Alumina Membranes

89
1 Academic year 20112012 Erasmus Mundus Master in Membrane Engineering Semester S1 Report on the sixmonth project A review of Alumina: Most abundant and productive material of the mother nature. KAYAALP Umay PAPOUTSOGLOU Dimitra January 2012 Supervisor: AYRAL Andre; [email protected] BACCHIN Patrice ; [email protected]

Transcript of Alumina Membranes

Page 1: Alumina Membranes

  1  

               

Academic  year  2011-­‐2012    

Erasmus  Mundus  Master  in  Membrane  Engineering  Semester  S1  

       

Report  on  the  six-­‐month  project      

A  review  of  Alumina:  Most  abundant  and  productive  material  of  the  

mother  nature.      

KAYAALP  Umay  PAPOUTSOGLOU  Dimitra  

 January  2012  

     

Supervisor:    

AYRAL  Andre;    [email protected]­‐montp2.fr    

BACCHIN  Patrice  ;  [email protected]­‐tlse.fr      

Page 2: Alumina Membranes

  2  

TABLE  OF  CONTENT  

1.  INTRODUCTION  ...........................................................................................................................  3  2.  ALUMINA  AS  A  MATERIAL  .......................................................................................................  4  2.1.  NOMENCLATURE  .....................................................................................................................  4  2.2.  STRUCTURE  AND  MINERALOGICAL  PROPERTIES  ........................................................  8  2.2.1.  STRUCTURE  OF  ALUMINA  PHASES  .....................................................................................................  8  2.2.2.  PSEUDOMORPHOSIS  ..............................................................................................................................  9  2.2.3.  SURFACE  AREA  OF  ALUMINA  .............................................................................................................  12  2.2.4.  POROSITY  ..............................................................................................................................................  13  2.2.5.  SORPTIVE  CAPACITY  ...........................................................................................................................  15  

2.3.  MECHANICAL  PROPERTIES  OF  ALUMINA  .....................................................................  16  2.4.  THERMAL  PROPERTIES  OF  ALUMINA  ............................................................................  20  2.5.  CHEMICAL  PROPERTIES  OF  ALUMINA  ...........................................................................  22  2.5.1.  WET  CHEMICAL  REACTIONS  OF  SINTERED  ALUMINA  ..................................................................  22  2.5.2  REACTION  OF  CHEMICAL  ELEMENTS  WITH  ALUMINA  ...................................................................  23  

1.8.  COLLOIDAL  PROPERTIES  OF  ALUMINA  .........................................................................  24  3.  ALUMINA  MEMBRANES  ..........................................................................................................  26  3.1.  INTRODUCTION  .....................................................................................................................  26  3.1  PREPERATION  OF  ALUMINA  MEMBRANES  ....................................................................  29  3.2.1.  MACROPOROUS  ALUMINA  MEMBRANE  PREPARATION  ................................................................  29  3.2.2.MESOPOROUS  ALUMINA  MEMBRANES  .............................................................................................  31  3.2.3  MICROPOROUS  ALUMINA  MEMBRANES  ...........................................................................................  35  

4.DESIGN  OF  THE  MEMBRANE  MODULES  .............................................................................  38  4.1  DIFFERENT  TYPES  OF  MODULES  ......................................................................................  38  4.1.1  ALUMINA  MEMBRANE  MODULES  .......................................................................................................  39  4.1.2.  COMMERCIALIZED  MODULES  OF  MEMBRANE  ALUMINA  ...............................................................  42  

4.2.  SEPARATION  CHARACTERISTICS  FOR  ALUMINA  MEMBRANES  .............................  45  5.  APPLICATIONS  ...........................................................................................................................  49  5.1.  CERAMIC  MEMBRANES  ........................................................................................................  49  5.2.  ALUMINA  MEMBRANES  APPLICATIONS  ........................................................................  52  5.2.1.  LIQUID  PHASE  SEPARATION  APPLICATIONS  ...............................................................................  52  5.2.2.  GAS  PHASE  SEPARATION  .................................................................................................................  63  

6.SUMMARY  AND  CONCLUSIONS  ..............................................................................................  74  APPENDIX  A  :  MEMBRANE  MATERIAL  SHEET  .....................................................................  75  APPENDIX  B:  CHEMICAL  INTEREST  OF  ALUMINA  ..............................................................  77  REFERANCES  ...................................................................................................................................  85            

Page 3: Alumina Membranes

  3  

1.  INTRODUCTION  

 Ceramists  are  not  close  agreement  as  to  the  substances   included  in  the  term  of  

‘’ceramics’’,  nor  do  they  seem  to  have  devised  as  simple,  consistent  definition  of  

the  term  that  is  entirely  satisfactory.  Kingerly  defined  it  as  ‘’the  art  and  science  of  

making  and  using  solid  articles  which  have  as  their  essential  component,  and  are  

composed   in   large   of   inorganic   nonmetallic   materials.’’   L.   Mitchell   defined  

ceramics  as  ‘’all  high-­‐temperature  chemistry  and  physics  of  nonmetallic  materials,  

and  the  techniques  of  forming  products  at  high  temperatures.’’  The  first  definition  

allows  inclusion  of  materials  having  melting  points  below  room  temperature,  as,  

for   example   ice;  while   the   second  does  not   exclude   certain   organic   substances  

that  may  been  produced  at  high  temperatures,  such  as  carbon  disulfide.  Although  

materials   of   all   kinds,   including   organic   substances,   are   involved   in   the  

preparation   of   ceramics,   it   is   believed   that   these   definitions   are   too   broad   to  

cover  the  ceramic  applications  of  alumina.  

 

The   investigation  of   alumina   as   a   ceramic  material  was  undertaken   to  provide  

information   under   the   following   specifications:   a   review   dealing  with   alumina  

both  from  a  theoretical  and  a  practical  point  of  view,  and  including  information  

on   the   nomenclature,   properties   of   alumina,   alumina   as   a  membrane  material  

and  finally  industrial  alumina  membrane  applications.    

 

The  following  information  has  been  gathered:  

• occurrence  in  nature    

• crystal  or  mineralogical  characteristics  

• mechanical,  thermal,  chemical  and  colloidal  properties.    

• alumina  membranes  fabrication,  modules  and  industrial  applications.    

 

A   general   review   tried   to   be   gathered   to   understand   deeply   about   alumina  

material  and  also  alumina  membranes.    

Page 4: Alumina Membranes

  4  

2.  ALUMINA  AS  A  MATERIAL  

2.1.  NOMENCLATURE    

 

De  Morveau   suggested   the  word   ‘alumine’   in  1786  as   the  proper  name   for   the  

basic  earth  of  alum.    This  was  Anglicized  to  ‘Alumina’  in  England  while  Germany  

‘tornerde’  is  still  used,  meaning  clay  earth.  The  term  ‘alumina’  is  presently  used  

rather  indefinitely  in  ceramic  literature  to  denote;    

1. aluminous  material  of  all  types  taken  collectively    

2. the  anhydrous  and  hydrous  aluminum  oxides  taken  indiscriminately  

3. the   calcined   or   substantially   water   free   alimunium   oxides   without  

distinguishing  the  phases  present  

4.  corundum  or  alpha  alumina,  specifically.  It  is  often  used  interchangeably  

with  the  molecular  formula  Al2O3.    

The  true  meaning  is  sometimes  hard  to  determine  from  the  context.    

 

More  than  25  alumina  solid  phases  is  defined  in  recent  years.  But  it  is  doubtful  if  

all   of   them   really   exist   or  not.   These  phases   includes,   amorphous  hydrous   and  

anhydrous   oxides,   crystalline   hydroxides   and   oxides,   and   aluminas   containing  

small   amounts   of   oxides   of   alkalies   or   alkaline   earths,   designated   as   beta  

aluminas.    

 

The   phases   found   in   the   nature,   and   few   of   artificial   types,   have   common   or  

mineralogical  names.  Most  of  them  also  are  defined  by  greek  letter  formulas.    

 

Corundum,  emery,  sapphire,  and  ruby  are  more  or  less  pure  forms  found  in  the  

nature  and  known   for  antiquity  as  abrasives  and  gem  stones.  All   consist  of   the  

the  phase  designated  alpha  alumina  (!  –  Al2O3).  Figure  1  shows  the  dehydration  

sequence  of  alumina  hydrates  in  air.    

 

Diaspore    

Another   native  mineral,   described   by   Haüy   in   1801,   was   named   ‘diaspore’   by  

him,  from  the  Greek  for  ‘scatter’  because  it  flew  apart  upon  heating.    

Page 5: Alumina Membranes

  5  

 

 

Figure  1:  Dehydration  Sequence  Of  Alumina  Hydrates  In  Air  

   

 

Gibbsite  

 

Vaquelin   in   1802   gave   its   formula   as   Al2O3   ∙  3H2O.   Dewey   named   a   well-­‐

crystallized   mineral   ‘gibbsite’   for   G.   Gibbs   an   American   mineralogist.   It  

corresponded  with  the  formula  Al(OH)3  or  Al2O3  ∙  3H2O.  It  is  the  principal  phase  

of  the  ‘trihydrate’  bauxites.  

 

Bauxites  

 

Berthier  examined  a  mineral  from  Les  Baux  in  southern  France,  containing  about  

%52  Al2O3  and  20%  bound  water,  from  which  it  was  supposed  that  the  mineral  

was  Al2O3  ∙  2H2O.  The  mineral  was  named  ‘bauxite’  by  St.  Clair  Deville.    

 

Bohemite  

 

After   X-­‐   Ray   diffraction   became   generally   used   for   analysis   of   chemical  

components  a  new  pattern  of  bauxite  is  discovered.  This  bauxite  has  %15  bound  

Page 6: Alumina Membranes

  6  

water   Al2O3   ∙  H2O.   This   component   named   ‘bohemite’   for   both   natural   and  

artificial  products.    These  phases  are  the  izomers  of  diaspore.  

 

In  USA,  the  word  ‘bauxite’  has  come  to  mean  any  highly  aluminous  ore  composed  

mainly  of  one  or  more  of  phases,  gibbsite,  boehimite  and  diaspore.    In  reality  no  

phase  corresponding  to  Al2O3  ∙  2H2O  has  been  found.    

 

In  1925,  Haber  devised  a  system  of  nomenclarature  for  trivalent  alumina  phases  

the  known.  The  ‘alpha’  series  included  diaspore  and  corundum  (alpha  alumina);  

the   ‘gamma’   series   included   hydrargillite   (gibbsite),   bauxite   (bohemite),   and  

gamma   alumina.   The   classification  was   obviously   based   on   the   end   product   of  

calcination,   but   this   is   somewhat   arbitrary   because   gamma   alumina   also  

transforms  to  alpha  alumina.    

 

Bayerite  

 

A  new  phase  is  identified  by  Böhm  in  aluminum  hydroxide  precipitates  that  had  

aged   moist   for   several   months   at   room   temperature.   The   water   content   was  

about  that  of  gibbsite,  but  the  X-­‐Ray  pattern  was  different,  indicating  an  isomer  

of   gibbsite.   This   phase   called   ‘Bayerite’   by   Fricke   in   1928   on   the   erroneous  

supposition   that   it  was  normal  product  of   the  Bayern  process.     L.  Milligan  had  

already   shown   in   1922   that   the   Bayer   product   is   predominantly   gibbsite.  

Bayerite  was  claimed  to  have  been  found  in  nature  by  Gedeon,  and  more  recently  

(1963)  by  Gross  and  Heller.    

 

The   failure   of   Haber   classification   system   to   distinguish   between   bayerite   and  

gibbsite  prompted  the  devising  of  the  Alcoa  system  of  nomenclature  (Frary).  In  

this   system,   the   choice   of   Greek   letters   was   initially   based   on   the   relative  

abundance   of   phase   in   nature.   Gibbsite   was   called   alpha   alumina   trihydrate;  

bohemite,   alpha   alumina   monohydrate;   bayerite   beta   alumina   trihydrate;   and  

diaspore,  beta  alumina  monohydrate.  Gamma  alumina  and  beta  alumina  had  the  

same  significance  as  in  the  Haber  system.    

 

Page 7: Alumina Membranes

  7  

Table  1:  Nomenclature  of  Crystalline  Aluminas    (WALTER  ,  Alumina  as  a  Ceramic  Material,  1970,  page  5)  

Mineralogical  Name  

Phase  of  Form  Name  

Symposium  (1)   Alcoa  (2)   Haber  (3)   British  (4)   French    (5)   Other  

Hydroxides  

Gibbsite  (6)                    Hydrargillite    Al(OH)3  

! −  !"!!! ∙3!!!    

 ! −  !"(!")!  

! −  !"!!! ∙3!!!    

       

Bayerite  (7)    Al(OH)3    ! −  !"!!! ∙3!!!      

!−  !"(!")!  

! −  !"!!! ∙3!!!    

       

Nordstrandite  (1)  Randomite  (8)  Bayerite  II  

(8)  

 Al(OH)3                      

Bauxite  (9)                        Al(OH)2    

Bohemite  (10)   AlOOH      ! −  !"!!! ∙!!!    

! −  !"(!")!    

 ! −  !"!!! ∙ !!!          

Diaspore     AlOOH        ! −  !"!!! ∙!!!  

! −  !"(!")!    

           

Tohdite  (11)   AlOOH                       5  !"!!! ∙ !!!  ! −  !"!!!  (12)      

Aluminas                       Rho      

    Chi     Chi         Chi    +  Gamma     Chi    +  Gamma        

    Eta   Eta       Gamma   Eta           Gamma   Gamma   Gamma   Delta   Gamma    Xi1,  Xi2  (13)                              

    Kappa   Kappa              Ioata  (17)       Kappa  +  Theta   Kappa  +  

Delta      

Corundum,  Sapphire     Alpha     Alpha     Alpha     Alpha     Alpha        

    AlO         Al2O        M2O  ∙  11  Al2O3  (14)        M2O  ∙  6  Al2O3  (15)        MO  ∙  6  Al2O3  

Zeta  Alumina      Li2O  ∙  5  Al2O3    (1)  Ginsberg,  Huttig,  Strunk-­‐Lichtenberg  (2)  Edwards,  Frary,  Stumpf,  et  al.    (3)  Haber,  Weiser,  and  Milligan  (4)  Rooksby,  Day,  and  Hill    (5)  Thibon,  Tertian,  and  Papee  (6)  Dewey  (7)Fricke  (8)Teter,  Gring,  and  Keith  (9)Böhm  

(10)de  Lapparent  (11)Yamaguchi  (12)Steinheil  (13)Cowley  (14)Rankin  and  Merven  (15)Scholder  (16)Barlett  (17)P.A.  Foster  

 

Page 8: Alumina Membranes

  8  

Standardization  of   the  nomenclature   for  aluminas   is  very  desirable  particularly  

to   avoid   the   confusion   in   the   hydrous   phases.   Gingsberg   reported   the  

conclusions   of   a   symposium   held   in   1957,   in   which   an   attempt   was   made   to  

devise  a  universal  standard  nomenclature.  Some  features  of  the  proposed  system  

are   improvements,   for   example   the   substitution   of   ‘hydroxide’   instead   of  

‘hydrate’,   namely,   aluminum   trihydroxide   for   alumina   trihydrate;   aluminum  

oxide  hydroxide  for  alumina  trihydrate;  aluminum  oxide  hydroxide  for  alumina  

monohydrate.  Also,  it  was  agree  to  use  the  Alcoa  nomenclature  for  the  transition  

aluminas,  but  to  designate  some  of  them  as  ‘forms’  rather  than  ‘phases’,  to  imply  

the   present   uncertainty   about   them.   The   confusion   in   naming   the   hydroxide  

phases  has  not  been  resolved,  however.  

2.2.  STRUCTURE  AND  MINERALOGICAL  PROPERTIES    

 The  remarkable  range  of  properties  of  the  hydrous  and  non  hydrous  crystalline  

properties  of  alumina  has  been  interesting  for  researchers,  and  its  structure  has  

been  induced  much  scientific  curiosity.  

 

Examples   of   these   structural   peculiarities   are   the   factors   determining   the  

phenomena  of   transition  phases,   and   the   exceptional   strength   and  hardness  of  

corundum.   Besides   the   ideal   crystal   structures,   which   are   a   rarity   in   actual  

ceramic   systems,   defect   crystal   structure   and   microstructure   are   significant.  

Gross   structure   beyond   the   crystal   lattice   beyond   the   crystal   lattice   is   also   of  

ceramic  interest.    

 

2.2.1.  Structure  of  Alumina  Phases  

 Crystal   structure   is   the   main   factor   controls   the   properties   of   aluminas.   In  

general,   the   phases   of   most   significance   in   alumina   are   those   produced   by  

pseudomorphic  dehydration.    

 

The   crystal   structures   of   alumina   phases   are   shown   in   Table   2.   Mineralogical  

properties  of  the  various  phases  are  shown  in  Table  3.      

Page 9: Alumina Membranes

  9  

2.2.2.  Pseudomorphosis      Achenbach   (1931),   Damerell   (1932),   and   Teritan   (1950)   have   shown   that   the  

dehydration  of  gibbsite  crystals  is  pseudomorphic,  that  is,  external  shape  of  the  

crystals  is  retained  and  there  is  an  orientation  relationship  of  the  crystal  axes  of  

the   new   phases   to   those   of   the   original.   The   crystals   lose   transparency   and  

smoothness   upon   heating,   and   fine-­‐grained   fibers   develop   parallel   to   the  

hexagonal  surface.    Void  space  resulting  from  the  loss  of  water  from  the  gibbsite  

and  increasing  density  of  the  transition  phases  is  distributed  in  microporosity  of  

very  high  surface  area  in  the  porous  skeleton    (Weitbrecht  and  Fricke).    

 

Pseudomorphosis  is  of  considerable  importance  because  of   its  effect  on  surface  

area   of   the   intermediate   phase   structures,   and   on   crystal   size   and   size  

distribution  of  the  fully  calcined  aluminas  for  ceramic  forming  processes.    

 

With  the  basis  of  alumina  structure,  all  the  transition  aluminas  have  oxygen  ions  

in  approximately  cubic  close  packing.  The  differences  in  their  patterns  represent  

changes  in  intensities  of  reflections  resulting  from  differences  in  distribution  of  

the  aluminum  ions.  The   initial  cationic  disorder  of   the   low-­‐temperature  phases  

depends  upon  the  source  of  the  alumina.  The  transitions  become  more  ordered  

with  increasing  heat  treatment.      

