Ammoi Maths

download Ammoi Maths

of 10

Transcript of Ammoi Maths

  • 7/28/2019 Ammoi Maths

    1/10

    FACULTY OF EDUCATION AND LANGUAGE STUDIES

    SEMESTER MAY 2011

    SBMA 4403

    ELEMENTARY ANALYSIS/PENGANTAR ANALISIS

    STUDENT NAME : PUVANESVARY A/P JEGANATHAN

    MATRICULATION NUMBER : 790709055666001

    IDENTITY CARD NUMBER : 790709-05-5666

    TELEPHONE NUMBER : 0192077457

    E-MAIL : [email protected]

    LEARNING CENTRE : SHAH ALAM

  • 7/28/2019 Ammoi Maths

    2/10

    TABLE OF CONTENT

    Question 1 a ...................................................................................... 2

    Question 1 b .................................................................................... 2

    Question 1 c .................................................................................... 3

    Question 1 d .................................................................................... 4

    Question 2 .................................................................................... 6

    References ................................................................................... 7

    2

  • 7/28/2019 Ammoi Maths

    3/10

    1. Prove the following statements.

    a) 0 is an even number.

    A number is called even if it is an integer multiple of 2. Zero is an integer

    multiple of 2, namely 0 2, so zero is even

    b) Ifa is odd then a2+ a is even.

    Let a is odd. Then, a2 is also will odd.

    For example, 12 = 1

    32 = 9

    52 = 25

    When a odd number added with odd number, we obtain even number

    For example, 3 + 3 = 6

    5 + 3 = 8

    Therefore, it is proved that, if a is odd then a2

    + a is even.

    c) Square root of 3 is irrational.

    To prove that this statement is true, let us assume that is rational so that we may write

    3

  • 7/28/2019 Ammoi Maths

    4/10

    .................................................(1)

    for a and b = any two integers. We must then show that no two such integers can be found.

    We begin by squaring both sides of eq.(1):

    b

    a=3

    22

    2

    2

    3or3 abb

    a

    ==

    :haveweand2p,bathato

    even.bathen,odd

    odd

    b

    a3f

    .odd

    oddor

    even

    even

    b

    a3abovediscussedisitAs

    22

    222

    2

    2

    2

    =+

    =+==

    ==

    4

  • 7/28/2019 Ammoi Maths

    5/10

    (2m + 1)2 + (2n + 1)2 = 2p

    4m2 + 4m + 1 + 4n2 + 4n + 1 = 2p

    4m2 + 4m + 4n2 + 4n + 2 = 2p

    2m2 + 2m + 2n2 + 2n + 1 = p where p is odd

    ion!contradictaeven,bemustpso,b

    p2

    b

    2p4

    bba4

    1b

    a1

    b

    a3

    2

    2

    2

    22

    2

    2

    2

    2

    =

    =

    +

    =

    +=+

    =

    5

  • 7/28/2019 Ammoi Maths

    6/10

    Thus, the square root of 3 cannot be a rational number, so it is an irrational.

    d) If n is even and 4 n 30, then n can be written as a sum of two prime numbers.

    According Goldbach Conjeture, it is stated clearly that

    "Every even integer greater than 2 can be written as the sum of two primes"By using the statement we can prove it inductively such as below

    6 = 3 + 3

    8 = 5 + 3

    10 = 7+ 3

    .......

    30 = 23 + 7

    Therefore, it is proved that, ifn is even and 4 n 30, then n can be written as a

    Sum of two prime numbers.

    e) There exist infinitely many rational numbers between

    two rational numbers.

    6

  • 7/28/2019 Ammoi Maths

    7/10

    Question 2

    Prove that . Hence, prove that .

    We can express 2 in the following form:

    where a and b are integers with no common factors, as required by our definition of a

    rational number, as discussed above.

    numbers.rationalany twobetweennumberational

    oneleastatalwaysisthereTherefore,.irrationalalsoisnumberrationalalus

    numberirrationalanagain,Butz.aisorigin,thex tofromdistancehe

    .irrationalisz,iswhichx,toafromdistanceThereforenumber.irrationaln

    alsoisnumberrationalax)case(in thisnumberirrationalanut

    )q

    p-(x

    q

    p-xa-

    :So,aandbetween xdistancethebezet

    .q

    pformin thenumbers,rationalbotharebnandanhere

    ],b,[aIintervalin thenumberirrationalanbeet x

    n

    n

    1

    1

    1

    1n

    n

    nnn

    +

    +

    +==

    =

    Q2 Q++ 11 nn Nn

    7

  • 7/28/2019 Ammoi Maths

    8/10

    Now, the square of an even number is even, and the square of an odd number is odd.

