

dudvdwdTwvug ,,,Φ× , i≥1,

where sn(x) = sin (π n x/Lx). Equations for initial-order approximation of dopant concentration C00(x,y,z,t), corrections for

them Cij(x,y,z,t) (i ≥1, j ≥1) and boundary and initial conditions take the form

( ) ( ) ( ) ( )2

00

2

02

00

2

02

00

2

0

00,,,,,,,,,,,,

z

tzyxCD

y

tzyxCD

x

tzyxCD

t

tzyxCLLL

∂+

∂+

∂=

∂;

( ) ( ) ( ) ( )+

∂+

∂+

∂=

∂2

0

2

02

0

2

02

0

2

0

0 ,,,,,,,,,,,,

z

tzyxCD

y

tzyxCD

x

tzyxCD

t

tzyxCi

L

i

L

i

L

i

( ) ( ) ( ) ( )+

∂+

∂+ −−

y

tzyxCTzyxg

yD

x

tzyxCTzyxg

xD i

LL

i

LL

,,,,,,

,,,,,, 10

0

10

0

Page 22: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

46

( ) ( )

∂+ −

z

tzyxCTzyxg

zD i

LL

,,,,,, 10

0 , i ≥1;

( ) ( ) ( ) ( )+

∂+

∂+

∂=

∂2

01

2

02

01

2

02

01

2

0

01,,,,,,,,,,,,

z

tzyxCD

y

tzyxCD

x

tzyxCD

t

tzyxCLLL

( )( )

( ) ( )( )

( )+

∂+

∂+

y

tzyxC

TzyxP

tzyxC

yD

x

tzyxC

TzyxP

tzyxC

xD

LL

,,,

,,,

,,,,,,

,,,

,,, 0000

0

0000

0 γ

γ

γ

γ

( )( )

( )

∂+

z

tzyxC

TzyxP

tzyxC

zD

L

,,,

,,,

,,,0000

0 γ

γ

;

( ) ( ) ( ) ( )+

∂+

∂+

∂=

∂2

02

2

02

02

2

02

02

2

0

02 ,,,,,,,,,,,,

z

tzyxCD

y

tzyxCD

x

tzyxCD

t

tzyxCLLL

( ) ( )( )

( ) ( ) ( )( )

×

∂+

∂+

−−

TzyxP

tzyxCtzyxC

yx

tzyxC

TzyxP

tzyxCtzyxC

x ,,,

,,,,,,

,,,

,,,

,,,,,,

1

00

01

00

1

00

01 γ

γ

γ

γ

( ) ( ) ( )( )

( )+

∂+

∂×

LD

z

tzyxC

TzyxP

tzyxCtzyxC

zy

tzyxC0

00

1

00

01

00,,,

,,,

,,,,,,

,,,γ

γ

( )( )

( ) ( )( )

( )

+

∂+

∂+

y

tzyxC

TzyxP

tzyxC

yx

tzyxC

TzyxP

tzyxC

xD

L

,,,

,,,

,,,,,,

,,,

,,, 01000100

0 γ

γ

γ

γ

( )( )

( )

∂+

z

tzyxC

TzyxP

tzyxC

z

,,,

,,,

,,,0100

γ

γ

;

( ) ( ) ( ) ( )+

∂+

∂+

∂=

∂2

11

2

02

11

2

02

11

2

0

11 ,,,,,,,,,,,,

z

tzyxCD

y

tzyxCD

x

tzyxCD

t

tzyxCLLL

( ) ( )( )

( ) ( ) ( )( )

×

∂+

∂+

−−

TzyxP

tzyxCtzyxC

yx

tzyxC

TzyxP

tzyxCtzyxC

x ,,,

,,,,,,

,,,

,,,

,,,,,,

1

00

10

00

1

00

10 γ

γ

γ

γ

( ) ( ) ( )( )

( )+

∂+

∂×

LD

z

tzyxC

TzyxP

tzyxCtzyxC

zy

tzyxC0

00

1

00

10

00 ,,,

,,,

,,,,,,

,,,γ

γ

( )( )

( ) ( )( )

( )

+

∂+

∂+

y

tzyxC

TzyxP

tzyxC

yx

tzyxC

TzyxP

tzyxC

xD

L

,,,

,,,

,,,,,,

,,,

,,,10001000

0 γ

γ

γ

γ

( )( )

( ) ( ) ( )

+

∂+

∂+

x

tzyxCTzyxg

xD

z

tzyxC

TzyxP

tzyxC

zLL

,,,,,,

,,,

,,,

,,, 01

0

1000

γ

γ

( ) ( ) ( ) ( )