 

 

 

 

 

 

 

 

 

 

 

 

Page 10: Alumina Membranes

  10  

Table  2:  Crystal  Structure  of  the  Aluminas    (WALTER  ,  Alumina  as  a  Ceramic  Material,  1970,  page  30)  

 

Phase   Formula     Crystal  System     Space    

Group    

Mole-­‐cules    

Unit  Cell  Parameters  Angle     Ref.  Angstroms  

a   b   c  Hydrated  Aluminas  Gibbsite   ! −  !"!!! ∙ 3!!!   Monoclinic    !!!ℎ   4   8.641   5.07   9.72       1  

Bayerite  ! −  !"!!! ∙3!!!       Monoclinic   !!!ℎ  

2   4.716   8.679   5.06       3  Nordstrandite   !"!!! ∙ 3!!!       Monoclinic       8   8.63   5.01   19.12       4  Bohemite   ! −  !"!!! ∙  !!!   Orthorhombic      !!!"ℎ   2   2.868   12.227   3.7       5,12  Diaspore   ! −  !"!!! ∙ !!!       Orthorhombic    !!!"ℎ   2   4.396   9.426   2.844       5  Transition  Aluminas    

Chi       Cubic       10   7.95               9  Eta       Cubic  (Spinel)    !!!   10   7.9               9,8  Gamma       Tetragonal           7.95   7.95   7.79       6,7  Delta       Tetragonal       32   7.967   7.967   23.47       10,11  Iota       Orthorhombic       4   7.73   7.78   2.92       9  Theta       Monoclinic    !!!ℎ   4   5.63   2.95   11.86       13  Kappa       Orthorhombic       32   8.49   12.73   13.96       9  Corundum         ! −  !"!!!   Rhombohedral    !!!!   2   4.758       12.991       2       Al2O   Cubic           4.98               20       !"#   ∙  !"!!!   Cubic  (Spinel)      !!!       7.915               22  Beta  Aluminas  (21)       !"!!   ∙  11!"!!!   Hexagonal    !!!ℎ   1   5.58           22.45   14       !!!   ∙  11!"!!!   Hexagonal    !!!ℎ   1   5.58           22.67   14       !"#   ∙  11!"!!!   Hexagonal    !!!ℎ   1   5.56           22.55   16       !"#   ∙  6!"!!!   Hexagonal    !!!ℎ   2   5.54           21.83   15       !"#   ∙  6!"!!!   Hexagonal    !!!ℎ   2   5.56           21.95   15       !"#   ∙  6!"#   Hexagonal    !!!ℎ   2   5.58           22.67   17  Zeta  Alumina          !"!!   ∙  11!"!!!   Cubic    !!!   2   7.9               18,19  

 (1)  Megav    (2)  Swanson,  Coo  Isaacs,                &  Evans  (3)  Unmack  (4)  Lippens  (5)  Swanson  &  Fuyat  (6)  Saalfeld  (7)  Brindey  &  Nakahira    (8)  Verwey  

(9)  Stumpf  (10)  Teritan  &  Papee  (11)  Rooymans  (12)  Reichertz  &  Yost  (13)  Kohn    (14)  Beevers  &  Brouhult    (15)  Laderqvist  (16)  Bragg  (17)  Adelsköld  

(18)  Kordes  (19)  Braun    (20)  Hoch  &  Johnson    (21)  Scholder  &  Mansmann  (22)  Filonenko,  Larov,                    Andreeva  &  Prevszer  

 

 

 

 

Page 11: Alumina Membranes

  11  

Table  3  :  Mineralogical  Properties  of  the  Alumina  (WALTER  ,  Alumina  as  a  Ceramic  Material,  1970,  page  31)  

 

Phase    Index  of  Refraction  nd   Cleav-­‐

erge  Mohs  Hard  

Micro  Hard  

kg/mm2  

Dens.  Measured  

g/ml  Ref.  

!      

Hydrated  Aluminas  Gibbsite   1.568   1.568   1.587   (100)   2.5  -­‐3.5       2.42   1,2  Bayerite   1.583*                       2.53   3,2  Bohemite   1.649   1.659   1.665    (010)   3.5  -­‐  4       3.01   4,5,14  Diaspore   1.702   1.722   1.75    (010)   6.5  -­‐  7       3.44   1,14  

            *                        Transition  Aluminas    

Chi                           3.0   19  Eta           1.59  -­‐1.65               2.5-­‐3.6   6  

Gamma                           3.2   20  Delta                           3.2  

 Iota           1.604               3.71   7  Theta           1.66-­‐1.67               3.56   6  Kappa           1.67-­‐1.69               3.3   6  

Corundum      Al2O   1.7604   1.7686  

 none   9.0   2150   3.96-­‐3.98   21,15  

 AlO    Al2O3  

   1.77  -­‐  1.80  

   2070   3.84   13  

Beta  Aluminas    

Sodium  Beta    1.635  -­‐1.650   1.676  

         8,10,18  

Potassium  Beta  

1.642   1.675            

17,18  

1.640   1.668              Magnesium  

Beta     1.629   1.665-­‐1.680            

16,8  Calcium  Beta     1.752   1.759  

                1.754   1.763          

3.731   11,12  Barium  Beta     1.694   1.702  

       3.69   10  

Lithium  Zeta        

1.735        

3.61   9  *Average         Estimate    (1)  Dana  (2)  Roth  (3)  Montoro    (4)  Ervin    (5)  Bonshtedt                Kupletskkaya  (6)  Thibon  (7)  Foster,  P.  A.  

(8)  Rankin  &  Mervin    (9)  Kordes    (10)  Toropov    (11)  Filonenko  (12)  Wisnyi  (13)  Filonenko,  Larov,                      Andreeva  &  Pevzner  (14)  Fricke  &  Severin    

(15)  Coble    (16)  Bragg,  Gottfried,  West  (17)  Kato  &  Yamauchi  (18)  Beevers  &  Brohult  (19)  Stumpf    (20)  Gingsberg  (21)  Biltz  &  Lemke        

     

 

 

! !

! !

!

!!!

!

!

Page 12: Alumina Membranes

  12  

2.2.3.  Surface  Area  of  Alumina      

Alumina  is  widely  used  as  a  catalyst  or  catalyst  support  in  many  heterogeneous  

catalytic  processes  owing  to  its  high  surface  area,  superior  chemical  activity  and  

low  cost.  In  order  to  prepare  the  thermal-­‐stable  alumina  with  high  surface  area  

and  large  pore  volume,  two  ways  have  been  adopted.  One  is  that  some  additives  

including   silica,   phosphoric   oxide,   barium   oxide,   cerium   oxide   and   lanthanum  

oxide   have   been   added   to   alumina.     But   the   presence   of   these   additives   will  

modify   the  original  properties.  The  other  way   is  using  some  new  methods  and  

techniques,  such  as  sol-­‐gel  method  and  supercritical  drying  techniques.    

 

Table   4   lists   the   specific   surface   areas,   pore   volumes,   and   pore   diameters  

measured   for   samples   of   Al2O3.   The   results   show   that   the   alumina   samples  

prepared  using  β-­‐cyclodextrin  template  had  the  higher  surface  areas  (124-­‐484  

m2/g),   larger   pore   volumes   (0.7-­‐1.27   mL/g)   and   more   thermal   stability   than  

samples  prepared  without  using  β-­‐cyclodextrin.  The  sample  A-­‐773  exhibits   the  

highest   SBET   (484   m2/g)   among   the   alumina   samples   calcined   at   different  

temperatures.  When  the  temperature  exceeds  773  OK,  the  SBET  decreases  rapidly,  

but   the   pore   volume   changes   a   little.   After   calcination   at   1273   OK,   the   A-­‐1273  

maintains  surface  area  of  124.2  m2/g  and  pore  volume  of  0.70  mL/g.  However,  

B-­‐773   and   B-­‐1273   have   the   surface   areas   of   348   and   98.3  m2/g,   respectively.  

The  pore  volume  of  B-­‐1273  is  only  0.54  mL/g.    

Table  4:  Specific surface areas, pore volumes, and pore diameters measured for samples of Al2O3  

Sample     SBET  (m2/g)   Pore  Volume  (mL/g)   Pore  Diameter  (A)  

A-­‐773   484.34   0.98   60.85  A-­‐923   285.27   1.27   24.41  A-­‐1073   220.86   0.87   20.49  A-­‐1273   124.22   0.7   72.23  B-­‐773   348.01   1.08   24.54  B-­‐923   228.28   1.14   28.15  B-­‐1073   201.2   0.74   24.67  B-­‐1273   98.3   0.54   72.16  

 

Harris  and  Sing  study  on  gels   formed  by  hydrolysis  of  aluminum   isopropoxide.  

1100   m2/g   of   surface   area   is   detected.   Storage   of   these   unstable   gels   in   the  

Page 13: Alumina Membranes

  13  

presence   of   water   vapor   caused   loos   in   surface   area   to   about   500   m2/g.   The  

adsorption   isotherms   of   nitrogen,   determined   at   -­‐196   OC   on   the   outgassed  

products  were  of   the  reversible  S-­‐type,  characteristic  of  physical  adsorption  on  

nonporous   solids.   Gels   that   have   been   dehydrated   at   room   temperature  

approximately  to  the  formula  Al2    .  3H2O  showed  no  X-­‐ray  evidence  of  crystalline  

structure.    

 

2.2.4.  Porosity    Porosity,   and   special   case,   permeability   significantly   affect   the   properties   of  

alumina   ceramics,   and   in   a  wide   range   of  magnitude.   Porosity   is   generated   in  

sintered  alumina  structures   for  various  reasons,   some  of  which  are   to   improve  

permeability  to  gases  and  liquids   for  porous  diaphragms  and  diffuser  plates,   to  

increase   the   thermal   insulation   of   refractories,   and   to   improve   the   fuel  

combustion   in   radiant   heaters.   Volatile   or   combustible   burn-­‐outs   (sawdust,  

naphthalene)   have   been   used   to   generate   pores.   Gas   generators   include:  

hydrogen  peroxide  and  aluminum  powder  with  acids  or  alkalies.    

 

Calcining  mixtures  of  ground  and  unground  Bayer  alumina  at  high  temperatures  

can   develop   gross   porosity   beyond   50%   by   volume.   Uniformly   distributed  

porosity   is  attained  by   ‘bisque’   firing   fine-­‐ground  alumina   in   the  undersintered  

range  1000  to  1400  OC.    

 

Barrett,   Joyner   and   Hallenda   applied   adsorption   -­‐   desorption   on   sintered  

alumina  to  have  further  information  about  pore  shape  and  pore  distribution.  In  

literature   five  general   types  of  hysteresis   loops  are  defined,   from  which   fifteen  

capillary   shapes   could   be   deduced.   The   adsorption   isotherms   of   the   activated  

forms   of   alumina   fit   the   three  main   types,   A,   B   and   E,   all   of  which   have   steep  

desorption  curves.  Type  A  has  a  steep  sorption  branch,  type  B  a  gradual  sorption  

branch,  with  a  broad  hysteresis  range,  and  type  E  a  gradual  sorption  branch  with  

a  narrow  hysteresis  range.  The  pore  shapes  are  mainly  open  and  closed  tubular  

capillaries,   ink   bottle   shapes,   and   slit   shapes.     In   figure   2   the   pore   size  

distribution  curves  were  derived  from  the  N2  physisorption  isotherms  according  

to   the   B-­‐J-­‐H   method,   Figure   2   a   and   b   show,   respectively,   the   pore   size  

Page 14: Alumina Membranes

  14  

distributions  for  the  commercial  Al2O3;  and  the  ceramic  foams  obtained  from  the  

same  aluminas.  

 

Figure  2:  a)  N2  physisorption  isotherm  of  commercial  -­‐alumina;  (b)  Pore  size  distribution  of  commercial  -­‐alumina;  (c)  N2  physisorption  isotherm  of  commercial  -­‐alumina  ceramic  foam;  (d)  Pore  size  distribution  of  commercial  ?-­‐alumina  ceramic  foam.

 

   

Hayes,   Budworth,   and   Roberts;   investigated   the   permeability   of   sintered  

aluminum   tubes   (total   porosity   4   to   9   %,   purity   99.3   to   99.8%   Al2O3).   These  

tubes  at  first  were  impermeable  to  oxygen,  nitrogen  and  argon  at  temperatures  

below   1500   OC.   At   1500   to   1750   OC,   the   specimens   showed   appreciable  

permeation  to  oxygen,  presumably  by  a  surface  diffusion  process.    The  diffusion  

coefficient  was  about  100  !"2/sec.  very  slight  or  no  permeation  was   found   for  

nitrogen,  and  none  for  argon.  After  continued  exposure  for  100  hours  at  1700  OC,  

permeation   by   normal   channel-­‐flow   developed   suddenly   and   swamped   the  

earlier   phenomena.   The   permeation   of   nitrogen   through   hot-­‐pressed   sintered  

alumina  (4  to  14%  total  porosity)  was  predominantly  by  Knudsen  flow.    

 

Page 15: Alumina Membranes

  15  

2.2.5.  Sorptive  Capacity  

 

The  strong  desiccating  action  of  activated  alumina  has  been  known  at  least  since  

1879.  The  properties  that  make  the  activated  aluminas  particularly  suitable  for  

desiccant   use   are:   the   ability   to   develop  high   surface   area   during   formation   of  

dehydration;   a   high   degree   of   chemical   inertness;   resistance   to   softening,  

swelling,   and   disintegration   when   immersed   in   water   or   other   liquids;   high  

resistance  to  shock  and  abrasion;  and  the  ability  to  return  to  the  original  highly  

adsorptive  from  by  a  suitable  thermal  regenerative  treatment.      

 

Alumina   is   also   use   for   special   type   of   adsorption   called   chromatography,   in  

which  the  identification  and  separation  of  adsorbed  ions  are  usually  based  on  a  

visual,   spatial   order   of   adsorption.   Typical   properties   of   desiccant,   commercial  

alumina  samples  are  shown  in  Table  5.    

 

A  partial  list  of  gasses  and  liquids  that  can  be  dried  by  activated  alumina  (Alcoa  

brochure,  June  1,  1967)  includes  the  following.    

 

Gasses    

 

Acetylene,   air,   ammonia,   argon,   carbon   dioxide,   chlorine,   cracked   gas,   ethane,  

ethylene,   freon,   furnace   gas,   helium,   hydrogen,   hydrogen   chloride,   hydrogen  

sulfide,  methane,   natural   gas,   nitrogen,   oxygen,   propane,   propylene,   and   sulfur  

dioxide.  

 

Liquids  

 

Benzene,   butadiene,   butane,   butene,   butyl   acetate,   carbon   tetrachloride,   chloro  

benzene,  cyclohexane,  ethyl  acetate,   freon,  gasoline,  heptane,  n  hexane,   jet   fuel,  

kerosene,   lubricating   oils,   naphtha,   nitrobenzene,   pentane,   pipe-­‐line   products,  

propane,  propylene,  styrene,  toluene,  transformer  oils,  vegetable  oils  and  xylene.  

 

 

Page 16: Alumina Membranes

  16  

 Table  5:  Typical  Properties  of  Desiccant,  Chromatographic  And  Catalytic  Aluminas    (WALTER  ,  Alumina  as  a  Ceramic  Material,  1970,  page  39)  

 

    F-­‐1   H-­‐151   F-­‐20   T-­‐71   F-­‐110   F-­‐7  Typical  properties                              Al2O3  %   92.00   90.00   92.00   99.5  +   92-­‐94   84.00    Na2O  %   0.90   1.60   0.90   0.01   0.08   0.90    Fe2O3  %   0.08   0.13   0.08   0.06   0.03   0.08    SiO2  %   0.09   2.20   0.09   0.04   0.01   0.09    Loss  on  ignition  (1100  OC)  %   6.50   6.00   6.20   0.00   6.0-­‐8.0   12.10    SO3  %               0.09            CaO  %               0.06            Nickel  Formate  %                  

 2.50  

 Form   Granular   Ball   Granular   Granular     Ball   Granular      Surface  area  m2/g   210.00   390.00   210.00   0.50   180-­‐280        Bulk  density,  loose  kg  /m3   832.9620   816.9435   929.0730   1217.4060   800.9250   832.9620    Bulk  density,  packed,  kg/m3   881.0175   848.9805   1089.2580   1361.5725   881.0175   881.0175    Spesific  Gravity   3.30   3.1-­‐3.3   3.30                Static  sorption  at  60%  RH   14-­‐16   22  -­‐  25                    Crushing  Strenght   55.00   75.00                    Pore  volume  ml/gm               0.15-­‐0.20   0.38        pH           9.00                Sieve  Analysis                              On  80  mesh  %           2  max                Through  270  mesh  %           5  max              

2.3.  MECHANICAL  PROPERTIES  OF  ALUMINA      Alumina  has  remarkable  mechanical  properties  in  comparison  with  conventional  

porcelains  and  other  single  oxide  ceramics.  None  of   the   likely   refractory  single  

oxide   contenders   approaches   pure   sintered   alumina   in   bending   and   tensile  

strength,  and  is  exceed  only  by  stabilized  ZrO2  in  compressive  strength.  Many  if  

the   advantageous   strength   characteristics   are   retained   to   lesser   extent   by   the  

high  and  low  alumina  porcelains.    

 

The   interest   in  mechanical   properties   stems   from   several   applications   such   as  

possible  substitution  of  alumina  ceramics  for  refractory  metal  parts  in  air-­‐bone  

equipment,  or  fabrication  forms  in  which  high  mechanical  strength,  membrane,  

hardness  or  thermal  shock  resistance  is  important.    

Page 17: Alumina Membranes

  17  

The   mechanical   tests   of   particular   significance   include:   flexural,   compressive,  

tensile   torsional,   and   impact   strengths;   modulus   of   elasticity   and   rigidity;  

Poisson’s  ratio  and  bulk  modulus;  fatigue,  creep,  internal  friction,  thermal  shock  

resistance,  and  flaw  detection;  and  hardness.    

 

Structural  applications  of  aluminum  oxide  in  the  high  temperature  field  require  

knowledge   of   the   effect   of   temperature   on   mechanical   properties.   Data   on  

mechanical  properties  of  alumina   is  collected   in  Table  6  and  7.  The  data   in   the  

table  include  information  taken  from  ceramic  literature  as  well  as  average  values  

for   commercial   production,   taken   from   the   standards   of   alumina   ceramic  

manufacturers  association  and  the  literature  of  several  studies.    

 

Table   6   is   belonging   to   typical   properties   and   specifications   of   commercial  

grades  of   3   kinds  of   alumina.  Hydrated   aluminas,   prepared   in   a  modern  Bayer  

plant,   is   indicated   the   specimen   of   C.   And   specimen   A   belongs   to   calcined  

aluminas,  which  specimen  T  indicates  tabular  alumina.  

 

Data  on  the  mechanical  properties  of  alumina  is  collected  in  Table  7.  The  data  in  

the   table   include   information   taken   from   the   ceramic   literature,   as   well   as  

average   values   for   commercial   production,   taken   from   the   standarts   of   the  

Alumina  Ceramic  Manufacturers  Association.  