    The square of the even number 2n is 4n2, which is clearly even, and the square of the

    odd number 2n+1 is 4n2+4n+1, which is clearly odd. With this in mind, we note that a

    must be even and hence we can write

    where c is another integer. Now, substituting this into the previous expression gives

    This shows that b is also an

    even number, and hence

    where dis yet another integer.Hence, it is prove that

    By using the same idea, we look into

    Q2

    Q++ 11 nn

    8

  • 7/28/2019 Ammoi Maths

    9/10

    ( )

    fact.followingtheprovecanwef

    completebewillproofThisrational.is1-nthathavewe

    Q,oflawsclosureby therational,arenand2sinceNext,

    rational.alsois1-n*22n1n1nhen

    rational.is1n1nthatuppose

    1.nthatuppose

    .irrationalshowneasilyiswhich,21n1nthen1,nf

    2

    22

    +=++

    ++

    >

    =++=

    9

    NnforQ1n1nthatprovedalsoisitHence,

    squares.perfect

    econsecutivobetween twis1-nthatshowsrootssquaretaking

    1,nintegersallforn1-n1)-(nsinceprecisely,More

    1.2nn-1)(nThen

    1.naslongasapartunit1thanmorespaced

    aresquareseconsecutivthatclaimthefromfollowsThis

    .irrationalis1-n

    2

    222

    22

    2

    2

    ++

    >

  • 7/28/2019 Ammoi Maths

    10/10

    Reference

    Bourbaki, N. lments de mathmatique: Algbre. Reprinted as Elements of Mathematics:

    Algebra I, Chapters 1-3. Berlin: Springer-Verlag, 1998.

    Courant, R. and Robbins, H. "The Rational Numbers." 2.1 in What Is Mathematics?: An

    Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University

    Press, pp. 52-58, 1996.

    Finch, S. R. "Powers of 3/2 Modulo One." 2.30.1 in Mathematical Constants. Cambridge,

    England: Cambridge University Press, pp. 194-199, 2003.

    Honsberger, R.More Mathematical Morsels.Washington, DC: Math. Assoc. Amer., pp. 52-53,

    1991.

    Salamin, E. and Gosper, R. W. Item 54 in Beeler, M.; Gosper, R. W.; and Schroeppel, R.

    HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 18,

    Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/number.html#item54.

    Wolfram, S.A New Kind of Science. Champaign, IL: Wolfram Media, p. 1168, 2002.

    10

    http://www.amazon.com/exec/obidos/ASIN/3540642439/ref=nosim/weisstein-20http://www.amazon.com/exec/obidos/ASIN/3540642439/ref=nosim/weisstein-20http://www.amazon.com/exec/obidos/ASIN/0195105192/ref=nosim/weisstein-20http://www.amazon.com/exec/obidos/ASIN/0195105192/ref=nosim/weisstein-20http://www.amazon.com/exec/obidos/ASIN/0521818052/ref=nosim/weisstein-20http://www.amazon.com/exec/obidos/ASIN/0883853140/ref=nosim/weisstein-20http://www.amazon.com/exec/obidos/ASIN/0883853140/ref=nosim/weisstein-20http://www.inwap.com/pdp10/hbaker/hakmem/number.html#item54http://www.amazon.com/exec/obidos/ASIN/1579550088/ref=nosim/weisstein-20http://www.amazon.com/exec/obidos/ASIN/1579550088/ref=nosim/weisstein-20http://www.wolframscience.com/nksonline/page-1168a-texthttp://www.amazon.com/exec/obidos/ASIN/0195105192/ref=nosim/weisstein-20http://www.amazon.com/exec/obidos/ASIN/0195105192/ref=nosim/weisstein-20http://www.amazon.com/exec/obidos/ASIN/0521818052/ref=nosim/weisstein-20http://www.amazon.com/exec/obidos/ASIN/0883853140/ref=nosim/weisstein-20http://www.inwap.com/pdp10/hbaker/hakmem/number.html#item54http://www.amazon.com/exec/obidos/ASIN/1579550088/ref=nosim/weisstein-20http://www.wolframscience.com/nksonline/page-1168a-texthttp://www.amazon.com/exec/obidos/ASIN/3540642439/ref=nosim/weisstein-20http://www.amazon.com/exec/obidos/ASIN/3540642439/ref=nosim/weisstein-20