∂+

∂+

z

tzyxCTzyxg

zy

tzyxCTzyxg

yLL

,,,,,,

,,,,,, 0101 ;

( )0

,,,

0

==x

ij

x

tzyxC

∂,

( )0

,,,=

= xLx

ij

x

tzyxC

∂,

( )0

,,,

0

==y

ij

y

tzyxC

∂,

Page 23: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

47

( )0

,,,=

= yLy

ij

y

tzyxC

∂,

( )0

,,,

0

==z

ij

z

tzyxC

∂,

( )0

,,,=

= zLz

ij

z

tzyxC

∂, i ≥0, j ≥0;

C00(x,y,z,0)=fC (x,y,z), Cij(x,y,z,0)=0, i ≥1, j ≥1.

Solutions of the above equations with account boundary and initial conditions could be written as

( ) ( ) ( ) ( ) ( )∑+=∞

=100

21,,,

nnCnnnnC

zyxzyx

tezcycxcFLLLLLL

tzyxC ,

where ( ) ( ) ( ) ( )∫ ∫ ∫= Φ

x y zL L L

nnnnCudvdwdwvufwcvcucF

0 0 0

,,ρ

, ( )

++−= Φ 2220

22 111exp

zyx

nCLLL

tDnteρ

π ;

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−=∞

=1 0 0 0 020 ,,,2

,,,n

t L L L

LnnnCnCnnnnC

zyx

i

x y z

TwvugvcusetezcycxcFnLLL

tzyxC τπ

( )( )

( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫−−∂

∂×

=

1 0 02

10 2,,,

n

t L

nnCnCnnnnC

zyx

i

n

x

ucetezcycxcFnLLL

dudvdwdu

wvuCvc τ

πτ

τ

( ) ( ) ( )( )

( ) ( ) ( ) ×∑−∫ ∫∂

∂×

=

12

0 0

10 2,,,,,,

nnnnnC

zyx

L Li

LnnzcycxcFn

LLLdudvdwd

v

wvuCTwvugvcvs

y z πτ

τ

( ) ( ) ( ) ( ) ( ) ( )( )

∫ ∫ ∫ ∫∂

∂−× −

t L L Li

LnnnnCnC

x y z

dudvdwdw

wvuCTwvugvsvcucete

0 0 0 0

10,,,

,,, ττ

τ , i ≥1;

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )

×∑ ∫ ∫ ∫ ∫−−=∞

=1 0 0 0 0

00

201,,,

,,,2,,,

n

t L L L

nnnCnCnnnnC

zyx

x y z

TwvuP

wvuCvcusetezcycxcFn

LLLtzyxC

γ

γ ττ

π

( )( )

( ) ( ) ( ) ( ) ( ) ×∑ ∫ −−∂

∂×

=1 02

00 2,,,

n

t

nCnCnnnnC

zyx

netezcycxcFn

LLLdudvdwd

u

wvuCwc τ

πτ

τ

( ) ( ) ( )( )( )

( )( )×∑−∫ ∫ ∫

∂×

=12

0 0 0

0000 2,,,

,,,

,,,

nnCnC

zyx

L L L

nnnteFn

LLLdudvdwd

v

wvuC

TwvuP

wvuCwcvsuc

x y z πτ

ττγ

γ

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )

( )∫ ∫ ∫ ∫

∂−×

t L L L

nnnnCnnn

x y z

dudvdwdw

wvuC

TwvuP

wvuCwsvcucezcycxc

0 0 0 0

0000,,,

,,,

,,,τ

τττ

γ

γ

;

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−=∞

=1 0 0 0 0202

2,,,

n

t L L L

nnnnCnCnnnnC

zyx

x y z

wcvcusetezcycxcFnLLL

tzyxC τπ

( ) ( )( )

( ) ( ) ( )×∑−∂

∂×

=

12

00

1

00

01

2,,,

,,,

,,,,,,

nnnnC

zyx

ycxcFLLL

dudvdwdu

wvuC

TwvuP

wvuCwvuC

πτ

τττ

γ

γ

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( )×∫ ∫ ∫ ∫

∂−×

−t L L L

nnnCnCn

x y z

v

wvuC

TwvuP

wvuCwvuCvsucetezcn

0 0 0 0

00

1

00

01

,,,

,,,

,,,,,,

ττττ

γ

γ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−−×∞

=1 0 0 02

2

n

t L L

nnnCnCnnnnC

zyx

n

x y

vcucetezcycxcFnLLL

dudvdwdwc τπ

τ

Page 24: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

48

( ) ( ) ( )( )