Table  6:    Typical  Properties  and  Spesifications  of  Hydrated  Aluminas-­‐Series  C-­‐30  (WALTER  ,  Alumina  as  a  Ceramic  Material,  1970,  page  21)  

Typical  Properties     C   A   T  Al2O3  %   65   98.9   99.5+  

SiO2  %   0.01   0.02   0.06  

Fe2O3  %   0.003   0.03   0.06  

Na2O  %   0.16   0.45   0.20  

Moisture  (110  OC)  %   0.04   1.0    Specific  Gravity   2.42   3.6-­‐3.8   3.65  -­‐3.8  Sieve  Analysis        on  100  mesh  %   0-­‐1   4-­‐15    on  200  mesh  %   5-­‐10   50-­‐75    on  325  mesh  %   30-­‐55   88-­‐98    

through  270  mesh  %   45-­‐70   2-­‐12            

Page 18: Alumina Membranes

  18  

Table  7:  Mechanical  Properties  of  Alpha  Alumina  Oxide  (WALTER  ,  Alumina  as  a  Ceramic  Material,  1970,  page  45)  

Bending  Strength  (Modulus  of  Rupture)                 Temp  OC    MPa  

(1)  

Sapphire  Flame-­‐fused,  

oriented  0O  between  optic  axis  and  bar  axis  a  

25   680  600   180  

1000   300  

Sapphire  Flame-­‐fused,  oriented  45  O    between  optic  axis  and    

bar  axis  a  ,b  

25   480  600   313  

1000   567  

Ruby    Flame-­‐fused,  oriented  45  O  

between  optic  axis  and    bar  axis  a  ,b  

25   333  600   220  

1000   567  Polycrystalline  Alumina      

S25OC=142500  e-­‐11.83PG-­‐0.60+3.33P  

(18)  S1200OC=73000e

-­‐11.33PG-­‐0.60+3.33P  Polycrystalline  Alumina  (99.9%  Al2O3  98%  theoretical  density,  hot  pressed)                                                                                                                      (2)  

Crystal  Size  (microns)   1  –  2   10  –  15   40  –  50    Temperature  OC  

25  OC     447   320   233  400  OC   347   247   227  1000  OC   327   247   207  1350  OC   247   107   93  

Commercial  Grades  of  Polycrystalline  Alumina    Nominal  %  Al2O3   %99.9  (5)   %99  (3)   %94  (3)   %85  (3)  

25  OC   413   347   307   307  980  OC  

 153   113   80  

Compressive  Strength  (MPa)       Sapphire   Polycrystalline        Temperature  OC        100  %    Al2O3  (7)    99%  Al2O3  (3)    94  %  Al2O3  (3)    85  %  Al2O3  (3)  

25  OC   295   3733   2000   2000   1600  25  OC   3300   2840  

     400  OC    

1420        800  OC  

 1233  

     1000  OC    

853        1200  OC  

 473  

     1400  OC    

237        1600  OC  

 47  

     Hardness  on  the  Mohs  Scale   9        

               

Page 19: Alumina Membranes

  19  

Table  7  continued    

Tensile  Strength    MPa  

Temperature  OC  

Single  Crystal   Filaments   Polycrystalline  Orientation  45  O  to  optic  axis  

(9)  Uncoated  (10)   Coated  (10)   (e)   94  %  Al2O3  (3)   85  %  Al2O3  (3)  

30  OC   473   467   1400   251   173   117  300  OC   350           243      800  OC   350           227      1050  OC               225      1100  OC   587           209      1200  OC               123   63   57  1400  OC               28      

 Modulus  of  Elasticity    (E)  X  108  MPa                                E  (polycrystalline)=59.49  X  106  e  -­‐3.95P,  where  P  =  fractional  pore  volume     (8)       Single  Crystal    (12)   Polycrystalline        

Temperature  OC   Sapphire  Ruby  

(0.75%Cr2O3)  

(11)   94  %  Al2O3  (3)   85  %  Al2O3  (3)  

                   

25  OC   35.07   36.07   39.53   26.80   21.27  500  OC   32.07   33.00   38.18  

   1000  OC   29.00   30.07   36.59      1200  OC   27.93   29.00   35.77      Elastic  constants   Elastic  Compliances      

(  X108  MPa)   (  X108  MPa)        (13)                      

48.03   2.35  48.16   2.17  14.27   6.94  15.82   -­‐0.72  10.72   -­‐0.36  -­‐2.27   0.49  

Modulus  of  Ridity(G)  X  108  MPa           Polycrsytallined  Alumina    

    Hot-­‐Pressed   Cold-­‐Pressed   94  %  Al2O3  (3)   85  %  Al2O3  (3)  

Temperature  OC   Sapphire  (13)   Zero  Porosity  (14)   Zero  Porosity  (14)   Density  3.62  (3)      Density  3.42  (3)  

25  OC   15.53  (Reuss)   15.51   15.93   11.33   8.67  

  16.05  (Vogit)            

a  Loading  rate  94.7  MPa/minute;  b  minimum  creep  at  45O;  c  zero  porosity;  d  less  than  5%  porosity;  e  rupture  time  less  than  one  minute.    (1)  Wacthman  &Maxwell  (1959)    (2)  Springs  Mitchell  &  Vasilos  (1964)    (3)  Coors  Prorcelain  Data    Sheet  0.001,  August  1964    (4)  Diamonite  Products  Manufacturing  Company  (1963)    (5)  Frenchtown  Porcelain  Co.,  Bull.  5462      (7)  Ryshewitch  (1941)    (9)  Wachtman  &  Maxwell  (1954)    (8)  Knudsen    

(10)  Berezhkova  &Rozhanskii    (11)  Crandall,  Chung,  &  Gray  (1961)    (12)  Wachtman  &Lam  (1959)    (13)  Wahtman,  Tefft,  Lam  &  Stinchfield  (1960)    (14)  Lang  (1960)    (15)  Ryshewitch  (1951)    (16)  Spriggs  &  Brisette    (17)  Kingery  &  Pappis    (18)  Passmore,  Spriggs  &  Vasilos  (1965)  

Page 20: Alumina Membranes

  20  

2.4.  THERMAL  PROPERTIES  OF  ALUMINA    Chemical  and  thermal  stability,  relatively  good  strength,  thermal  and  electrical  

insulation  characteristics  combined  with  availability  in  abundance  have  made  

alumina  attractive  for  engineering  applications.    

 

Thermal  properties  of  alumina  are  listed  below  on  the  Table    8.  

Table  8:  Thermal  properties  of  alumina.  (WALTER  ,  Alumina  as  a  Ceramic  Material,  1970,  page  64)  

Melting  Point   !Al2O3   2051.0    ±  9.7  ℃   (1)  Boiling  Point     !Al2O3   3530  ℃  (3800  ±  200  OK)   (2)  Vapor  Pressure     T  OK   Atm  

           

(2)                                  

                                           

2309   8.7  X  10  -­‐6  2325   1.03  X  10  -­‐6  2370   1.66  X  10  -­‐6  2393   1.68  X  10  -­‐6  2399   2.15  X  10  -­‐6  2459   3.78  X  10  -­‐6  2478   5.81  X  10  -­‐6  2487   9.1  X  10  -­‐6  2545   2  X  10  -­‐6  2565   1.29  X  10  -­‐6  2605   1.91  X  10  -­‐6  

 

Heat  of  Formation  at  298.16  OK  (kcal/mole)  

Entrophy  at  298.16  OK  (kcal/mole)      

 !  Al2O3∙  3H2O   -­‐612.8   33.51   (5,3)  ! Al2O3∙  3H2O   -­‐609.4  

 (4)  

 Amorphous     -­‐304.2    

(3)    !  Al2O3∙  H2O   -­‐417.8   23.15   (4)    ! Al2O3∙  H2O  

 8.43   (3)  

 !  Al2O3   -­‐400.4   12.16   (7,6)    AlO   -­‐138   48.967   (2,14)    Al2O   -­‐248   59.75   (2,14)    Enthalpy  (E+PV)  in  kcal/mole      !  Al2O3  (∆!!"#.!"  °!

! )        0.03550922  ! − 4.0884   10!!  !! − 11.23206  !"!!"  ! + 19.63341                                                                (a)   (9)  

   0.035549846  ! − 3.9085   10!!  !! − 11.2306  !"!!"  ! + 17.23778                                                                (b)   (16)  

 0.03031602  ! + 8.3979   10!!  !! − 2.81406  !  10!/  ! − 12.87764                                                                (c)   (15)  

Specific  Heat  (cal/g  K)        !  Al2O3∙  3H2O    0.2694  +  6.43  X    10!!  t                                                                                                        (d)   (8)  

    0.2855  at  25  ℃   (9)  

    0.348264  –  8.019  X  10-­‐6  T  –  47.8423/T                                                        (d,e)   (9)  

 

Page 21: Alumina Membranes

  21  

Table  8:  continued  

!  Al2O3  OK   cal/g  OK   OK   cal/g  OK    400   0.22545   900   0.28789  

(9)  500   0.24857   1000   0.2924  600   0.26372   1100   0.29595  700   0.27431   1200   0.29877  800   0.28205        

         

1318   0.2783   1787   0.4196  (10)  

1510   0.3364      1660   0.3814   2575   0.468   (11)  

Thermal  Expansion,  Linear  (X  10  -­‐6  /OC)    !  Al2O3  Temperature  Range   Single  Crystal  (12)   Polycrystalline  

                                           

OC   Orientation  O0   C-­‐axis  90O   (12)  -­‐273.16  to  0   1.95   1.65   1.89  -­‐73  to  0   4.39   3.75   4.1  0  to  127   6.26   5.51   6.03  327   7.31   6.52   6.93  527   7.96   7.15   7.5  927   8.65   7.8   8.08  1127   8.84   7.96   8.25  1327   8.98   8.12   8.39  1527   9.08   8.2   8.49  1727   9.18   8.3   8.58  

Thermal  Conductivity  (cal/sec  cm  O  C)  

 

 Temperature  OC   cal/sec  cm  O  C      -­‐263   3  

(13)  

-­‐253   9  -­‐233   14  -­‐223   12  25   0.086  100   0.069  300   0.038  500   0.025  700   0.018  900   0.015  1100   0.014  1300   0.014  1500   0.013  1700   0.014  1900   0.015  

Page 22: Alumina Membranes

  22  

(a)  Range  400  OK  to  1200  OK;  (b)  Range  678  OK  to  1330  OK;  (c)  Range  1290  OK  1673  OK;  (d)  T=  OKelvin;  (e)  Range  of  equation  400  

to  1200  OK.  

(1)  Schneider,  Nat.  Bur.  Stds.  Private  communication,  Nov  ,  1968  (2)  Brewer  &  Searcy  (3)  Rossini,  Wagman,  et.  Al.  N.  B.  S.  Circ.  

500,  1952  (4)  Russel  et.  Al.  (1955)  (5)  Barany  &  Kelley  (6)  Kerr,  Johnson,  &  Hallett  (7)  Mah  (8)  Roth,  Wirths,  &  Berendt  (1942)  

(9)Furukawa  et.  Al.  (10)    Shomate  &Naylor    

(11)  Sheindlin(1964)  (12)  Wachtman,  Scuderi,  &  Cleek  (13)Coors  Porcelain  Co.  (AD  995)    

(14)  Panyushkin  &Maltsev  (15)  Banashek,  Sokolov,  Rubinchik  &  Fomin  (16)  Sokolov,  Banashek,  &  Rubinc  

 

2.5.  CHEMICAL  PROPERTIES  OF  ALUMINA      

Chemical  reactions  of  alumina  of  general  ceramic  interest  include  the  resistance  

to   attack   of   sintered   alumina   by   various   reagents,   particularly   at   high  

temperatures.  High  temperature  chemistry  includes  those  chemical  phenomena,  

which  occur  above  1000  OC.  Such  temperatures  are  attained  by  combustion,  by  

electrical   heating,   or   by   chemical   explosions   and   nuclear   reactions   (Margrave,  

1962).     Some   example   studies   are   listed   below   due   to   understand   further  

chemical  behavior  of  alumina.    

 2.5.1.  Wet  Chemical  Reactions  of  Sintered  Alumina    In  aqueous  solution,  aluminum  oxide  exhibits  an  amphoteric  behavior.  It  can  be  

expressed  by  the  following  equilibra:    

 

!!!! + 3  !!!    ↔ !"(!")! ↔ !"!!! + !!!!  

 

Impermeable  alumina  has  been  marked  resistance  to  wet  chemical  corrosion.  As  

a   rule   the   lower  phases  of   alumina   and   the  hydrous   aluminas   show   increasing  

chemical   reactivity   as   they   decrease   in   density.   Early   experiments   on   the  

resistance   of   sintered   alumina   to   attract   were   intended   to   demonstrate   its  

suitability   as   a   container,   crucibles,   etc.,   for   thermal   reactions   (Winzer,   1932).  

Concentrated  H2SO4,  HCl,  HNO3,  H3PO4,  and  20%  NaOH  dissolved  no  more  than  

0.02%  of  a  30  X  35  mm  crucible  within  six  hours,  as  indicated  by  loss  in  weight  of  

the   crucible.   This   is   not   necessarily   indicative   of   chemical   inertness,   as   for  

example;   phosphoric   acid   readily   reacts   even  with   coarsely   crystalline   tabular  

alumina   to   form   slowly   soluble   phosphate   bonds   at   temperatures   below   the  

Page 23: Alumina Membranes

  23  

boiling  point  of  the  acid.  Dawihl  and  Klingler  (1967)  state  that  sintered  alumina  

containing   3%   silicates   is   far   more   resistant   to   corrosion   by   HCl,   HNO3,   and  

H2SO4   in   concentrations   from  10   to   95%  acid   and  up   to   100   OC   than   titanium,  

cast  silicon  and  Cr  –  Ni  steels.    

 

Finely   divided   alumina   is   rapidly   dissolved   by   HF,   hot   concentrated   H2SO4,  

mixtures   of   these   acids,   ammonium   fluoride,   molten   alkali   bisulfates   or  

pyrosulfates,  and  by  concentrated  HCl,  especially  when  under  pressure.  All  these  

reagents  have  been  used   to  dissolve  alumina   in  analytical  procedures.  Sintered  

alumina   dissolves   in   concentrated   H2SO4   faster   than   some   high   alumina  

porcelains   containing   clay   binders   (85%   Al2O3).   Karpacheva   and   Rozen   found  

that  the  densest  sintered  alumina  reacts  with  heavy  water,  H218O,  the  following  

reaction  rates,  as  percent  reaction,  within  80  minutes,  were  observed.  

 

Temp  °C   200   400   600   900  Rate  (%  80  min)   20   30   50   97    

Hot   water   solutions   of   the   free   alkali   hydroxides   and   carbonates   cause  

perceptible   reaction,   the   rate   being   correspondingly   faster   and   higher  

temperatures  and  under  pressure.    

 

2.5.2  Reaction  of  Chemical  Elements  with  Alumina      

Some   reactions   of   interest   between   the   chemical   elements   and   alumina   are  

shown   in   the  Table  9.  Reaction  of  molten  alumina  with  some  refractory  metals  

and  allots  are  included.  These  are  presented  in  alphabetical  order,  in  general,  for  

convenience   of   reference.     Detailed   information   is   given   with   references   in  

Appendix   A   related   to   element   interactions   with   alumina.   For   references   see  

Appendix  A.    

 

 

 

 

 

Page 24: Alumina Membranes

  24  

Table  9:  Interest  Between  The  Chemical  Elements  And  Alumina    

 

Aggressively  attraction     Molten  Lithium    

No  Attraction    

                   Antimony    

Attraction    

Potassium     Arsenic    Carbon     Beryllium    Florine     Chlorine    Copper     Cobalt    

Limited  attraction    

BaO     Gallium    SRO   Lead    

Bishmut     Mercury    Cerium     Nitrogen    

Chromium     Phosphorus    Iron     Silver    

Manganse     Sulfur    Molybdenum     Selenium    

Nickel     Tellurium    Niobium     Tin    Palladium     Uranium    Platinum    

   Tantalum                        Titanium    

   Zirconium        Tungusten        Sodium        

1.8.  COLLOIDAL  PROPERTIES  OF  ALUMINA      Surface   of   pure   alumina   is   defined   alkaline.  By   electrophoretic  methods  Fricke  

and  Keefer  (1949)  determined  the  isoelectric  point  of  zero  point  charge  (zpc)  of  

gamma   alumina   to   be   at   9.0   pH,   that   of   amorphous   Al(OH)3   at   pH   9.4,   that  

gibbsite   at   pH   9.20,   and   that   of   bohemite   at   pH   9.40   to   9.45.   The   potential  

determining   ions   were   considered   to   be   H+   and   OH-­‐,   which   enter   into  

electrochemical   reaction   at   the   surface   in   the   case   of   aluminum   oxide.   The  

essential  part  of  the  surface  reaction  schematically  is  as  follows:    

OHH (+)+H2O

H3O+

! "## OH OH $

! "## O($)+H2O  

                 Positive  Surface                                            Uncharged  surface                                                    Negative  Surface    

 

Isoelectric  point  of  hydrated  alumina  is  listed  in  Table  10:  

Page 25: Alumina Membranes

  25  

 

Table    10  :  isoelectric  point  of  hydrated  alumina  (O’Conor  1956)  

 

Aging  Conditions  Precipitation     Fresh  Preparation     Rapid  Aging  by  Heating     Suspension  Aged  4  Months    Excess  Alkali     5.08   6.79   5.78  Equivalent  Alkali   6.63   7.28   7.06  Deficent  Alkali     7.29   7.43   7.32    

Zeta  potential  of  natural  corundum  reported  positive  in  water  17-­‐20  OC,  but  it  

changes  to  negative  on  heating  to  1000  OC.  (O’Conor  1956)  

 

The  interaction  between  the  liquid  and  the  surface  can  be  estimated  by  contact  

angle  (q)  measurements.  The  details  of  the  interactions  between  the  surface  and  

the  solvents  were  explored  by  analysis  of   the  effect  the  properties  of   the   liquid  

on   varying   the   equilibrium   contact   angle   with   water   (!!")   with   the   different  

anodic  alumina  surfaces.    These  values  were  determined  from  the  intersection  of  

the   fits   for  advancing  and  receding  angles  versus  contact  angle  hysteresis  with  

ordinate   at  ! q=0,   one   finds   the   equilibrium   angle  !!" .  For   different   samples  

results  vary  between  62.6  -­‐  73.3.  Results  obtained  Wihelmy  Method.  (Redon  et.  

al.,  2005)  

 

 

                           

Page 26: Alumina Membranes

  26  

3.  ALUMINA  MEMBRANES  

3.1.  INTRODUCTION      In   recent   years   there   has   been   a   growing   interest   in   utilizing   inorganic  

membranes   to   address   a   variety   of   separation   problems   in   many   industries  

Various   inorganic   membranes   made   from   metals,   inorganic   polymers   and  

ceramics   have   been   proposed   for   liquid   and   gas   separation   applications.  

Membrane   technologies   play   an   increasingly   important   role   in   pollution  

prevention,  resource  recovery  and  waste  treatment  activities.  Due   in   large  part  

to   cost   considerations,   polymeric   membranes   dominate   these   applications,  

however,   the   use   of   polymeric  membranes   in   separations   involving   aggressive  

materials   such   as   many   organic   solvents,   acids,   bases   and   oxidants   is   often  

limited  by   the   tolerance   of   the   polymeric  material   to   extreme   conditions.     The  

interest   in   utilizing   such   membranes   in   separations   has   increased   since   the  

advent   of   consistent-­‐quality,   commercially   available   ceramic   membranes   with  

narrow  pore  size  distributions.      

 

Ceramic   membranes   are   noted   for   their   excellent   mechanical   strength   and  

tolerance   to   solvents,   as  well   as   pH,   oxidation,   and   temperature   extremes.   For  

example,   they   can   be   used   at   significantly   higher   temperatures,   have   better  

structural   stability   without   the   problems   of   swelling   or   compaction,   generally  

can   withstand   more   harsh   chemical   environments,   are   not   subjected   to  

microbiological  attack,  and  can  be  backflushed,  steam  sterilized  or  autoclaved.      

 

An   ideal   ceramic  membrane  must   be   highly   selective,   permeable   and   durable.  

For  aqueous  applications,  or  aqueous/organic  separations  it  is  desirable  for  the  

ceramic  to  be  hydrophilic  to  maximize  flow  and  minimize  fouling.  The  membrane  

selectivity  is  primarily  dependent  upon  the  pore  size  distribution;  the  narrower  

the   pores   size   distribution,   the   more   selective   the   membrane.   Mechanical  

integrity   is,   enhanced   in   such   applications   by   slip-­‐casting   a   relatively   thin  

selective   membrane   onto   a   thicker,   more   permeable   support   yielding   an  

asymmetric  membrane.  

Page 27: Alumina Membranes

  27  

The  former  forms  of  dense  (or  nonporous)  membranes  of  palladium  or  its  alloys,  

silver   and   zirconia   have   shown   to   be   permeable   only   to   certain   gases   (e.g.,  

hydrogen   and   oxygen).   These   materials   are   used   in   sensors,   electrodes   and  

coatings.  Their  industrial  use  as  a  separation  tool,  however,  is  limited  primarily  

by   low   permeability   compared   to   microporous   metal   or   ceramic   membranes.  

Currently,   microporous   stainless   steel,   silver   and   ceramic  membranes   such   as  

alumina,  zirconia  and  glass  are  available  commercially.  In  Table  11  the  selected  

commercial   alumina   membranes   are   listed.   Data   collected   from   web   based  

information.  Among  the  ceramic  membranes,  alumina   is  gaining  acceptance   for  

liquid   phase   separations.   Like   zirconia   membranes,   alumina   membranes   for  

liquid   phase   separations   came   to   commercial   fruition   from   uranium   isotope  

enrichment  work.  (Hsieh, Bhave, and Fleming, 1988)

Table  11  :  Selected  commercial  Alumina  Membranes      

Manufacturer     Trade  Name     Application     Membrane  Material    

Support  Material    

Membrane  pore  

diameter    

Membrane  support  

configuration    

Alcoa  /  SCT   Membralox   UF      ! −  !"!!        !  Al2O3   40-­‐100  !   Tube  and  multichannel  element  

        MF      !  Al2O3        !  Al2O3     0.2-­‐5  µ m  

Norton     Ceraflo   MF        !  Al2O3        !  Al2O3   0.2-­‐1µ m   Tube  

NGK         MF   Al2O3      Al2O3   0.2-­‐5µ m   Tube  and  Plate  

Alcan/Anotec   Anopore   UF   Al2O3     Al2O3     250  !  Disk    

        MF   Al2O3      Al2O3   0.2µ m  

 

Alumina membranes are constantly growing area. In the Figure 3, it can be

seen that, the publication numbers are highly increasing parallel with the

membrane research especially during recent years.