( ) ( ) ×∑−∫∂

∂×

=

12

0

00

1

00

01

2,,,

,,,

,,,,,,

nn

zyx

L

nxcn

LLLdudvdwd

w

wvuC

TwvuP

wvuCwvuCws

z πτ

τττ

γ

γ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫ ∫

∂−×

t L L L

nnnnCnCnnnC

x y z

u

wvuCwvuCwcvcusetezcycF

0 0 0 0

00

01

,,,,,,

τττ

( )( )

( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫−−×∞

=

1 0 02

1

00 2

,,,

,,,

n

t L

nnCnCnnnnC

zyx

x

ucetezcycxcFnLLL

dudvdwdTwvuP

wvuCτ

πτ

τγ

γ

( ) ( ) ( ) ( )( )

( )×∑−∫ ∫

∂×

=

12

0 0

00

1

00

01

2,,,

,,,

,,,,,,

nzyx

L L

nnn

LLLdudvdwd

v

wvuC

TwvuP

wvuCwvuCwcvs

y z πτ

τττ

γ

γ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

×∫ ∫ ∫ ∫−×−t L L L

nnnnCnCnnnnC

x y z

TwvuP

wvuCwvuCwsvcucetezcycxcF

0 0 0 0

1

00

01,,,

,,,,,,

γ

γ τττ

( )( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫−−

∂×

=1 0 02

00 2,,,

n

t L

nnCnCnnnnC

zyx

x

usetezcycxcFLLL

dudvdwdw

wvuCτ

πτ

τ

( ) ( ) ( )( )

( ) ( ) ( )∑ ×−∫ ∫∂

∂×

=12

0 0

0100 2,,,

,,,

,,,

nnCn

zyx

L L

nntexc

LLLdudvdwd

u

wvuC

TwvuP

wvuCwcvcn

y z πτ

ττγ

γ

( ) ( ) ( ) ( ) ( ) ( )( )

( )×∫ ∫ ∫ ∫

∂−×

t L L L

nnnnCnnC

x y z

dudvdwdv

wvuC

TwvuP

wvuCwcvsuceycF

0 0 0 0

0100 ,,,

,,,

,,,τ

τττ

γ

γ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−×∞

=1 0 0 0 02

2

n

t L L L

nnnnCnCnnnnC

zyx

n

x y z

wsvcucetezcycxcFnLLL

zcn τπ

( )( )

( )τ

ττγ

γ

dudvdwdw

wvuC

TwvuP

wvuC

∂×

,,,

,,,

,,, 0100 ;

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫ ∫−−=∞

=1 0 0 0 0211

2,,,

n

t L L L

nnnnCnCnnnnC

zyx

x y z

wcvcusetezcycxcFnLLL

tzyxC τπ

( )( )

( ) ( ) ( ) ( ) ×∑−∂

∂×

=12

01 2,,,,,,

nnCnnnnC

zyx

LtezcycxcFn

LLLdudvdwd

u

wvuCTwvug

πτ

τ

( ) ( ) ( ) ( ) ( ) ( )×−∫ ∫ ∫ ∫

∂−×

20 0 0 0

01 2,,,,,,

zyx

t L L L

LnnnnCLLL

dudvdwdv

wvuCTwvugwcvsuce

x y z πτ

ττ

( ) ( ) ( ) ( ) ( ) ( ) ( )×∑ ∫ ∫ ∫ ∫

∂−×

=1 0 0 0 0

01 ,,,,,,

n

t L L L

LnnnnCnC

x y z

dudvdwdw

wvuCTwvugwsvcuceten τ

ττ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫ ∫−−×∞

=1 0 0 02

2

n

t L L

nnnCnCnnnnC

zyx

nnnnC

x y

vcusetezcycxcFLLL

zcycxcF τπ

( ) ( )( )

( ) ( ) ( )×∑−∫∂

∂×

=12

0

1000 2,,,

,,,

,,,

nnnnC

zyx

L

nycxcFn

LLLdudvdwd

u

wvuC

TwvuP

wvuCwcn

z πτ

ττγ

γ

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( )−∫ ∫ ∫ ∫

∂−×

t L L L

nnnnCnCn

x y z

dudvdwdv

wvuC

TwvuP

wvuCwcvsucetezc

0 0 0 0

1000 ,,,

,,,

,,,τ

τττ

γ

γ

Page 25: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

49

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

×∑ ∫ ∫ ∫ ∫−−∞

=1 0 0 0 0

00

2,,,

,,,2

n

t L L L

nnnnCnCnnnnC

zyx

x y z

TwvuP

wvuCwsvcucetezcycxcFn

LLLγ

γ ττ

π

( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫−−∂

∂×

=1 0 02

10 2,,,

n

t L

nnCnCnnnnC

zyx

x

usetezcycxcFnLLL

dudvdwdw

wvuCτ

πτ

τ

( ) ( ) ( ) ( )( )