This data is collected from sciencedirect.com.

Page 28: Alumina Membranes

  28  

Figure  3  :  Number  of  publications  on  membranes  and  alumina  membranes    based  on  years.    

 

   

 

The  main  reasons  why  alumina  is  still  trending  research  topic  can  be  explained  

by  following  reasons.  During  the  last  several  decades,  many  investigations  have  

been   focused   on   porous   anodic   alumina   (PAA)   due   to   its   benefits   of   tunable  

nanopore  diameter  and  long-­‐range  ordered  feature  of  the  porous  nanochannels  

in  macroscopic  domain.  The  pore  diameter  of  the  PAA  nanochannel  can  precisely  

be   controlled   from   a   few   nanometers   to   several   hundreds   of   nanometers   by  

applying   regarding   electrolyte,   voltage   (or   current),   and   reaction   temperature  

during   the   electrochemical   anodization   reaction   of   aluminum   substrate.  

Moreover,   reaction   time   provides   a   tunability   in   the   thickness   of   the   porous  

nanochannels  from  a  hundred  of  nanometers  to  a  hundred  of  micrometers.  Such  

easy  control  ability  of  the  pore  diameter  and  the  thickness  makes  the  PAA  one  of  

the  interesting  materials,  which  are  frequently  being  applied  in  nanoscience.  So  

In  the  first  figure  publications  

on   alumina   membranes   is  

evaluated.    

 

Second   figure   evaluates   the  

trend   of   membrane  

publications  during  years.    

 

It   can   be   concluded   that;  

trends  of  alumina  membranes  

 

Second   figure   evaluates   the  

trend   of   membrane  

publications  during  years.    

 

It   can   be   concluded   that;  

trends  of  alumina  membranes  

are   rising   correlated   with  

general   trends   with  

membranes.   Alumina  

membranes   are   promising  

and   developing   area   in  

membrane  society.    

Page 29: Alumina Membranes

  29  

far,   the   studies   to   utilize   the   PAA   have   been   performed   in   a   wide   range   of  

research   fields   such   as   nanomaterial   design,   molecular   sieving,   photonic   and  

optical  device,  and  catalysis.    

3.1  PREPERATION  OF  ALUMINA  MEMBRANES        3.2.1.  Macroporous  Alumina  Membrane  Preparation      

Porous   ceramic   membranes   with   pore   size   ranging   from   0.1   to   50   mm   and  

porosity   above   about   40%   are   used   for   filtration   (e.g.,   hot   gas   filtration),  

diffusion   (e.g.,   waste   water   treatment),   dispersion   rolls,   inkpads   for  

fingerprinting   and   numerous   other   applications.   In   particular,   filtration   is  

important  for  the  petrochemical,  mining  and  chemical  industries.  

The   anodizing   of   pure   aluminum   in   various   acidic   electrolytes   has   attracted  

considerable   attention   in   recent   years   since   it   opens   up   the   possibility   of  

preparing   films   with   well-­‐controlled,   uniform   pores   from   tens   to   several  

hundreds   of   nanometers   in   diameter.   The   basic   cell   structure   containing  

cylindrical  pores  has  long  been  known  and  methods  for  preparing  regular  pore  

arrangements  in  a  hexagonal  pattern  with  interpore  distances  of  between  50  nm  

and  500  nm  have  been  reported.  The  preparation  of  regular  pore  arrays  typically  

involves  electrolytic  polishing  and  multiple  anodising  steps  or  even  mechanical  

pre-­‐texturing.   As-­‐prepared   porous   anodic   alumina   (PAA)   membranes   are  

amorphous   to   X-­‐ray   diffraction   (XRD).   Their   chemical   composition   is   not  

stoichiometric  Al2O3  but  incorporates  a  considerable  quantity  of  anion  impurities  

and   hydroxyl   groups   incorporated   from   the   electrolyte   into   the   alumina  

structure  or  bound  to  the  alumina  surface.    (Kirchner,  et.  al)    

PAA   has   proved   to   be   useful   for   fabricating   many   materials,   especially   as   a  

template  for  the  synthesis  of  metallic  or  semiconductor  nanometer  -­‐scaled  wires  

and  particles.  After  chemical  functionalizing,  PAA  membranes  can  be  utilized  for  

catalytic  or  optical  purposes.  Further,  the  porous  film  itself  may  be  employed  for  

filtration,  gas  separation  or  as  a  photonic  crystal.  Because  it  is  a  ceramic  oxide,  

Page 30: Alumina Membranes

  30  

PAA   has   considerable   potential   in   high-­‐temperature   applications,   although  

severe  problems  can  occur  when  certain  types  of  PAA  membranes  are  heated.  

 

Macroporous   alumina   membranes   also   can   be   made   from   particles   or  

discontinuous   fibers   by   the   use   of   a   binder   or   by   sintering.   The   sintering   of  

ceramic  particles  is  perhaps  the  simplest  approach  to  forming  a  porous  ceramic  

filter,  however,  the  sintering  of  bulk  ceramics  is  a  very  energy  expensive  process  

due  to  the  high  temperatures  required.  The  pore  size  is  controlled  by  the  starting  

particle   size,   sintering   time  and   temperature.  This  method   is   generally  used   to  

produce  alumina  microfiltration  filters,  which  contain  larger  pores  and  supports  

for  ultrafiltration  membranes,  which  contain  smaller  pores.    (Avci  et.  al.  )  

 

Binders  are  most  commonly  in  the  form  of  fine  particle  dispersions  (colloid).  The  

silica   colloid   is   an   example.   After   application   by   wet   forming   (as   in   paper  

making),   drying   and   appropriate   heat   treatment   is   needed.   The   binder  

technology   is   central   to   the   technology   of   membrane   fabrication.   A   binder   is  

necessary  to  hold  the  ceramic  particles  or  fibers  together  to  form  a  membrane.  It  

must   be   used   in   a   sufficient   quantity   in   order   for   the   membrane   to   have  

acceptable   mechanical   strength.   However,   it   must   not   block   the   pores   in   the  

membrane,  as  is  the  case  if  it  is  used  excessively.  Thus,  an  effective  binder  should  

be   able   to   bind   the   particles   or   fibers   together   and   result   in   a   mechanically  

strong  membrane,  even  when  it   is  used   in  a  very  small  proportion.   In  addition,  

the  binder  must  be  able  to  withstand  high  temperatures,  as  encountered  in  hot  

gas  filtration.  

 

Silica and vitreous glass are widely used binders in the refractory and ceramic

industry. It is often used in the form of an aqueous dispersion. The silica colloid is

particularly attractive due to the high temperature resistance of silica compared to

vitreous glass and the good binder dispersion enabled by the small particle size of the

silica in the colloid. The average size of the silica particles in the colloid can range

from under 10 nm to over 80 nm. The silica binder is easy to use, but it tends to fill

the open or continuous porosity of the filter membrane.

Page 31: Alumina Membranes

  31  

Phosphate has been utilized as a binder in the refractory industry for many years.

Pirogov et al. used a phosphoric acid (H3PO4) binder in a mullite-corundum body in

their study to determine the optimum content of graphite and SiC additives. Birchall

et al. studied the mechanical properties of an unsintered SiC compact bonded by

aluminum phosphate (AlPO4) glass. Toy and Whittemore evaluated the reactivities of

several calcined aluminas with phosphoric acid and demonstrated that a glassy AlPO4

phase and aluminum metaphosphate (Al(PO3)3) are effective bonding phases.

 

3.2.2.Mesoporous  Alumina  Membranes    

Of   the   present   technologies,   sol–gel   is   the   best   method   for   making   ceramic  

ultrafiltration   membranes.   However,   the   pore   size   is   generally   limited   to   the  

sizes   of   the   ceramic   precursor   particles   prior   to   sintering.   For   sol–gels,   the  

particle   size   distribution   is   difficult   to   control,   and   they   must   be   used  

immediately  after  preparation  to  avoid  aggregation  or  precipitation.  (Johns  et.  al)  

Commercially   available   membranes   are   currently   ! -­‐Al2O3   membranes   are  

currently   thermally   stabilized  at  650   OC,  with   a  mean  pore   size   equal   to  5  nm.  

Such  membranes  can  be  used  for  Nanofiltration  of  aqueous  solutions  containing  

inorganic   salts   or   amino   acids.   They   can   also   be   used   for   gas   permeation  

applications.  However  these  membranes  present  a  rather  low  chemical  stability  

in  aqueous  media  at  very  high  pH  values.  More  over,   their   structural  evolution  

has  to  be  taken  into  account  for  high  temperature  applications.    (Ayral)  

Sol-­‐gel  process  can  be  applied  generally;  

• Solution  must  be  prepared  An  example  of  Boehmite  (!  -­‐AlOOH)  sol  from  

an  inorganic  precursor  was  prepared  as  in  shown  figure  4.    

• Pretreatment   alumina   supports   (synthesized   or   provided).   Heating,   or  

solution  applications.    

• Membrane  solution  contacts  with  support.    

• Penetration   of   the   solution   into   the   voids   of   the   support   occurs   by  

capillary  action.    

• The  support  was  then  shaken  to  remove  any  excess  solution,  and  dried  at  

room  temperature.    

Page 32: Alumina Membranes

  32  

• The  coated  support  was  heated  up  to  600-­‐1000  OC  step  by  step  and  held  

remained  in  temperature  range  for  stabilization.      

• Multiple  coatings  were  obtained  by  treating  a  previously  coated  filter.  

 

 

It  was  reported  the  unsupported  membrane  was  obtained  by  dying  the  sol  layer:    

!"#$%  ! − !"##$  !"#  !"#$%&

 !ℎ!"  ! − !"##$  !"#  !"#$%  !"#$%&  

!ℎ!"   ! − !"##$  !"#  !"#$%    !"#$%&

!ℎ!"  !"#$!  ! − !"##$  !"#$%"&  !"#$%    !!"#℃!  !!"#$%!"&

 ! − !!!!!  !"#!$$%&'()  !"!#$%&"  

the   sol   layer  was   formed  by  dipping   the   layer  was  dried  at   room   temperature,  

the  drying  step  removes  excess  water,  cracks  formed  easily  during  drying  step.    

 

Fig.4.  Preparation  procedure  of  boehmite  sol    

 

                                                               

In  order  to  obtain  the  Al2O3  membrane  without  crack,  a  method,  rapid  gelation  

processing   for   preparation  of   gel   layer   can  be  used.  The   sols   of  ! − !"##$  are  

atomized  firstly  then  sprayed  onto  a  substrate.  The  gel  layer  was  obtained  from  

sols  directly.  No  crack  was  observed.    

Page 33: Alumina Membranes

  33  

Figure  5  is  the  schematic  diagram  of  the  rapid  gelation  processing.  The  sols  are  

atomizing   by   a   high-­‐velocity   gas,   and   sprayed   into   the   substrate   (glass   or  

ceramics  plate  coated  with  cellulose  acetate  film.  After  drying,  the  resulting  gel  is  

placed  in  acetone  to  dissolve  the  cellulose  acetate  and  to  obtain  the  unsupported  

gel   film).   The   0.1-­‐   200  µm   of   thickness   of   the   membrane   can   be   obtained  

without  cracking  at  conventional  drying  rate.  When  the  thickness  of  membrane  

is  higher  than  200  ~ m,  cracking  can  be  prevented  at  controlled  drying  rate.  

The  transparent  boehmite  gel  membranes  obtained  by  rapid  gelation  were  fired  

at  a  temperature  (>350°C)  to  form  ! -­‐alumina  membrane.  

Figure  5:  Schematic  drawing  of  the  rapid  gelation  processing,  1  -­‐  nozzle,  2  -­‐  atomizing  sol  and  3  -­‐substrate.  

 

                                                             

Mesoporous  γ-­‐alumina  membranes  are  formed  by  dip-­‐coating  a  porous  substrate  

in   a   Boehmite   (γ-­‐AlOOH)   precursor   sol,   will   be   treated   by   heat   and   sintering  

steps.     The   quality   and   properties   of   the  membrane   depend   on   the   dispersion  

rheology  and  quality  of  the  Boehmite  sol  and  the  dip-­‐coating  process  as  such.    A  

high   quality   Boehmite   sol   is   prepared   by   hydrolysis   and   condensation   of   an  

aluminum   alkoxide:   ATSB   ([C4H9O]3Al),   followed   by   one   or   more   purification  

µ

Page 34: Alumina Membranes

  34  

steps.    Five  steps  in  total  are  necessary  for  a  single  layer  mesoporous  γ-­‐alumina  

membrane  preparation:    

 

1.  Boehmite  sol  preparation    

2.  Boehmite  sol  purification  

3.  Dip-­‐coating  sol  preparation    

4.  Dip-­‐coating  procedure    

5.  Heat  treatment/sintering  

 

In  the  Figure  6  an  example  of  dip  coating  process  is  shown.    

 

Figure    6:  Filter  ring  assembly  for  mesh  filtering:  top  filter  ring  (left),  bottom  filter  ring  (middle)  and  assembly  diagram  with  nylon  mesh  (right).    The  thickness  of  the  top  filter  clamp  ring  can  be  increased  to  increase  the  filtration  volume.    Currently  it  can  hold  ~10  ml.  

In   laboratory   scale   experiments   to   the   synthesis   of   mesoporous   alumina  

membranes   using   slip-­‐casting   technique   has   been   tried.     Catalytic  membranes  

with   precise   active   layer  width   and   location  were   prepared   by   sequential   slip  

casting   of   Pt/Al   and   alumina   sols.  Different   distributions   of   catalyst  within   the  

membrane  can  be  easily  obtained  by  varying  the  thickness  of  the  slip-­‐cast  layers  

as  well  as  their  arrangement.  The  layer  widths  are  controlled  by  the  slip-­‐casting  

parameters,   including   slip-­‐casting   time,   alumina   content   and   particle   size.   The  

catalyst   loading   and   dispersion   of   the   active   layer   can   be   controlled   precisely.  

The   effects   of   sintering   temperature   (600-­‐1200°C)   on   the   membrane's   pore  

Page 35: Alumina Membranes

  35  

structure,  morphology,   phase   structure,   surface   area   and   gas   permeability   are  

observed.  (  Yeung  et.  al;  1996)  

 

3.2.3  Microporous  Alumina  Membranes  

 In  the  slipcasting  method,  a  porous  support  is  usually  made  first  by  conventional  

ceramic   processing   techniques   to   provide   rigid   structure   with   relatively   large  

pore   size   for   slip  deposition.   Since  particle   size  directly   related  with  pore   size,  

the   slip   used,   as   the   membrane   precursor   needs   to   contain   well-­‐dispersed  

particles  of  uniform  size.  Depending  on  the  desired  pore  size  of  the  membrane,  

the   membrane   precursor   particles   may   be   prepared   by   precipitation,  

classification,  sol-­‐gel  method,  etc.  In  the  sol-­‐gel  techniques,  ultrafine  particles  of  

a  few  nm  in  diameter  can  be  prepared  by  polycondensation  or  redox  reactions  of  

aluminum  salts  or  hydrolysis  and  condensation  of  aluminum  alkoxides.  

 

After   treatment   with   a   peptizing   agent   such   as   an   acid   and   optionally   with   a  

viscosity  modifier,  the  slip  is  deposited  on  the  porous  support  by  the  dipping  or  

slipcasting  procedure.  This  procedure   for   filtration  based  on  capillary  pressure  

drop   created   by   the   contact   of   the   slip  with   the   support.   (Leenaars,   Burggraaf  

1985)  This  pressure  drop  forces  the  dispersion  medium  (e.g  water  to   flow  into  

the   dry   pores   of   the   support   while   the   slip   particles   are   retained   and  

concentrated  at  the  surface  forming  a  thin  membrane.  The  membrane  precursor  

is   then   dried   and   calcined   to   provide   the   required   pore   size   for   specific  

applications   and   the  needed  bonding  between   the  membrane   and   the   support.  

These   steps   must   be   done   with   a   great   sensibility   to   avoid   cracks,   which   can  

occur   due   to   shrinkage   upon   drying   and/or   calcining.   (Hsieh,   Bhave,   and  

Fleming,  1988)  

 

The   slipcasting   method   is   commonly   used   for   making   commercial   alumina  

membranes.   Method   can   be   replied   to   organize   intermediate   layers   between  

thin,   permeable,   selective   membrane   and   the   thick,   porous   support,   which  

provides   the   needed   mechanical   strength.   T   Thus,   alumina   membranes,   like  

many   other   porous   inorganic  membranes,   are   composite   in   nature.   The   cross-­‐

Page 36: Alumina Membranes

  36  

section  of  a  multi-­‐layered  alumina  membrane  composite  can  be  exemplified  by  

the  scanning  electron  micrograph  of  Figure  7.  In  general,  the  selective  membrane  

layer  has  a  thickness  of  2-­‐10  !m.  This  thickness  is  a  trade-­‐off  between  high  flux  

and  mechanical  stability.  The  intermediate  layers  are  generally  10-­‐20,  !m  thick.  

The  bulk   support   constitutes   the  majority  of   the  pore  volume  and   thickness.   If  

the  membrane  precursor  particles  are  so   fine  that  they  penetrate  the  relatively  

large   pores   in   the   support,   the   permeability   of   the   membrane/sup   port  

composite  will  decrease  due  to  partial  or  complete  blockage  of  the  pores  in  the  

support.  To  prevent  fine  particles  from  penetrating  into  the  support,  one  or  more  

intermediate  layers  of  graded  particle  size  are  used.  

Figure   7:   Cross-­‐sectional   scanning   electron   micrograph   of   a   three-­‐layered   alumina  membrane/support  composite  (pore  diameter  of  0.2,  0.8  and  10  μm,  respectively,  in  each  layer)    

   

The   ability   to   consistently   produce   high   quality   alumina   membranes   on   a  

commercial  scale  has  been  the  key  to  wider  acceptance  of  ceramic  membranes  as  

a  separation  tool.  The  surface  morphology  of  a  high  quality  alumina  membrane,  

shown  in  Figure  8,  displays  uniform  particle  size.    

 

 

 

 

 

Page 37: Alumina Membranes

  37  

Figure  8:  Top-­‐view  scanning  electron  micrograph  of  an  alumina  membrane  (pore  diameter  of    0.2  !m)  

 

 

Typically,  membranes  and  supports  have  a  porosity  of  30-­‐60%  by  volume.  This  

range  provides  a  good  compromise  between  permeability  and  strength.  

 

Membrane  science  has  a   leading  role   in   innovative  processes  and  is  considered  

one  of   the  main   strategic   axes  of   research  activities   in   all   developed   countries.  

Advanced   technology  programs   in   the  USA  or   Japan   involve   them,  and  with  an  

annual   growth   rate   of   10   to   20  %,   and   a   total   world  market   above   10   billion  

Euros  around  2010,  membranes  are  likely  to  become  more  and  more  important  

in   the   future.   Besides   flat   membranes   as   motivated   by   literature,   anisotropic  

membranes   consist   of   an   extremely   thin   surface   layer   supported   on   a   much  

thicker,  porous  substructure.    

 

The   surface   layer   and   its   substructure  may  be   formed   in   a   single   operation   or  

separately.   Multi   layer   membranes   and   their   production   will   be   motivated   in  

next  chapter.    

 

 

 

 

 

 

Page 38: Alumina Membranes

  38  

4.DESIGN  OF  THE  MEMBRANE  MODULES  

 

The   separation   science   and   technology   using   all   the   kinds   of   different  

membranes  is  highly  influenced  by  the  membrane  module  configuration  as  far  as  

the  efficiency  of  a  membrane  process  depends  on  the  design  of   its  module.  The  

cost   reduction   of   membrane   module   has   led   to   the   commercialization   of  

membrane  process  some  decades  before  depends  on  the  sort  of  application  and  

the   different   materials   used.   In   practice,   the   commercial   available   membrane  

modules   are   assembled   in   units   consisting   usually   of   several   membranes,  

sometimes  from  many  thousands  of  them.    

4.1  DIFFERENT  TYPES  OF  MODULES      

Currently,  four  main  types  of  membranes  modules  are  in  the  market:  (a)  planar,  

(b)   spiral,   (c)   tubular   (d)   hollow   fibers   modules   and   (e)   honeycomb.   The  

modules  are  closely  related  to  the  geometry  of  the  membranes  and  therefore  of  

the  materials.  Each  commercial  module  is  consisted  of  a  number  of  membranes,  

placed   in  different  ways.  The  structure  of  membrane  can  be  (a)  symmetric,   (b)  

anisotropic   and   (c)   composite   and   according   to   the   sort   of   use,   also   two  main  

categories   can   be   distinguished:   (a)   vibrating   membrane   and   (b)   submersible  

membranes.  Besides,  in  terms  of  geometry,  two  types  of  different  geometry  can  

exist:  (a)  planar  and  (b)  tubular  [Remigy,  2007].  From  these  basic  configurations,  

many   other   secondary   modes   can   also   occur   such   as   vibrating   hollow   fiber  

modules  and  many  others.    

In  Table  12,  main  parameters  of  membrane  modules  are  gathered.  The  Table  1  is  

presented  in  “Filtration  Membranaire”  published  by  CNRS  in  2007  and  it  is  only  

representative   for   actual   membrane   technology   trends.   All   the   information  

concerning  membrane   technology  needs   frequent  updating  because  membrane  

engineering  is  a  state-­‐of-­‐the-­‐art  research  and  market  field.    

 

Page 39: Alumina Membranes

  39  

 

Table  12  Comparison  of  performances  for  different  modules  and  membranes  [Remigy,  2007]  

Different  perfomance  of  membranes  modules  

Geometry   Planar   Spiral   Tubular   Hollow  

fibers  

Cost  of  inventissement  

(U$$/m2,  2000)  

50  to  200   5  to  100   50  to  200   5  to  20  

Energy  cost   Moyen     Medium   Important   Low  

Hydraulic  diameter   1  to  5   0,8  to  1,2   12  to  20   0,1  to  1  

Comptability   100  to  400   300  to  1000   10  to  300   1000  to  

15000  

Membranes  replacement   Membrane  by  

membrane  

Entire  

module  

Tube  by  

tube  

Entire  

module  

Pretreatment   Moyen     Medium   Low   Medium  

(entire  

filtration  

internal/exte

rnal)  

Medium  to  

low  

(external/int

ernal)    

Cleaning   Good   Difficult  to  

medium  

Excellent   Medium  

Material   All  the  materials   Polymers   All  the  

materials  

Polymer  

 

4.1.1  Alumina  membrane  modules    

Alumina  membranes  characterized  as  inorganic,  ceramic  membranes  are  usually  

fabricated   in   tubular   or   less   often   planar  module,   composite   or   anisotropic,   in  

some   cases   immerged,   monolith,   disk   mode.   On   the   other   side,   vibrant   or  

immerged  modules  in  hollow  fibers  and  planar  or  spiral  geometry  are  commonly  

polymer   (organic)   membranes   modes.     The   most   recent   trend   appeared   in  

alumina  membrane  market   is  honeycomb  module  which  combines  some  of   the  

most  important  advantages  of  previous  modes.  

Page 40: Alumina Membranes

  40  

Planar  module:  In  general,  membranes  of  planar  module  are  less  met  in  current  

market   trends   and   represent   either   older   membrane   systems   either   pilot   or  

patent  scale  applications.  They  are  based  on  conventional  filter  press  design  and  

membrane  feed  spacers  and  product  spacers  are  layered  together  between  two  

end   plates.   The   most   common   uses   of   plate   and   frame   modules   concerns  

electrochemical   applications   as   ion   exchange,   electrodialysis,   pervaporation  

systems,  electrosensors  and  membrane  electrode  assembly.    These  applications  

concern  all  the  different  kinds  of  membranes  as  metal  or  polymer  membranes.    

 

Figure  9  a  planar  aluminium  module  is  given  as  a  patent  for  an  improved  proton  

exchange  membrane.    The  membrane  could  be  used  in  membrane  module  unit  as  

electrochemical  cells  having  internal  passages  parallel  to  the  membrane  surface.  

The  passages  in  the  membrane  extend  from  one  edge  to  another  and  allow  fluid  

flow   through   the   membrane   and   give   access   directly   to   the   membrane.   The  

invention,   awarded  by  NASA   in  1997,   is   related   to   applications   in   as   electrode  

assemblies   for   fuel   cells,   electrolyzes,   electrochemical   hydrogen   and   oxygen  

pumps,  and  related  devices  [Gonzalez-­‐Martin  et  al.,  1997].    

 

Figure  9  Membrane  electrode  assembly  containing  internal  passages  [Gonzalez-­‐Martin  et  al.,  1997]  

   

 

 

Tubular   module:   Alumina   membranes   most   of   the   times   have   tubular   mode  

which  is  composed  of  a  number  of  tubular  membranes  with  an  internal  relatively  

Page 41: Alumina Membranes

  41  

small  diameter.  They  may  be  unique  tubes  assembled  in  a  module  using  joints  or  

monolithic  composed  of   several   tubes   (Figure  10  and  11).  The  selective  part   is  

located  inside  the  tube  or  tubes.  Feed  is  made  at  one  end  of  the  module  and  the  

fluid   flows   inside   the   tubes   or,   the   retentate   springs   at   the   other   end.   The  

permeate   pass   through   the   body   of   the   tube   or   out   of   the   monolith   to   the  

external  part.  

Figure  10  Schematic  side-­‐view  of  membrane  module  consisting  of  multi-­‐channel  elements  

 

 

Figure  11    Cross-­‐section  of  a  monolithic  multi-­‐channel  membrane  element  [Hsieh  et  al.,  1998]  

 

   

In   general,   the   main   advantages   and   disadvantages   of   tubular   noticed   in   the  

literature   are   because   of   ceramic   material   properties,   the   most   common  

substance  for  which  they  are  made  of.  

(a) Advantages:    

Page 42: Alumina Membranes

  42  

• No  pre-­‐treatment,  accepts  slurries  in  large  particles  (about  one-­‐tenth  the  

diameter  of  the  tube)  

• Easy  to  clean,  use  of  mechanical  cleaning    

(b) Disadvantages:  

• Very  low  compactness  of  the  order  of  10  to  300  m2/m3  

• Relatively  high  investment  

• Energy  costs  can  be  significant,  due  to  a  high  rate  of  circulation  

• Fragility  in  the  case  of  ceramic  membranes  

As   an   example   for   diameter   difference,   in   laboratory   scale   of   Stoitsas   et   al.  

(2005)   research   work,   alumina   and   silica   membrane   specimens   for   gas  

separation  are  of  tubular  geometry  with  a  length  340∙103m,  an  internal  diameter  

of  8·103m  and  an  external  diameter  of  14·103m  when  the  membrane  surface  per  

specimen  is  8.5·103m2.  In  this  case,  the  ceramic  membrane  is  an  asymmetric  4-­‐

layer  system.  The  first  layer  operates  as  a  support,  the  third  as  a  microfiltration  

layer  (pore  sizes  of  100  or  200nm  depending  on  the  firing  temperature)  and  the  

fourth   as   an   ultrafiltration   layer   with   a   pore   size   of   3–5nm.   The   second   layer  

(pore  size  of  500nm)  serves  to  bridge  the  gap  between  the  macroporous  support  

and  the  microfiltration  layer.  

Honeycomb:   Honeycomb   pore   size   membrane   is   part   of   the   new   generation  

membranes  for  microfiltration  and  ultrafiltration  applications.  It  is  available  for  

ceramic  membranes  either  of  alumina  or  carbon  supports.  The  term  honeycomb  

concerns   the   microstructure   of   porous   in   porous   layer   and   because   of   this  

geometry,  the  membrane  is  suitable  for  special  applications.  

4.1.2.  Commercialized  modules  of  membrane  alumina    

 Tubular  mode  

The   figure   below   (Figure   12)   is   from   Veolia   Water   Solutions   &   Technologies  

(VWS)  manual  for  new  ceramic  membrane  modules.  

 

 

Page 43: Alumina Membranes

  43  

Figure  12  Large  diameter  monolith  membrane  element  with  permeate  conduits  

 

 

The  industry  utilizing  the  CeraMem®  technology  provides  a  variety  of  inorganic  

microfiltration   (MF)   and   ultrafiltration   (UF)   membranes.   In   CeraMem®  

technology,   typical   multi-­‐channel   ceramic   membrane  has   multiple   parallel  

passageways  that  run  from  a  feed  inlet  end  face  to  an  opposing  outlet  end  face.  

The   surfaces   of   the   passageways   are   coated   with   permselective   membrane.   A  

feed  stream  is  introduced  under  pressure  at  the  inlet  end  face,  flows  through  the  

passageways  over  the  membrane,  and  is  withdrawn  at  the  downstream  end  face  

as  retentate.  Permeate  flux  passes  through  the  membrane  flows  into  the  porous  

monolith  material.  Under  an  applied  pressure,   the  combined  permeate   from  all  

the  passageways  flows  through  the  porous  monolith  support  to  the  periphery  of  

the   monolith   and   is   removed   at   the   monolith   exterior   surface  

[veoliawaterst.com/ceramem].    

Honeycomb  module  

The  Anopore™  inorganic  membrane  (Anodisc™)  in  honeycomb  module  is  a  novel  

material  with  precise,  no  deformable  honeycomb  pore  structure  (Figure  13)  with  

no  lateral  crossovers  between  individual  pores  that  filters  at  precisely  the  stated  

cut-­‐off,  allowing  no  larger  sized  particles  to  pass  through  the  membrane.  

 

 

 

 

Page 44: Alumina Membranes

  44  

Figure  13  AnoporeTM  alumina  membrane  with  honeycomb  pore  size  distribution  [whatman.com]  

 

The  AnoporeTM  inorganic  membrane  is  composed  of  a  high  purity  alumina  matrix  

that  is  manufactured  electrochemically  [whatman.com].  This  kind  of  membrane  

shows   a   high   thermal   permeability   and   selectivity   and   it   can   be   applied   for   a  

wide  range  of  special  applications  as  pharmaceutical  or  laboratory  ultrafiltration  

process.  

Generally,   commercial   alumina  membranes  have  an  asymmetric   structure  with  

membrane  deposition  on  the  inside  surface  of  a  tube  (or  channel).  The  diameter  

of  module  depends  on  the  kind  of  application.  Large  scale  units  can  be  used  eg.  in  

wastewater   treatment   plants   and   small   scale   units   can   be   used   eg.   in   gas  

separation.   A   typical   industrial   installation  will   have   several   of   these  modules  

arranged  in  series  and/or  parallel  configuration  [Sondhi  et  al.,  2007].  

   

Page 45: Alumina Membranes

  45  

4.2.  SEPARATION  CHARACTERISTICS  FOR  ALUMINA  MEMBRANES    

For   future   looking   through   membrane   uses   it   is   important   to   summarize   the  

most  crucial  separation  characteristics  as  “crossflow  mode”,  “flux  “  or  “rejection”  

properties.    

 

Crossflow  

 

Crossflow   filtration   is   a   pressure-­‐driven   separation   process   in  which   a   stream  

flows  parallel  to  the  filter  surface.  For  microfiltration  applications  such  a  parallel  

flow   creates   shear   forces   and/or   turbulence   to   sweep   away   particulates   and  

prevent  blinding  of  the  filter  surface.  The  feed  flows  past  the  inside  surface  of  the  

tube  (or  channel)  and  the  permeate  (filtrate)  flows  through  the  porous  support  

to  the  shell  side  of  the  module.  This  is  generally  true  for  all  crossflow  membrane  

modules  such  as  tubular,  hollow  fiber,  spiral  wound,  or  plate  and  frame  modules.  

Inorganic   membranes   used   in   commercial   large-­‐volume   applications   are,  

however,   available  only   in   single   tubes  or  multi-­‐channel  elements  as  described  

earlier.   Such   membrane-­‐based   separation   devices   have   to   satisfy   certain  

performance  cri-­‐membranes  used  in  commercial   large-­‐volume  applications  are,  

however,   available  only   in   single   tubes  or  multi-­‐channel  elements  as  described  

earlier.   Such   membrane-­‐based   separation   devices   have   to   satisfy   certain  

performance  criteria  to   justify  a  cost-­‐effective  process    as  flux  or  filtration  rate,  

long  term  flux  stability  and  separation  or  rejection  properties  of  the  membrane.  

 

Flux  

 

This   is   one   of   the   most   important   performance   criteria   for   cost   effective  

membrane   technology,   particularly   for   large-­‐scale   separations.   In   membrane  

separation  processes   the   (permeate)   flux  may  be   influenced  by   such   factors  as  

crossflow  velocity,   transmembrane  pressure  differential,   temperature   and   feed  

characteristics.    

Page 46: Alumina Membranes

  46  

Crossflow  velocity    

 

This  is  the  average  rate  at  which  the  process  fluid  flows  parallel  to  and  across  the  

membrane  surface.  Due  to  continuous  removal  of  filtrate  (permeate)  through  the  

membrane,   the   crossflow   velocity   is   somewhat   higher   at   the   inlet   than   at   the  

outlet  of   the  membrane  element.  For  many  particulate   filtration  applications  (e  

.g.,   MF)   it   is   generally   recommended   to   be   in   the   velocity   range   of   1-­‐5  m/sec  

depending   on   process   stream   properties   such   as   viscosity,   particulate   loading,  

etc   .,   and   on   constraints   imposed   by   pressure   drop   limitation   In   MF   with   an  

alumina  membrane,   for   instance,  a  crossflow  velocity   in  the  range  3-­‐5  m/sec   is  

recommended.  An  increase  in  crossflow  velocity  generally  results  in  an  increase  

in  flux,  since  at  higher  shear  rates  the  removal  of  particulates  at  the  membrane  

surface   is   more   effective.   A   higher   crossflow   velocity,   however,   results   in   a  

substantially  higher   tube  side  pressure  drop  which  may  pose  a  problem   to   the  

membrane   material.   For   most   polymeric   hollow   fibers,   the   allowable  

transmembrane  pressure  difference  is  limited  to  about  30  psig,  since  the  typical  

fiber  burst  pressure  is  only  about  50-­‐60  psig.  In  contrast,  alumina  membranes  do  

not  suffer  from  this  limitation  and  usually  have  a  pressure  rating  of  250  psig  or  

higher.  In  Figure  14,  a  simplified  circuit  of  crossflow  membrane  is  designed,  with  

feed  and  retentate  and  pressure  application  points  illustrated.    

Figure  14:    Simplified  schematic  of  crossflow    membrane  filtration  [Hsieh  et  al.,  1998]  

 

 

Page 47: Alumina Membranes

  47  

Feed  

 

It   has   been   found   that   the   flux   behavior   for   pure   water   (e.g.,   filtered   tap   or  

deionized  water)  through  a  single  tube  is  similar  to  that  through  a  multi-­‐channel  

alumina   membrane   element   (such   as   Membralox®).   However,   for   scale-­‐up  

studies,   alumina   membranes   with   tube   bundles   or   multi-­‐   channel   monolithic  

elements   should   be   used   over   single   tubes   to   obtain   hydrodynamic   and   fluid  

management  data.  

 

Flux  stability  

 

Critical   factor   determining   process   and   economic   viability   of   separation  

applications  with  membranes   is   also   flux   stability.   In  MF   and   OF   applications,  

flux  decay  can  be  a   serious  problem.  Flux  decay   is  usually  a  direct   result  of   an  

increase  in  the  hydraulic  resistance  of  the  membrane  due  to  fouling,  eg.  excessive  

accumulation   of   debris/particulates   at   the   membrane   surface   or   in   the   pores.  

The  phenomenon  of  membrane   fouling   is  only  partially  understood.   In  general,  

fouling   is   more   severe   with   symmetric   membranes.   The   majority   of   alumina  

membranes  have  an  asymmetric  pore  structure  with  a  pore  size  variation  across  

the   entire   thickness   of   membrane/support   composite.   Such   asymmetric  

membranes   are   thus   expected   to   be   less   susceptible   to   internal   pore   fouling.  

Many   liquid   streams   contain   extraneous  matter   in   the   form   of   small   particles,  

macromolecules,  etc.  During  the  filtration  operation,  these  substances  are  often  

concentrated  near  the  membrane  surface  and  can  precipitate  or  agglomerate  on  

the  surface  as  well  as   in   the  pores.  Flux  decay  was  observed   in   the   filtration  of  

tap   water   with   a   single-­‐tube   alumina   membrane   when   the   backflushing  

technique  for  cleaning  was  not  employed.  This  may  be  due  to  membrane  fouling  

by   trace   quantities   of   particulate   and   colloidal   matter,   since   prefiltered   water  

showed   a   higher   flux   in   comparison   to   unfiltered   tap   water.   A   stable   flux   for  

extended  operation  can  be  obtained  if  flux  decay  due  to  fouling  can  be  controlled.    

Page 48: Alumina Membranes

  48  

Rejection  characteristics  

 

One   of   the   important   parameters   determining   membrane   rejection  

characteristics   is   the   mean   pore   diameter   of   MF   and   OF   membranes   having  

narrow  pore  size  distributions.  In  general,  the  smaller  the  pore  diameter  (i.e.,  the  

tighter   the   membrane),   the   higher   will   be   the   rejection   coefficient   to  

particulates/   solutes   of   greater   nominal   size.  However,   as   pore   size   decreases,  

permeability  to  liquid  also  decreases  rapidly.    

Page 49: Alumina Membranes

  49  

5.  APPLICATIONS  

5.1.  CERAMIC  MEMBRANES      There  are  a  variety  of  industrially  important  liquid  or  gas  phase  systems  where  

the  general  membrane   technology  has  been  successfully  applied   for  separation  

purposes.  Such  membrane  processes  as  MF,  UF,  and  reverse  osmosis  (RO)  using  

polymeric  membranes  have  been   in  commercial  practice   for  over   two  decades.  

However,   in   recent   years   ceramic   membranes   are   also   being   considered   for  

crossflow  MF  and  OF  applications  and  also  gas  separation  application  [Laitinen,  

2004].      

 

Ceramic   membranes   are   usually   composed   by   metal   oxides   as   aluminum,  

titanium   or   zirconium   oxide   as   they   are   or   mixed.     They   are   formed   from  

different   layers   of   particular   length   and   the   support   is   consisted   of   porous   α-­‐

alumina  in  tubes  unit.  The  active  layer  is  consisted  from  alumina  (Al2O3,  α  or  γ),  

from  zirconium  (ZrO2)  or  titanium  oxide  (TiO2).  The  main  advantages  or  ceramic  

membranes  can  be  listed  as:    

• sufficient  resistance  at  high  temperature  (  to  300  ˚C)  

• chemical  resistance  

• pH  range  from  0  to  14  

• compatibility  of  organic  solvents  and  ionizing  radiation  

• support  of  sterilization    

Organic  membranes   are   hardly   resistant   to   solvents   eg.   polymeric  membranes    

including   PTFE   used   in   wastewater   treatment   process   and   on   the   other   side  

inorganic  membranes  are  more  readily  used  for  such  kind  of  application  [Remigy  

et   al.,   2007].   In   applications   of   industrial   wastewater   treatment   as   solvent  

recycling  from  polluted  solution,  conventional    reclamation  technologies,  such  as  

distillation   and   standard     filtration,   suffer   significant   limitations   in   terms   of  

technical   viability,   cost,     and     user     friendliness   when   ceramic   membrane  

technology   performs   important   advantages,   as   listed   in   Table   13   [Ciora   et   al.,  

2003].  