( )×∑−∫ ∫

∂×

=

12

0 0

00

1

00

10

2,,,

,,,

,,,,,,

nzyx

L L

nnn

LLLdudvdwd

u

wvuC

TwvuP

wvuCwvuCwcvc

y z πτ

τττ

γ

γ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( )×∫ ∫ ∫ ∫

∂−×

−t L L L

nnnnCnCnnnnC

x y z

v

wvuC

TwvuP

wvuCwcvsucetezcycxcF

0 0 0 0

00

1

00,,,

,,,

,,, τττ

γ

γ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑ ∫ ∫−−×∞

=1 0 0210

2,,,

n

t L

nnCnCnnnnC

zyx

x

ucetezcycxcFnLLL

dudvdwdwvuC τπ

ττ

( ) ( ) ( ) ( )( )

( )∫ ∫

∂×

−y zL L

nndudvdwd

w

wvuC

TwvuP

wvuCwvuCwsvc

0 0

00

1

00

10

,,,

,,,

,,,,,, τ

τττ

γ

γ

.

REFERENCES

[1] I.P. Stepanenko (1980). Basis of Microelectronics, Soviet Radio, Moscow.

[2] A.G. Alexenko, I.I. Shagurin (1990). Microcircuitry, Radio and communication, Moscow.

[3] Z.Yu. Gotra (1991). Technology of microelectronic devices, Radio and communication, Moscow.

[4] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin (1991). Basis of microelectronics, Radio and communica-

tion, Moscow.

[5] V.I. Lachin, N.S. Savelov (2001). Electronics, Phoenix, Rostov-na-Donu.

[6] A. Polishscuk (2004), Ultrashallow p+−n junctions in silicon: electron-beam diagnostics of sub-

surface region. Modern Electronics. 12, P. 8-11.

[7] G. Volovich, Integration of on-chip field-effect transistor switches with dopantless Si/SiGe quantum

dots for high-throughput testing (2006). Modern Electronics. 2, P. 10-17.

[8] A. Kerentsev, V. Lanin, Design and technological features of MOSFETs (2008). Power Electronics.

Issue 1. P. 34.

[9] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Litvin,

V.V. Milenin, A.V. Sachenko, Au–TiBx−n-6H-SiC Schottky barrier diodes: the features of current

flow in rectifying and nonrectifying contacts (2009). Semiconductors. Vol. 43 (7). P. 897-903.

[10] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo, High-performance InGaP/GaAs

pnp δ-doped heterojunction bipolar transistor (2009). Semiconductors. Vol. 43 (7). P. 971-974.

[11] E.I. Gol’dman, N.F. Kukharskaya, V.G. Naryshkina, G.V. Chuchueva, The manifestation of excessive

centers of the electron-hole pair generation, appeared as a result to field and thermal stresses, and their

subsequent annihilation in the dynamic current-voltage characteristics of Si-MOS-structures with the

ultrathin oxide (2011). Semiconductors. Vol. 45 (7). P. 974-979.

[12] T.Y. Peng, S.Y. Chen, L.C. Hsieh C.K. Lo, Y.W. Huang, W.C. Chien, Y.D. Yao, Impedance behavior

of spin-valve transistor (2006). J. Appl. Phys. Vol. 99 (8). P. 08H710-08H712.

[13] W. Ou-Yang, M. Weis, D. Taguchi, X. Chen, T. Manaka, M. Iwamoto, Modeling of threshold voltage

in pentacene organic field-effect transistors (2010). J. Appl. Phys. Vol. 107 (12). P. 124506-124510.

[14] J. Wang, L. Wang, L. Wang, Z. Hao, Yi Luo, A. Dempewolf, M. M ller, F. Bertram, J rgen, Christen,

An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop

origin of InGaN based light-emitting diodes (2012). J. Appl. Phys. Vol. 112 (2). P. 023107-023112.