Page 50: Alumina Membranes

  50  

Table  13  Advantages  of  ceramic  membrane  technology  for  the  recovery  of  spent  high  flash  solvents  [Ciora  et  al.,  2003]  

M&P  Ceramic  Membrane  Technology    

Advantage   Comments  

1.  Excellent  solvent  

resistance  

Can  be  used  to  treat  entire  range  of  high  flash  solvents  

2.  Excellent  recoverd  

product  quality  

Finished  product  quality  similar  to  virgin  material  

3.  Low  temperature  

operation  

No  thermal  degradation  of  solvent  

4.  Good  product  recovery  

ratios  

>90%  solvent  recovery  can  be  aschieved  

5.  No  additional  waste  

disposal  problem    

Waste  volume  necessary  for  disposal  is  <10%  of  original  volume  

6.  Low  tech   Technology  is  easily  implemented.  No  special  training  required.  

Minimal  maintenance  etc.  

7.  Implemented  on  small  

scale  

Most  high  flash  solvent  waste  is  highly  segmented  with  numerous  

small-­‐scale  generators  of  waste  solvent  

 

At   the   same   moment,   considerable   disadvantages   often   limit   ceramic  

membranes  in  pilot  or  small  scale  applications  and  render  polymeric  membranes  

as  the  most  widely  applied  membranes.  Ceramic  membranes  are  related  to  high  

cost   of   preparation,   fragility   and   high   cost   of   installation   and   as   also   limited  

variety   of   modules   (only   tubular   and   more   rarely   planar).   In   addition,   some  

ceramic  active  layers  are  sensitive  to  basic  attacks  when  they  are  deemed  to  be  

generally  very  resistant  to  alkaline  pH  [Remigy  et  al.,  2007].  

 

Inorganic  membranes   can  be  classified  according   to   the  principal   component  

they   consist   of   apart   from   other   layers   or   additives   to   carbon,   metal   and  

composite  membranes  [Remigy  et  al.,  2007].    

Analytically,   the   most   important   applications   of   these   categories   are   gathered  

below:  

 

 

 

Page 51: Alumina Membranes

  51  

• Carbon  

 

If   the   membranes   are   absolutely   consisted   of   carbon   they   are   used   for   gas  

separation.  For  the  filtration  field,  carbon  membranes  comprise  a  carbon  porous  

layer  on  which  a  metal  oxide  layer  is  deposited  (zirconium  or  alumina).      

 

• Metals  

 

A   wide   variety   of   metals   can   be   used   for   the   manufacture   of   filtration  

membranes.  Two  metals,  however,  stand  out:  steel  (including  stainless  steel)  and  

aluminum.   The   stainless   steel   membranes   are   composed   of   sintered   particles  

while  those  of  aluminum  are  formed  of  a  film  of  anodized  aluminum.  The  metal  

membranes   are   exclusively  microfiltration  membranes   or   high  UF  with   a   pore  

size  of  not  less  than  20  nm.  

 

• Combination  of  different  materials  

 

In  Table  13,  the  most  important  advantages  and  drawbacks  are  revised  for  the  

different  kinds  of  materials.  Note  that  the  comparisons  in  terms  of  thermal  and  

chemical  resistance  ignore  the  other  materials  in  the  manufacture  of  modules  

(seals,  adhesives).    

 

 

 

 

 

 

 

 

Page 52: Alumina Membranes

  52  

5.2.  ALUMINA  MEMBRANES  APPLICATIONS      In   the   recent   years  of  membrane   technology  development,   alumina   ceramic  or  

composite  membranes  are  of  great  interest  for  a  wide  range  of  applications  and  

new   structures   compositions.   They  offer   a   largely   independent   control   of   pore  

size,  pore  topology,  pore  orientation,  molecular   functionalization  and  pore  wall  

composition.    

 

A  developing  research  field   focuses  on  nanosize  of  porous  alumina  membranes  

creating   a   potential   for   molecular   separators,   materials   for   the   inclusion   of  

conducting   or   semiconducting   nanostructures.   The   use   of   porous   ceramic  

membranes   often   offers   a   solution   for   aggressive   environments   as   corrosive  

solutions  or  high  temperature  process  [Levanen  et  al.,  2004].    

 

The   following   sections   will   give  more   information   on   applications   or   possible  

application  areas  of  alumina  ceramic  membranes  divided  in  two  main  categories:  

1. Liquid  phase  separation    

2. Gas  phase  separation    

 

Remarkable   is   that   in   the   analysis   of   applications   below,   alumina   is   one   the  

components   of   membranes.   In   many   cases   composite   membranes   are   studied  

with  many  different  layers  and  at  least  one  alumina  coat.  

 5.2.1.  Liquid  phase  separation  applications    Most   of   the   commercial   liquid   phase   applications   for   ceramic  membranes   are  

either   for   microfiltration   or   ultrafiltration.   The   first   large-­‐scale   commercial  

success   of   ceramic   membranes   has   been   in   the   food   and   beverage   industries.  

However,   significant   applications   are   found   also   in   other   areas,   such   as  

biotechnology,   pharmaceutical,   petrochemical,   and   other   process   industries   as  

well   as   in   environmental   control.   In   recent   years   also   ceramic   nanofiltration  

membranes   have   been   developed.   Microfiltration   is   mostly   applied   in   cases  

Page 53: Alumina Membranes

  53  

where   liquid   streams   contain   particulates,   and   ultrafiltration   is   used   when  

smaller  molecules  are  removed.    

 

Some  of  the  important  liquid  phase  applications  where  alumina  membranes  are  

employed   are:   treatment   of   industrial   and   municipal   water,   sterilization   of  

liquids   in   the   pharmaceutical   industry,   clarification   and   sterilization   of  

beverages,   e   .g.   wine,   beer   and   fruit   juices,   cell   harvesting   and   sterilization,  

cheese-­‐making  by  ultrafiltration  and  wastewater  treatment.  A  number  of  studies  

on  crossflow  filtration  can  be  found  in  the  recent  literature  [Laitinen  et  al.,  2004].    

 

Although   many   of   them   deal   specifically   with   polymeric   membranes,   the  

principles  of   crossflow   filtration,   in  general,   can  also  be  applied   to  membranes  

made  of   inorganic  materials   such  as  alumina.   In  all   these  application  areas   the  

ceramic  membranes  have  to  compete  with  the  polymeric  membranes  which  are  

becoming  more   and  more   stable   and  which   have   an   advantage   of  much   lower  

prices.  The  use  of  ceramic  membranes  can  only  be  justified  in  cases,  where  they  

give  much  better  performance,  or  in  cases,  where  there  are  no  suitable  polymeric  

membranes  available  [Hsieh  et  al.,  1998].  

 

In   the   following   part,   the   applications   of   alumina   membranes   in   gas   phase  

separation  process  are  gathered  in  Table  14.  

 

i. Food  processing    

 

Generally,   the  major  advantages  of  ceramic  membranes   in  the  area  of   food  and  

beverages   are   their   resistance   to   alkaline   cleaning   solutions,   their   stability   in  

steam   sterilization,   better   capability   to   withstand   higher   operating   pressures,  

and   a   consistent   pore   size.   In   crossflow  microfiltration   applications,   the  major  

advantage   of   the   ceramic  membranes   has   been   the   possibility   to   use   uniform  

transmembrane  pressure,  which  for  example  in  dairy  industry  has  enabled  high  

fluxes  and  low  fouling.  The  market  share  of  inorganic  membranes  in  the  food  and  

dairy  industry  was  about  10%  at  1990s  and  tomorrow  this  percentage  is  

Page 54: Alumina Membranes

  54  

 

Table  14    Liquid  phase  separation  process  of  alumina  membranes  and  composite  alumina  membranes  

Porous  alumina  membrane  appications  

Liquid  phase  separation  applications  

Food  processing      

Clarification  of  natural  fruit  juices   fruit  juice  industry  (orange,  apple,  grape  etc.)  

Filtration  of  sugar  cane  juice   sugar  concenration  

Alcoholic  beverages   breweries,  wineries  

Environmental  applications      

Petrochemical  industry  wastewater  treatment   petrochemical  industry,  oil  recovery  

Pulp  and  paper  industry  wastwater  treatment   water  reuse  in  production  line  

Municipal  wastewater  treatment   municipal  wastewater  treatment  plants,  water  

reuse  

Activated  sludge  treatment   depollution  of  wastewater  sludge,  compost    

Nuclear  industry  wastewater  treatment      

Fluoride  removal   municipal  wastewater,  chemical  industry  

wastewater  

Arsenic  removal  from  water  resources   depollution  of  water  sources  and  groundwater  

Arsenic  and  fluoride  removal   depollution  of  water  sources  and  groundwater  

Chromium  and  arsenic  removal   metal  industry  wastewater,  valuable  metals  

recovery  

Biotechnology  and  Pharmaceutical  

applications  

   

Fermentation  broths     recovery  of  valuable  antibiotics  

Fungal  cells  separation   diafiltrationm  polysaccharide  production  

Penicillin  recovery      

 Lysozyme  ultrafiltration   recovery  of  a  water-­‐soluble  

 

supposed   to   be   doubled   [Bhave   et   al.,   1991].   The   main   applications   can   be  

roughly   divided   into   (a)   concentration   of   soluble   molecules   and   suspended  

solids  and  (b)  clarification  by  removing  suspended  solids.  As  already  mentioned,  

the  main  usage  of  inorganic  membranes  is  in  the  dairy  industry,  in  which  the  key  

to   success   has   been   the   invention   of   transmembrane   pressure   mode.   Some  

studies  have  also  been  made  concerning  the  usage  of   inorganic  membranes   for  

the   concentration   of   other   vegetable   and   animal   proteins   as   well   as   for   the  

processing  of  starch  and  sugar.  

Page 55: Alumina Membranes

  55  

(a) Clarification  of  natural  fruit  juices    

Clarification   or   fruit   juice   such   as   apple,   cranberry   and   grape   is   one   of   the   most  

successful  and  widely  practiced  industrial  applications  of  ceramic  membranes.  Ceramic  

membrane   filtration   provides   a   particularly   attractive   alternative,   replacing   such  

conventional   treatments   as   gelatin   addition,   holding/decanting,   diatomaceous   earth,  

cake  filtration,  and  polishing,  with  a  single  unit  operation.  Membranes  produce  superior  

clarity   juice   and   deliver   higher   yields   compared   with   conventional   clarification  

processes.  

(b) Filtration  of  sugar  cane  juice  

In   the   filtration   of   sugar   cane   juice,   ceramic   membranes   as   carbon/carbon   or  

alumina/alumina  [Jiratananon  et  al.,  1997]  can  be  used  in  several  different  stages  in  the  

raw   and   refined   sugar   production.   One   interesting   opportunity   is   in   the  

microfiltration/ultrafiltration  of  clarified  juice  (7–14  Brix)  and/or  pre-­‐evaporated  juice  

(20-­‐25  Brix)  as  a  pretreatment  prior   to   ion  exchange  or  chromatographic  separations.  

Pretreated   and   filtered   juice   is   softened,   evaporated   and   purified   using   ion   exchange  

and   chromatographic   processes   leading   to   a   better   quality   refined   sugar.   Typical  

operating  conditions  include  feed  temperatures  of  90–100oC,  a  high  crossflow  velocity  

(4–7  m/s)   and   transmembrane   pressures   up   to   5bar.   The   need   to   purchase,   use   and  

dispose  of  filter  aids  is  eliminated.  In  some  applications,  the  cost  of  equipment  necessary  

to   dewater   filter-­‐aid   sludge  may   be   comparable   to   the   cost   of   the  membrane   system.  

[Sondhi  et  al.,  2005]  

(c) Alcoholic  beverages  

In   the   area   of   alcoholic   beverages,   alumina   membranes   are   used   for   the  

clarification  and  sterilization  of  the  final  products.  Composite  multilayer  ceramic  

membranes   membranes   applications   exist   for   the   filtration   of   wine   and   beer  

[Gillot   et   al.,   1986]   as  well   as   for   sake  and  vinegar   [Hagasewa  et   al.,   1991].  By  

membrane  filtration  the  amount  of  waste  generated  and  chemicals  used  during  

the  production   can  be   considerably  decreased.  The  use  of  membrane   filtration  

instead  of  a  conventional  process  is  advantageous  also  since  membrane  filtration  

produces   a   sterile   product   and   further   sterilization   is   not   necessary.   For  

Membralox®  membranes   these   applications   have   existed   since   1988   [Gillot   et  

al.,  1990].  In  breweries  as  well  as  in  wineries  membrane  filtration  can  be  used  to  

Page 56: Alumina Membranes

  56  

replace  clarification,  stabilization  and  sterilization  steps.  The  alumina  membrane  

Membralox®   is   for   example   used   to   further   concentrate   tank   bottoms   or  

centrifuge  concentrates  [Gillot  et  al.,  1990].    

 

ii. Environmental  applications  

 The   increasing   concern   for   the   environment   and   tighter   legislation   on   emissions   are  

increasing   widely   the   applications   of   ceramic   membranes.   In   many   chemical   process  

applications   there   is   a   growing  need   to   treat   not   only   the  waste   streams,   to  meet   the  

increasingly   stringent   environmental   regulations,   but   also   to   recover   and   reuse   the  

chemicals.  The  nature  of  these  process  streams  can  vary  and  in  some  cases  the  process  

may   require   aggressive   operating   and/or   cleaning   conditions.   Examples   of   such  

applications   include   the   filtration   of   chemical   solvents,   dye   and   pigment   wastewater  

from   dye   processing   and   colouring   plants,   and   highly   variable  wastewater   containing  

detergents,   polymers   and   organic   solvents   [Sondhi   et   al.,   2007].   Environmental  

applications  can  be  roughly  divided   into  wastewaters   from  various  sources,  as  well  as  

oily  wastes  and  sludges.  In  the  following  part  the  process  industry  wastewaters  from  the  

chemical,   textile,   and   pulp   and   paper   industry   are   discussed   as   well   as   wastewaters  

from  the  nuclear  industry  and  sludge  from  municipal  wastewater  dehydration.  

(a) Petrochemical  industry  wastewater  

The   wastewater   applications   in   the   petrochemical   industry   include   the   treatment   of  

acidic  and  alkaline  process  wastewaters  from  a  vinyl  chloride  monomer  manufacturing  

facility.  Lahier  and  Goodboy  (1993)  have  shown  that   the  high  content  of  heavy  metals  

from  acidic  wastewater   can   be   removed  by   using   two-­‐stage  membrane   filtration  with  

alumina   microporous   membranes.   As   a   pretreatment   the   pH   of   the   wastewater   was  

adjusted   from  0.7   to  12.   In   the   first   filtration   stage,   the  precipitated  metal  hydroxides  

were   separated   from   the   water   and   in   the   second   filtration   stage   the   filtered   metals  

were  concentrated  to  17-­‐20  w.w%.  The  water  recoveries  from  the  filtrations  were  80%  

and  99.5%.    In  Lahier  and  Goodboy  research  work,  alumina  microfiltration  membranes  

were  evaluated   for   treatment  of  3   aqueous   streams  containing  heavy  metals,   oils,   and  

solids  at  petrochemical  manufacturing  facilities.  They  have  also  shown  that  an  alkaline  waste   stream   containing   dichloroethane,   water,   and   calcium/iron   hydroxides   can   be  

treated  with  ceramic  membranes.    

Page 57: Alumina Membranes

  57  

(b) Pulp  and  paper  industry    

In   pulp   and   paper   industry   the  main   interest   in   studying   the   possible   applications   of  

ceramic   membranes   has   been   in   bleach   plant   effluent   treatments.   The   wastewater  sources   in   paper   industry   comes   from   disk   filtration,   flotation   and   close   loop   water  

circulation  as  well  as  the  clarification  of  coating  colour  basin.  In  Laitinen  et  al.  (1998)  as  

well   as   in   many   90s   references   [Petterson   et   al.,   1988;   Gaddis   et   al.,   1995],   alumina  

membranes  are  used  for  wastewater  ultrafiltration  for  suspended  solids  (SS),  COD,  color  

and   colloidal  material   removal.   Laitinen   tried   flat   sheet   α-­‐   and   γ-­‐alumina  membranes  

and   modified   α-­‐alumina   membranes   and   concluded   in   quite   low   COD   removal   is  

achieved  (under  22%),  iron  and  odor  from  color  wastewater  treated  sufficiently  and  SS  

and   colloids  was   almost   totally   remover.   Fouling   of  membrane   seems   to   be   the  most  

considerable   problem   for   large   scale   application   of   the   method.   Great   advantage   of  

wastewater  treatment  of  pulp  industry  without  using  chemical  compounds  is  recycling    

feasibility,   In   some   cases   [Laitinen   et   al.,   2001]   existing   results   have   showed   that  

ultrafiltration   permeate   was   satisfactory   for   continuous   recycling   and   the   pulp  

produced  with   recycling   had   better   strength   properties   than  when   recycling  was   not  

used.  Hence,  toxic  discharges  were  reduced,  waste  management  became  more  effective,  

and  the  need  for  maintenance  was  reduced.    

(c) Municipal  wastewater    

Ultrafiltration/microfiltration  is  suitable  for  tertiary  treatment  of  municipal  wastewater  

after  standard  treatment  steps.  The  final  product  can  be  reused  as  the  level  of  pollutants  

and  microorganisms  falls  short  of  environmental  legislation  limits.  In  Vera  et  al.  (1997)  

a  study  on  the  filtration  of  the  secondary  clarified  suspension  is  studied  using  alumina  

microfiltration  membranes  of  0.14μm  pore  size.  The  membrane  system  proved  to  serve  

as   a   total   barrier   for   suspended   solids,   total   coliform,   fecal   coliform   and   fecal  

streptococci.   This   fact   together  with   the   reductions   of   turbidity,   COD   and   phosphorus  

removal   from  secondary   treatment  made   the  microfiltered  water  perfectly   adapted   to  

irrigation.   A   critical   flux   of   100   l/(m²h)   was   achieved   at   1bar   pressure   and   3   m/s  

crossflow   velocity.   Other   possible   application   studied   is   ceramic   membrane  

microfiltration  of  hotel  wastewater   in  order  to  reuse   it   in  secondary  purposes,  such  as  

toilet   flushing   [Laitinen,   2004].   Nevertheless,   Because   of   the   high   cost   of   membrane  

installation  and  performance,  the  wide  scale  application  seems  to  be  not  yet  necessary  

in  this  kind  of  municipal  wastewater  and  activated  sludge  treatment.      

Page 58: Alumina Membranes

  58  

(d) Activated  sludge    

Xing   et   al.   (2001)   has   studied   the   use   of   a   bioreactor   combined   with   γ-­‐alumina   and  

zirconia   ceramic   ultrafiltration   membranes   for   the   reclamation   of   urban   wastewater.  

According  to    results,  the  treated  water  could  be  reused  directly  for  municipal  purposes,  

such   as   toilet   flushing   and   car   washing,   and   after   softening   treatment   for   industrial  

purposes  such  as  cooling  supply  and  process  water.  Removal  of  ammoniac  nitrogen  and  

suspended  solids  was  product  of  membrane  separation  however  COD  removal  efficiency  

was  attributed  more  than  90%  by  bioreactor  and  no  by  ceramic  membranes.    

(e) Nuclear  industry  

In   the  nuclear   industry,  composite  alumina  ceramic  membranes  have  been  studied   for  

the   treatment   of   radioactive   waste   streams.   AEA   Technology   in   England   has   done  

excessive  pilot  plant  studies  with  ceramic  membranes  and  the  results  have  shown  that,  

for  a  low-­‐level  radioactive  general  site  waste,  good  alpha  and  beta/gamma  removal  can  

be   achieved.   [Laitinen,2004].   Cadmium   adsorption   from   silica-­‐alumina   membrane   is  

simulated   by   Pacheso   et   al.   (2006)   from   nuclear   and   chemical  wastewater   treatment.  

Sol-­‐gel  structured  nanoparticles  of  silica  and  alumina  are  used  for  multilayer  composite  

alumina  membranes  fabrication.    

(f) Fluoride  removal    

Nanofiltration   (NF)   is   an   attractive   technique   for   reducing   fluoride   anions   (F-­‐)  

concentrations   to   acceptable   levels   in   drinking   water,   however   commercial  

membranes   show  minimal   chloride   of   fluoride   selectivity.   In   laboratory   scale,  

multilayer   organic   membranes   (polystyrene   sulfonate)   with   porous   alumina  

supports   exhibited   Cl,   F   and   Br   high   selectivity,   three   times   more   than   the  

commercial   available   membranes   [Pagana   et   al.,   2007].   Moreover,  

chloride/fluoride  selectivity  is  essentially  constant  over  Cl-­‐/F-­‐  feed  ratios  from  1  

to  60,  so  these  separations  will  be  viable  over  a  range  of  conditions  [Seong  et.al,  

2007].  

 

 

Page 59: Alumina Membranes

  59  

(g) Arsenic  removal  from  water  resources  

 

Alumina   ceramic  membranes   can  be  used   for  As(V)   from  water   resources  –   as  

contaminated  water.  For  such  kind  of  application,  γ-­‐Al2O3/α-­‐Al2O3  can  be  used.  

The  concentration  of  arsenic  ions  decreased  from  1ppm,  which  was  originally  to  

power  in  5ppb.  Therefore,  the  concentration  of  ions  As  (V)  in  output  was  lower  

than   the   maximum   permissible   limit   set   for   drinking   water   [Pagana   et   al.,  

2009].In   Laitinen’s   doctorate   thesis,   published   in   2004   from  Finland  Technical  

University,  from  all  the  membrane  separation  process  studied  applied  in  a  wide  

range   of  wastewaters,   alumina  membranes   assumed   to   be   suitable   for   arsenic  

removal  from  bore  well  water  if  flocculation  was  used  as  a  pretreatment  as  well  

as   for   the   treatment   of   the   stone   cutting   wastewater.   The   fluxes   achieved   in  

short-­‐term   experiments   for   the   bore   well   water   were   promising   and   the  

optimization  of  operation  conditions  should  be  considered  [Laitinen,  2004].  

 

(h) Arsenic  and  fluoride  removal  

 

In  a  similar  recent  study,  Wu  et  al.  (2011)  highly  ordered    mesoporous    aluminas    

and     calcium-­‐doped   aluminas   were     synthesized.   Their     fluoride     adsorption    

characteristics,     including     adsorption     isotherms,     adsorption     kinetics,     the    

effect     of     pH     and     co-­‐existing     anions     were     investigated.     These    materials    

exhibited    strong  affinity    to    fluoride    ions    and    extremely    high  defluoridation    

capacities.  The  highest  defluoridation  capacity  value    reached    450    mg/g.    These    

materials    also    showed    superb    arsenic    removal    ability:  1  g    of    mesoporous  

alumina    was    able    to    treat    200    kg    of    arsenic    contaminated    water    with    a    pH    

value    of    7,    reducing    the  concentration    of    arsenate    from    100    ppb    to    1    ppb.  

 

 

 

 

Page 60: Alumina Membranes

  60  

(i) Chromium  and  arsenic  removal  

 

In   laboratory   scale,   separation   processes   have   been   developed   for   ion   Cr   (III)  

removal   from  water  using  γ-­‐alumina  membranes   [Pagana  et  al.,  2000;  Sklari  et  

al.,  2005].  In  Pagana  et  al.  (2000)  is  described  how  two  pilotic  system  have  been  

developed  with  concentration  of  chromium  ions.  In  the  conclusion  of  this  study,  

the  concentration  of   ions  Cr  (III)   in  output   is  assumed  to  be  significantly   lower  

than  the  maximum  permissible  limit  set  for  drinking  water  (greek  standars).  By  

the  same  research  group,  a  combined  process  of  removing  ions  As  (V)  and  Cr(III)  

from   simulated   wastewater   using   nanostructruded   alumina   membranes  

provided   also   sufficient   results.   The   concentrations   of   arsenic   and   chromium  

ions  decreased  from  1ppm  and  0.5ppm,  which  was  originally  to  power  in  5ppb  

and  3ppb,  respectively.  Therefore,  the  concentrations  of  ions  As  (V)  and  Cr  (III)  

in  output  was  lower  than  the  maximum  permissible  limits  set  for  drinking  water.  

In   the   figure   below   (Figure   15)   the   pilot   system   is   illustrated   [Pagana   et   al.,  

2008].  

 

Figure  15  Flow  diagram  of  the  Cr  (III)  removal  process  [Pagana  et  al.,  2008]  

 

 In  this  work,  asymmetric  multilayer  porous  ceramic  membranes  are  developed.  

Composite   γ-­‐Al2O3   membranes   made   by   sol–gel   method   are   prepared   for  

chromium   and   aersinc   ions   removal   from   water   solutions.   As(V)   removal   is  

achieve   d   by   a   two   stage   adsorption   –   ultrafiltration   processes   in   series.  

Moreover,  Cr(III  )  removal  is  achieve  d  by  an  adsorption–ult  rafiltrat  ion  parallel  

Page 61: Alumina Membranes

  61  

process   (Figure   15)     using   membrane   ultrafiltration   in   a   pilot   system   (see  

characteristics  inTable  15  ).  

 

Table  15:  Basic  characteristics  of  membrane  ultrafiltration  process  applied  in  Pagana  et  al.,  2007  pilot  system  for  chromium  removal  (Pagana  et  al.,  2007)  

 Chromium  removal:  basic  characteristics  of  the  membrane  ultrafiltration  process  

Feed  volume   100%  

Final  permeate  volume   100%  

Average  permeate  flux   60ml    min-­‐1  

Pressure  difference   3.105  Nm-­‐2  

Membrane  surface  A  (A=2πrl)   0.05m2  

 

In  general,   the  adsorption-­‐ultrafiltration   ion  process  using  ceramic  membranes  

may   offer   a   low   cost   effective   alternative   arsenic   and   chromium   purification  

technology   basically   in   terms   of   membrane   stability,   applied   pressure   and  

product  flux  with  the  additional  advantage  of  being  suitable   for  small   local  and  

decentralized   units   for   point-­‐of-­‐use.   However,   further   experiments   should   be  

carried  out  in  order  to  provide  more  accurate  an  d  widely  accepted  conclusions  

[Pagana  et  al.,  2007].    

 

iii. Biotechnology  and  Pharmaceutical  applications  

In   general   framework,   in   biotechnology   and   pharmaceutical   applications,   the  

biocompatibility  of  the  membranes  is  important  [Shackleton  et  al.,  1987].  In  such  

kind  of  applications,  the  main  interest  has  been  on  the  filtration  of  fermentation  

broths.   In   biotechnology,   ceramic   membranes   have   been   used   for   primary  

extraction,   purification,   and   concentration   of   biomass,   antibiotics,   vitamins,  

amino  acids,  organic  acids,   enzymes,  biopolymers,   and  biopesticides   [Cueille  et  

al.,  1990].  There  are  also  applications  in  the  treatment  of  vaccines,  recombinant  

proteins,   cell   cultures,   and   monoclonal   antibodies   as   well   as   in   continuous  

fermentation.  

The    alumina    membranes    have    several   features     that     indicate     the    practical  

benefit     in     analytical     and     diagnostic   separations.     They     are     transparent,  

allowing  to    view    the    retained    materials  from    either    side    of    the    membrane.  

Page 62: Alumina Membranes

  62  

The   capillary   pore   structure   allows   no   lateral   diffusion   of   liquids   along   the  

membrane.   Nanoporous   alumina   membranes   are   usually   prepared  

electrochemically   in   sulfuric  or  phosphoric   acid  bath.    After     preparation     they    

are  used    for    microfiltration    of    biological    media,  such  as  human  red  blood    cells  

and  bovine  serum  albumin  [Laitinen,  2004].  

 

(a) Fermentation  broths    

Alumina  membranes  are  used   for   fermentation  broth  clarification  at  numerous  

installations  worldwide,  successfully  competing  with  other  technologies  such  as  

polymeric  membranes,  vacuum  filtration  and  centrifugation.  These  systems  are  

often  used  for  the  recovery  of  valuable  antibiotics  from  dilute  solutions.  Typical  

operating   conditions   include   feed   temperatures   of   30–60°C,   high   crossflow  

velocity  (5–8  m/s)  and  trans-­‐membrane  pressures  up  to  6bar  [Laitinen,  2004].  

 

(b) Fungal  cells  separation  

 

Haarstrick  et  al.  [1990]  have  studied  microfiltration  using  alumina  microporous  

membrane  in  the  separation  of  fungal  cells  and  the  purification  of  the  produced  

polysaccharide.   They   concluded   that   crossflow   microfiltration   could   be   an  

alternative   to   conventional   separation   including   purification   processes   and  

suggested   that   a   diafiltration   mode   should   be   used   in   order   to   avoid   the  

problems  arising  from  the  high  viscosity  of  the  broths.    

 

(c) Penicillin  recovery  

 

An   alumina   microfiltration   membrane   has   been   used   in   laboratory   scale  

[Adikane  et  al.,  2001]  to  optimize  penicillin  G  recovery  from  fermentation  broth.  

Reduction   over   40%   has   been   achieved   in   processing   time   by   optimizing   the  

crossflow   velocity.   Moreover,   it   is   showed   that   the   operating   fluxes   could   be  

regenerated  and  a  98%  recovery  of  penicillin  G  could  be  obtained  over  12  cycles.    

 

Page 63: Alumina Membranes

  63  

(d) Lysozyme  ultrafiltration  

Group   of   Baudry   et   al.   (2001)   has   studied   the   use   of   modified   ceramic  

membranes  by  alumina  and  zirconium  oxide  used   for   lysozyme  and   lactoferrin  

ultrafiltration.   It   is   concluded   that   as   other   studies   had   prouved,   adsorbed  

protein   on   the   membrane   surface   was   able   to   highlight   UF   mechanism.   The  

enhanced   selectivity   was   observed   when   the   protein   to   be   retained   had  

additional  interactions  with  the  membrane  surface.  Conrad  et  al.  (1998)  studied  

microfiltration   for   the   recovery   of   a   water-­‐soluble,   chiral   compound   of  

therapeutic  interest  from  a  bioconversion  broth  of  whole  cells  and  soybean  oil.  It  

is  assumed  that  that  it  was  possible  to  use  microfiltration  to  harvest  an  aqueous  

product  stream  from  the  oil-­‐water  bioconversion  broth.      

 5.2.2.  Gas  phase  separation    

The   use   of   membranes   in   gas   separations   has   grown   at   a   very   rapid   pace   in  

recent   times.   One   particularly   interesting   application   of   gas   separation   with  

membranes  is  the  removal  of  dilute  heavy  organics  from  light  gas  streams  such  

as   the   removal   of   solvents   from   the   exhaust   of   different   process   industries  

[Javaid   et   al.,   2005].   Gas  mixtures   can   be   separated   by   either   dense   or   porous  

membranes.  Microporous  inorganic  membranes  have  often  been  modified  using  

in  many   cases  different   types   of   alumina   and   studied   as   possible  materials   for  

achieving  solubility  based  separation.  

 

The  dense  ceramic  membranes  are  mostly  impermeable  to  all  other  gases,  giving  

extremely   high   selectivity   towards   oxygen   or   hydrogen.   Oxygen   permeation  

through  a  dense  ceramic  membrane  is  due  to  a  large  number  of  oxygen  vacancies  

that   are   generated   by   doping   and   the   electron   holes   produced   by   the   defect  

reaction  exist  in  the  solid  electrolyte.  Under  a  gradient  of  oxygen  partial  pressure  

imposed  on  the  membrane  at  a  high  temperature,  the  oxide  ions  are  transported  

along  with  holes  from  the  high  partial  pressure  side  to  the  low  partial  pressure  

side.   Similarly,   when   hydrogen   is   exposed   to   a   mixed   proton   conducting  

membrane,   it   may   be   transferred   through   the   membrane   under   a   hydrogen  

partial   pressure   gradient.   Again,   apart   from   the  membrane   bulk   diffusion,   the  

Page 64: Alumina Membranes

  64  

surface  reactions  are  also  important  and  need  to  be  taken  into  consideration  for  

the   hydrogen   permeation.   In   microporous   ceramic   membranes,   the   gas  

permeation   behaviour   may   be   dominated   by   Knudsen   diffusion,   surface  

diffusion,  multilayer   diffusion,   capillary   condensation   or  molecular   sieving   (i.e.  

configurational  diffusion)  and   is   strongly  dependent  on   the  pore   size  and  pore  

size  distribution  of  the  membrane,  operating  temperature  and  pressure,  and  the  

nature   of   the   membrane   and   the   permeating   molecules   [Laitinen,   2004].   Gas  

separation   using   porous   ceramic  membranes   is   one   of   the   important   research  

topics  [Wiley,  2007].  

 

Recently,   most   of   the   development  membrane   separation   activities   have   been  

focused  on  gas  separations,  particularly  as  ionic  conductors  for  oxygen  transport  

and   as   molecular   sieve   membranes   for   hydrogen   separations.   Their   use   in  

environmental   applications   has   been   very   limited   due   to   cost   considerations,  

although  they  offer  several  unique  advantages  in  this  area,  such  as  chemical  and  

thermal  stability  and  rugged  structural  stability  [Sondhi  et  al.,  2007].  

 

Table  16  :  Gas  separation  by  porous  alumina  membranes  [Kaldis  et  al.,  2004]  

 

Pore  diameter  (Å)   Operating      temperature  

(oC)  

Applied  pressure  

differenece  (kPa)  

Gas  mixture  

~100   25-­‐75   3.03  -­‐  16.2   He/N2  

~100   25-­‐75   3.03  -­‐  16.2   He/C2H6  

~100   25-­‐75   3.03  -­‐  16.2   He/Kr  

1020   800   343   H2/H2S  

200-­‐400   10   152-­‐252   H2/H2S  

~10   31-­‐77   4.04-­‐39.4   H2O/air  

~10   65-­‐70       H2O/CH3OH  

~10   78-­‐84       H2O/C2H5OH  

~10   82-­‐88       H2O/(CH3)2CHOH  

~30   65-­‐70       H2O/CH3OH  

~30   78-­‐89       H2O/C2H5OH  

~30   82-­‐88       H2O/(CH3)2CHOH  

100-­‐200   196-­‐197   23.2-­‐106   H2/He  

100-­‐200   196-­‐197   23.2-­‐106   H2/CO  

Page 65: Alumina Membranes

  65  

100-­‐200   196-­‐197   23.2-­‐106   He/N2  

100-­‐200   196-­‐197   23.2-­‐106   H2/CO2  

100-­‐200   196-­‐197   23.2-­‐106   H2/CO  

100-­‐200   196-­‐197   23.2-­‐106   He/N2  

100-­‐200   196-­‐197   23.2-­‐106   H2/CO2  

100-­‐200   196-­‐197   23.2-­‐106   H2/C2H6  

100-­‐200   196-­‐197   23.2-­‐106   H2/C3H8  

100-­‐200   20       H2/He  

100-­‐200   20       He/N2  

100-­‐200   20       H2/CO2  

300-­‐400   65   13.1-­‐92.9   235U/238U  

 

Sustainable   membranes   in   high   temperatures   are   strongly   needed   for   energy  

production   application   as   biomass   burning   (organic   waste   gasification,   coal  

gasification   etc.).   Ceramic   membranes   are   appropriate   for   such   kind   of  

applications  because  of  their  high  thermal  stability  and  corrosion  resistance.   In  

installations   as   coal   gasification   plants,   gas   separation   is   needed   for   emission  

treatment   after   combustion   or   other   processes.   Usually,   carbon   dioxide   is   the  

substance  which  must   be   isolated   in   order   to   fit   environmental   requirements.  

Membrane   technology   is   one   of   the   promising   tools   in   these   applications   and  

many  research  works  has  been  realized  in  recent  years.      

In   the   following   part,   the   applications   of   alumina   membranes   in   gas   phase  

separation  process  are  gathered  in  Table  17.  

 

Table  17  :  Gas  phase  separation  process  of  alumina  membranes  and  composite  alumina  membranes  

Porous  alumina  membrane  appications  

Gas  phase  separation  applications   Industrial/Scientific  applications  

Carbon  dioxide  capture      

 CO2/N2  separation   Nox  control,  gas  phase  streams  from  energy  plants  

 H2/CO2  separation   gazification,  combustion  emissions  

Hydrocarbons  separation      

Acetone  recovery   paint,  ink,  oil  industry    

Propane  separation   natural  gas  processing,  petroleum  refining  

Catalytic  reactors    

VOCs  oxidation   air  pollution,  VOCs  recovery  

Methane  to  ethane  reaction     gas  treatment  

Page 66: Alumina Membranes

  66  

 

i. Carbon  dioxide  capture  

There   is   growing   consensus   among   the   scientific   community   that   the   rising  

atmospheric  levels  of  CO2  as  a  result  of  human  activities  (e.g.,  fossil  fuel  burning,  

cement   production).  Membrane  processes   appear   to   be   an   attractive   option   to  

carry   out   gas   separations   in   terms   of   their   lower   environmental   impact   and  

energy   costs   compared   to   more   conventional   separation   technologies   (e.g.,  

distillation,  absorption,  adsorption,  crystallisation).  On  the  guidance  of  a  recent  

study  recently  published  by  Lito  et  al.  (2011),  different  adsorption  models  have  

been  screened  to  account  for  CO2  and  N2  adsorption  in  MFI-­‐alumina  samples  [C.-­‐

H.  Nicolas  et  al.,  2011].      

 

(a) CO2/N2  separation  

 

In  Sang  H.  Hyun  et  al.,  (1995)  top  layers  of  γ-­‐Al2O3  composite  membranes  have  

been  modified  for   improving  the  separation  factor  of  CO2  to  N2.  The  separation  

factor   through   the   TiO2   supported   γ-­‐Al2O3membrane   was   found   to   be   fairly  

enhanced  by  silane  coupling,  but  in  case  of  the  α-­‐Al2O3  supported  membrane  was  

not.  The  CO2/N2  separation  factor  through  the  modified  γ-­‐Al2O3  /  TiO2  composite  

membrane   is   1.7   at   90°C.   The   separation   factor   is   proportional   to   the   CO2  

concentration   in   the   gas  mixture,   and   the  modified  membrane   is   stable   up   to  

100°C.  The  main  mechanism  of  the  CO2  transport  through  the  modified  γ-­‐Al2O3  

layer  is  known  to  be  a  surface  diffusion.  

 

(b) H2/CO2  separation  

 

Coal  gasification  is  called  any  process  of  converting  coal  into  gas  for  many  different  uses  as  illuminating,  heating  etc.  In  the  figure  above  (  

Figure  )  an   integrated  gasification  combined  cycle   is  shown  (IGCC).   In   IGCC  (a)  

air  separation  and  gasification,  (b)  gas  cleaning,  (c)  gas  conditioning  and  (d)  gas  

separation  are  combined  for  total  air  treatment  after  coal  gasification  are  aligned  

(Figure  16).  Using  conventional  technology,  it  is  possible  to  build  the  IGCC  plant  

Page 67: Alumina Membranes

  67  

above,   technologies   such   as   cryogenics,   solvent   extraction,   adsorbents   in  

pressure   or   temperature   swing   adsorption,   and   low   temperature   polymeric  

membranes.   Due   to   compliance  with   sorption  mechanisms,   these   technologies  

operate   best   at   low   temperatures   (<50oC).   The   problem   here   is   that   gas  

separation   follows   downstream   from   gas   conditioning.   The   gasification   of   coal  

predominantly   produces   syngas   (CO   and   H2)   with   some   remaining  

hydrocarbons,  CO2  and  water.  Hence,  the  syngas  requires  further  processing.    

 

Figure  16:  A  conventional  air  treatment  process  with  carbon  capture  [Diniz  et  al.,  2007]  

   

The  syngas  requires  further  processing  through  the  WGS  reaction  (see  equation  

below),  in  order  to  maximise  H2  production.  