Page 26: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

50

[15] O.V. Alexandrov, A.O. Zakhar’in, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin, Forma-

tion of donor centers after annealing of dysprosium and holmium implanted silicon (1998). Semicon-

ductors. Vol. 32 (9). P. 1029-1032.

[16] I.B. Ermolovich, V.V. Milenin, R.A. Red’ko, S.M. Red’ko, Features of recombination processes in

CdTe films, preparing at different temperature conditions and further annealing (2009). Semiconduc-

tors. Vol. 43 (8). С. 1016-1020.

[17] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi,

R.G. Gordon, Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy-

sulfide buffer layer (2013). Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905.

[18] J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes, Shal-

low acceptor complexes in p-type ZnO (2013). Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118.

[19] A.E. Zhukov, L.V. Asryan, Yu.M. Shernyakov, M.V. Maksimov, F.I. Zubov, N.V. Kryzhanovskay, K.

Yvind, E.S. Semenova, Effect of asymmetric barrier layers in the waveguide region on the temperature

characteristics of quantum-well lasers (2012). Semiconductors. Vol. 46 (8). P. 1049-1053.

[20] V.P. Konyaev, A.A. Marmalyuk, M.A. Ladugin, T.A. Bagaev, M.V. Zverkov, V.V. Krichevsky, A.A.

Padalitsa, S.M. Sapozhnikov, V.A. Simakov, Laser diodes arrays based on epitaxial integrated hetero-

structures with increased power and pulsed emission bright (2014). Semiconductors. Vol. 48 (1). P.

104-108.

[21] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors (1979). "Naukova Dumka",

Kiev.

[22] P.M. Fahey, P.B. Griffin, J.D. Plummer, point defects and dopant diffusion in silicon (1989). Rev.

Mod. Phys. Vol. 61. 2. P. 289-388.

[23] K.V. Shalimova, Physics of semiconductors (1985). Energoatomizdat, Moscow.

[24] E.L. Pankratov, Dopant Diffusion Dynamics and Optimal Diffusion Time as Influenced by Diffusion-

Coefficient Nonuniformity. Russian Microelectronics (2007). V.36 (1). P. 33-39.

[25] E.L. Pankratov, E.A. Bulaeva. Decreasing of quantity of radiation defects in an implanted-junction

rectifiers by using overlayers, Int. J. Micro-Nano Scale Transp (2012). Vol. 3 (3). P. 119-130.

[26] E.L. Pankratov, E.A. Bulaeva, Doping of materials during manufacture p-n-junctions and bipolar tran-

sistors. Analytical approaches to model technological approaches and ways of optimization of distribu-

tions of dopants. Rev. Theor. Sci. Vol. 1 (1). P. 58-82 (2013).

[27] A.N. Tikhonov, A.A. Samarskii. The mathematical physics equations (1972). Moscow, Nauka (in Rus-

sian).

[28] H.S. Carslaw, J.C. Jaeger. Conduction of heat in solids (1964). Oxford University Press.

[29] E.L. Pankratov, Redistribution of dopant during microwave annealing of a multilayer structure for

production p-n-junction (2008). J. Appl. Phys. Vol. 103 (6). P. 064320-064330.

[30] E.L. Pankratov, Redistribution of dopant during annealing of radiative defects in a multilayer structure

by laser scans for production an implanted-junction rectifiers (2008). Int. J. Nanoscience. Vol. 7 (4-5).

P. 187–197.

[31] E.L. Pankratov, Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure

by optimized laser annealing. J. Comp. Theor. Nanoscience (2010). Vol. 7 (1). P. 289-295.

[32] E.L. Pankratov, E.A. Bulaeva, Application of native inhomogeneities to increase compactness of ver-

tical field-effect transistors. J. Comp. Theor. Nanoscience (2013). Vol. 10 (4). P. 888-893.

[33] E.L. Pankratov, E.A. Bulaeva, Optimization of doping of heterostructure during manufacturing of p-i-

n-diodes. Nanoscience and Nanoengineering (2013). Vol. 1 (1). P. 7-14.

Page 27: An approach to decrease dimensions of drift

International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.5, October 2014

51

Authors

Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary

school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University:

from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra-

diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio-

physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-

structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-

rod State University of Architecture and Civil Engineering. Now E.L. Pankratov is in his Full Doctor

course in Radiophysical Department of Nizhny Novgorod State University. He has 102 published papers in

area of his researches.

Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of

village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school

“Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec-

ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she

is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in

the University. E.A. Bulaeva was a contributor of grant of President of Russia (grant_ MK-548.2010.2).

She has 50 published papers in area of her researches.