CO  +  H2O  à  CO2  +  H2          ΔH  =-­‐41.  2  kJ.mol-­‐1          

The  WGS  reaction  is  exothermic  and  the  conversion  is  limited  by  thermodynamic  

equilibrium   as   the   conversion   to   H2   and   CO2   decreases   with   increasing  

temperature.  The   reaction   is   therefore   carried  out   in   two   stages,   in  high   (350-­‐

400oC)  and  low  temperature  (250-­‐300oC)  shift  reactors  with  interstage  cooling.  

In  addition,  further  cooling  to  <50oC  is  required  to  reduce  the  temperature  to  the  

temperature  acceptable  by  conventional  gas  separation  technologies.      

Cooling  large  stream  of  hot  gases  is  capital  intensive,  and  incurs  a  loss  of  power  

production;   furthermore,   these   processes   are   likely   to   deliver   CO2   at   reduced  

pressures,  which  will  have   to  be   re-­‐compressed   to  >100atm   for   transportation  

and  storage.  Hence,  conventional  processes  will  attract  large  energy  penalties.    

In  order  to  reduce  efficiency  losses,  an  alternative  is  to  separate  gases  at  higher  

temperatures.   In   this   case,   inorganic  membranes  derived   from  ceramics,   silica,  

Page 68: Alumina Membranes

  68  

metal  and  by  further  doping  or  alloying  showed  preferential  H2  selectivity    over  

CO2   at   high   temperatures   (>200oC)   [see   e.g.   recent   work   of   Joe   Da   Costa   in  

Australia].   These   technologies   can   also   operate   in   membrane   reactor  

arrangements   for   the   water   gas   shift   reaction,   which   allow   for   shifting   the  

reactions   to   higher   conversions   due   to   the   extraction   of   hydrogen   from   the  

reaction  chamber.  The  advantage  here  is  two:    

1.    CO2  is  kept  at  high  pressure  thus  reducing  requirements  for  CO2  compression  

downstream.        

2.     As   H2   is   selectivity   taken,   the   syngas   stream   is   reduced   by   up   30-­‐35%  

depending  on  the  recovery  rate.    

Although  CO2  will  have  to  be  cooled  down  prior  to  compression,  the  volumes  are  

reduced   thus   requiring   a   lower   cooling   duty.   Therefore,   inorganic  membranes  

and   their   incorporation   in  MRs  are   foreseen   to  be   the   technology  of   choice   for  

advanced  IGCC  plants  as  depicted  in  Figure  17.  

 

Figure  17:    An  Advanced  scheme  for  IGCC  with  carbon  capture  [Diniz  et  al.,  2007]  

 

   

The   scheme   shown   above   (Figure   18)   for   gas   separation   and   conditioning   is  

being   developed   in   Australia   by   the   University   of   Queensland   as   the   research  

provider   under   the   R&D   program   directed   by   the   Centre   for   Low   Emission  

Technology   (www.clet.net).  The  use  of  a  higher   temperature  membrane  allows  

further   simplification   of   the   gas   cooling,   conditioning   and   separation   step,   but  

this  scheme  requires  a  high  temperature  membrane  tolerant  to  the  syngas.      

Page 69: Alumina Membranes

  69  

 

Figure  18:    Schematic  of  a  multi  tube  membrane  module  for  H2  and  CO2  separation  [Diriz  et  al.,  2007]  

 

 

   

In  Diriz  et  al.  (2007)  for  high  temperature  gas  separation  membrane,  commercial  

D-­‐alumina   tubes  coated  with  a   top  γ-­‐alumina   layer,  dip-­‐coated  with  cobalt  and  

selective   silica   layer.   The   best   membrane   performance   delivered   H2   purity   in  

excess   of   98%   at   300o   C.   The   positive   energy   of   activation   for   H2   permeation  

coupled   with   the   negative   energy   of   activation   for   CO2   permeation   of   metal  

doped   silica   membranes   provide   a   favourable   fundamental   property   for  

engineering  design  of  gas  separation  at  higher  temperatures  (up  to  500o  C)  such  

as  those  required  in  a  coal  gasification  process.  The  process  integration  provided  

by  Diriz  et  al.  is  potentially  beneficial  for  the  next  generation  of  high  temperature  

processing  unit  operations  in  low  emissions  coal  gasification.    

 

 

 

 

 

 

 

 

Page 70: Alumina Membranes

  70  

ii. Hydrocarbons  separation    

(a) Acetone  recovery  

Huang  et  al.  (1997)  modified  alumina  membranes  for  recovery  of  acetone  from  

nitrogen  by  reducing  the  pore  size  to  enhance  multilayer  diffusion  and  capillary  

condensation   transport   mechanisms   [Huang   et   al.   1997].   Depending   on   the  

temperature  and  the   feed  composition,   the  separation   factor  varied   from  being  

less   than   10   to   as   high   as   200   is   dominant.   The  modified  membranes   showed  

higher   acetone   permeability   and   higher   separation   factors   as   compared   to  

polymeric   membranes.   However,   the   performance   was   strongly   influenced   by  

temperature  and  feed  composition.  

 

(b) Propane  separation  

Hydrocarbons   as   propane   or   butane   are   usually   by-­‐products   of   natural   gas  

processing   and   petroleum   refining   and   they   are   commonly   used   as   a   fuel   for  

engines,  heating  appliances  etc.   In  Randon  et  al.  (1995)  alumina  membrane  are  

modified   and   gas   permeation   experiments  were   conducted   using   nitrogen   and  

propane.   The   modified   membrane   exhibited   significantly   high   propane  

permeance.   The   modification   had   made   the   membrane   hydrophobic   and  

improved   the   membrane’s   solubility-­‐based   separation   characteristics.   Other  

attempt   for   alumina   membrane   modification   using   different   alkyl  

trichlorosilanes   showed   a   significant   increase   in   propane/nitrogen   selectivity  

accompanied,  by  a  loss  in  permeance,  after  modification.  In  comparison  to  PDMS,  

one   of   the   best-­‐known   polymers   for   solubility-­‐based   separations,   the   hybrid  

membranes  exhibited  equal  or  greater  propane/nitrogen  selectivity  although  at  

lower  propane  permeance   [Javaid  et  al.,  2005].  McCarley  and  Way   (2001),   in  a  

similar  study,  modified  5nm  alumina  membranes  with  C18  trichlorosilane.  They  

conducted   both   single   gas   and   mixed   gas   permeation   experiments   at   fixed  

transmembrane  pressures.  The  treated  membrane  showed  a  significant  increase  

in  ideal  selectivity  for  heavier  gases  (n-­‐butane)  over  lighter  gases  (nitrogen  and  

methane).    

 

Page 71: Alumina Membranes

  71  

iii. Catalytic  reactors  

The  application  of  porous  ceramic  membranes  as  catalytic  reactors  starts  in  the  1980s.  

The   driving   force   for   this   change   was   the   possibility   of   integrating   reaction   and  

separation,   which   had   already   been   achieved   in   the   field   of   biochemical   reaction  

engineering   using   polymeric  membranes.   These,   however,   were   not   applicable   at   the  

temperatures  used  in  most  of  the  processes  of  interest  in  the  chemical  process  industry  

[Lafarga   et   al.,   1998].   Since   the   materials   used   in   the   manufacture   of   ceramic  

membranes   are   also   commonly   used   as   conventional   catalyst   supports   (as   alumina),  

there   has   been   a   strong   interest   in   the   development   of   membrane   reactors   by  

researchers  with  previous  experience  on  heterogeneous  catalysis,  who  adapted  many  of  

the  preparation  and  characterization  techniques  used  in  this  field.  The  most  important  

and  valuable  fact  is  that  membrane  itself  is  the  catalyst  [Coronas  et  al.,  1999]  and  it  can  

be   used   for   a   wide   range   of   applications.   Catalytic   membranes   are   used   to   improve  

contact  efficiency  with  the  objective  of  attaining  higher  conversions  by  decreasing  mass  

transfer   resistances.   Membrane   reactor   with   catalytic   surface   aims   to   improve   the  

contact   in   gas–liquid–solid   systems   by   providing   a   well-­‐defined   contact   region:   the  

liquid-­‐filled  pores  of   the   catalytic   zone  of   the  membrane   in   close  proximity   to   the   gas  

interphase.  This  does  not  require  a  permselective  membrane  and  avoids  the  problem  of  

catalyst  recovery  that  appears  in  slurry  reactors.  

Poorly   permselective   inert   porous   membranes   such   as   mesoporous   alumina,  

mesoporous   glass   etc.   can   reveal   attractive   for   a   number   of   dehydrogenation  

reactions.  Infiltrated  MFI/alumina  composite  membranes  have  been  used  as  O2  

distributors  but  also  as  barriers  for  dehydrogenation  reactions  in  MRs  [Julbe  et  

al.,  2001].  

 

(a) VOCs  removal  

 

Volatile  Organic  Compounds  (VOCs)  are  among  the  most  common  air  pollutants  

emitted  from  chemical,  petrochemical,  and  allied  industries.  VOCs  are  one  of  the  

main   sources   of   photochemical   reaction   in   the   atmosphere   leading   to   various  

environmental  hazards  and  on  the  other  hand,  these  VOCs  have  good  commercial  

value.  Hence,  growing  environmental  awareness  has  put  up  stringent  regulations  

to  control  the  VOCs  emissions.  In  such  circumstances,  it  becomes  mandatory  for  

Page 72: Alumina Membranes

  72  

each  VOCs  emitting  industry  or  facility  to  opt  for  proper  VOCs  control  measures.  

There   are   many   techniques   available   to   control   VOCs   emission   (destruction  

based   and   recovery  based)  with  many   advantages   and   limitations   [Khan   et   al.,  

2000].  One  of   these  methods   for   removal  and  no  so  often   for  VOCs  recovery   is  

gas   separation  with   ceramic  membranes   -­‐   zeolithe   and   alumina  membranes   in  

most  of  the  cases.  By  the  University  of  Zaragoza  in  Spain  team  and  other  research  

groups   this   concept   has   already   been   demonstrated   eg.   using   hydrogenation  

reactions  over  Pt/Al2O3  catalysts  in  membrane  module.    

 

In  Figure  19,  it  is  illustrated  a  flow-­‐through  membrane  in  which  the  permeation  

of  a  premixed  feed  stream  takes  place.  This  was  the  approach  employed  in  works  

by  Saracco  et  al.  (1999),  who  used  catalytically  modified  fly  ash  filters  for  alcohol  

dehydration  and  for  the  reduction  of  nitrogen  oxides  with  NH3.  Pina  et  al.  (1999)  

used  Pt/Al2O3  and  perovskite-­‐containing  membranes   operating   in   the  Knudsen  

regime   for   the   purification   (by   catalytic   combustion)   of   air   streams   containing  

volatile   organic   compounds   (VOCs)   in   low   concentrations.   According   to   this  

study,   since   in   the   Knudsen   diffusion   regime   the   probability   of   collisions  

between   the   molecules   and   the   wall   of   the   pores   is   maximised,   this   type   of  

membrane  would  be  expected   to  give  high   contact   efficiency   in   the   reaction  of  

diluted   streams,   such   as   those   commonly   encountered   in   VOC   removal.   The  

results   of   Pina   et   al.   (1999)   showed   that   the   membrane   could   perform   very  

efficiently   in   the   combustion   of   VOCs   at   low   temperatures,   although   at   the  

expense  of  a  significant  pressure  drop.    

 

Figure  19:  Applications  of  membrane  reactors  [Coronas  et  al.,  1999]  

 

Page 73: Alumina Membranes

  73  

The  industrial  application  of  this  type  of  reactor  surely  requires  optimization  of  

the  membrane  structure  aimed  to  reducing  the  pressure  drop.  Otherwise,  its  use  

would   be   restricted   to   applications   involving   reaction   simultaneous   with   gas  

filtration,  where  the  pressure  drop  is  already  present.  

 

(b) Methane  to  ethane  reaction  

 

In   Lafarga   D.   and   Santamaria   J.   projects   published   in   international   literature  

[Lafarga   et   al.,     1994;   Sebastian   et   al.,   2009]   a   new   reactor   concept   has   been  

developed   and   tested   for   the   conversion  of  methane   into   ethane,   ethylene   and  

higher  hydrocarbons  via  oxidative  coupling.  The  basic  idea  consists  of  providing  

a   low   oxygen   concentration   in   the   reactor   in   order   to   increase   hydrocarbon  

selectivity.  To  this  end,  oxygen  is  supplied  to  the  reacting  mixture  by  permeation  

through   a   porous   wall   as   a   modified   alumina   membrane,   which   is   capable   to  

withstand   the   temperatures  and  pressures   involved,  and  at   the  same   time  give  

adquate  values  of  oxygen  flux  [Lafarga  et  al.,  1994].  

 

Concluding,   despite   the   plethora   of   studies   appeared   in   the   open   and   patent  

literature   focusing   on   the   development   of   ceramic   materials   for   gas   mixture  

separations  [Koutsonikolas  et  al.,  2010]  no  many  industrial  processes  have  been  

commercialized.   Although   alumina   membrane   is   the   most   used   in   large   scale,  

polymer   membranes   are   still   dominating   in   commercial   field   of   separation  

process.   The   lack   of   selectivity   combined  with   their   high   unit   cost  most   often  

ascribed   to   the  support,  as  well  as   their   lack  of  hydrothermal  stability   in  some  

cases,   act   as   key   economical   and   technological   barriers   for   the   industrial  

implementation.  

 

 

 

 

 

 

Page 74: Alumina Membranes

  74  

6.SUMMARY  AND  CONCLUSIONS      The   term   alumina   includes   large   number   of   chemical   compounds:   amorphous,  

crystalline   trihydroxides,   monohydroxides,   transition   aluminas   and   stable  

anhydrous  alumina.    

 

Alumina   takes  attention  with  good   thermal,  mechanical  and  chemical   stabilitiy,  

as  a  material  for  industrial  applications.    With  wider  applications  of  membrane,  

alumina   is   trending   topic.     Alumina   pore   size   distributions   can   be   controlled  

easily  modifications  on  operation  conditions  from  a  hundred  of  nanometers  to  a  

hundred  of  micrometers.  

 

Besides   traditional   pathways   like   sintering   and   anodic   oxidation,   alternative  

methods   -­‐   sol-­‐gel   methods,   dip   coating,   rapid   gelation-­‐     are   introducing   with  

alumina   membrane   synthesis.   The   optimum   range   that   will   provide   a   good  

compromise   between   permeability   and   strength   is   being   improved   also   with  

additives.    

 According   to   literature  overview,  alumina  membranes  are  applied  especially   in  

the   areas   where   the   advantages   of   ceramic   membranes   can   be   exploited.   In  

biotechnology  and  pharmaceutical   industry   their   resistance   to  microbial  attack  

and  biological  degradation   is  really  very   important  and  their  good  thermal  and  

chemical   stability   are   often   the   factors   that   have   made   them   beneficial   in  

wastewater   treatment   and   gas   separation   applications.   However,   they   suffer  

from  poor   steam   stability,   fouling   and   cracking   and   because   of   this   alumina   is  

often   mixed   with   additives   such   as   metals   or   oxides   to   improve   such   kind   of  

drawbacks   [Laitinen,   2004].   Modifications   can   also   be   used   to   increase  

selectivity  by  surface  adsorption  or  molecular  sieving  effects  and  a  wide  range  of  

research  field  in  ceramic  membrane  is  oriented  to  this  direction.  

Page 75: Alumina Membranes

  75  

APPENDIX  A  :  Membrane  Material  Sheet                MEMBRANE  MATERIAL  NAME   Alumina      1.  INTRINSIC  PROPERTIES    Nature   High     Low  1.  1.  General  physicochemical  properties      Bulk  density  at  RT  kg/m3   1217.406   800.925              1.  2.  Mechanical  properties      Tensile  Strength    (MPa)   173  a   117  b  Bending  Strenght  Mpa   413  c   307  d  Modulus  of  Elasticity    (E)  X  108  MPa   26.8  a   21.27  b  Compressive  Strenght  Mpa   3733  e   1600  b    Modulus  of  Ridity(G)  X  108  MPa   11.3  a   8.67  b  Hardness  on  the  mohs  scale     9    1.  3.  Thermal  properties      Melting  point  OC   2051.0  ±  9.7  Boiling  Point    OC   3530  ±  200                1.  4.  Surface  properties      Zero  point  of  charge   9.45  f     9  g  Water  contact  angle   73.3   62.6  SBET    (m2/g)   484.34   98.3  Pore  Diameter    (A)   72.23   20.49  Pore  Volume  (mL/g)   1.27   0.54  

1.  5.  Chemical  properties      Operating  pH  range          

Compatibility  with  solvent  1   phosphoric  acid  -­‐  HF   well  

Compatibility  with  solvent  2   HCl-­‐  HNO3   weak                a  polycrystalline  alumina  94%   e  polycristalline  alumina  100%  b  polycrystalline  alumina  85%   f  gamma  alumina      c  polycristalline  alumina  99.9%   g  bohemite      d  polycristalline  alumina  85.5%      

Page 76: Alumina Membranes

  76  

2.  CHARACTERISTICS  OF  COMMERCIAL  MEMBRANES  BASED  ON  THIS  MATERIAL    Membrane  name   Memrbalox  Membrane  manufacturer     Pall  Membrane  shape   capillary  tube,  multichannel,  monolithic  Membrane  structure   symmetric  Support  nature   ultrapure  µ-­‐alumina,  zirconia,  titania  Membrane  type   porous  Average  pore  size   5μm  Molecular  weight  cut-­‐off   1-­‐5kg/mol  Water  permeance  at  RT   300    l/(m²h  bar)    Membrane  name   Anopore  Membrane  manufacturer     Myriad  Membrane  shape   disc  Membrane  structure   symmetric  Support  nature   polypropylene  Membrane  type   porous  Average  pore  size   0.02-­‐0.1μm  Molecular  weight  cut-­‐off   0,1μm  Water  permeance  at  RT   1  m³/m²    Membrane  name   Céram  inside  Membrane  manufacturer     TAMI  Membrane  shape   Disc  Membrane  structure   Porous,  plate,  tubular,  multichannel  Support  nature   Alumina/titania/zirconia  Membrane  type   dense,  porous  Average  pore  size   0,14-­‐1,40μm  Molecular  weight  cut-­‐off   1-­‐300kg/mol  Water  permeance  at  RT   800  -­‐1200  l/(m²h  bar)                                  

Page 77: Alumina Membranes

  77  

APPENDIX  B:  Chemical  Interest  Of  Alumina      

Alkali  Metals  

 

Ryshkewitch   (1960)   stated   that   molten   lithium   attracts   alumina   aggressively,  

potassium   to   lesser   degree,   and   sodium   the   least.   Reed   claimed   that   the  

corrosion  resistance  of  sintered  alumina  to  both  liquid  and  vaporized  sodium  is  

good  at  900  OC.  A  commercial  sintered  alumina  article  disintegrated  within  168  

hours  at  940  OC,  however.    A  synthetic  sapphire  cylinder    (1/4  in.  diameter  by  1  

in.   length   lost   about  1%   in  weight   in  168  hours  ay  900  OC  but   remained   clear.  

Kelman,   Wilkinson,   and   Yaggee   found   that   sodium   potassium   did   not   attract  

below  500  OC,  but  caused  corrosion  at  600  OC.  Kolosova  et  al.  found  a  weight  loss  

of  only  0.01   to  0.06%   in  35  hours  at  400  OC   for   sintered  alumina   immersed   in  

molten  alkali  (79%K,  21%Na).  

 

The  behavior  of  vaporized  alkali  metals  on  oxides  and  other  dielectric  materials  

has   been   of   interest   for   thermoelectric   converters.  Wagner   and   Coriell   (1959)  

tested   Al2O3,   BN,   ZrO2,   MgO,   HfO2,   ThO2,   CaO,   and   NbC   to   exposure   to   cesium  

vapor   at   temperatures   as   high   as   1475   OC.     Only   fused   alumina   remained  

unaffected   by   the   test.   It   was   concluded   that   cesium   probably   reacts   with  

impurities  in  the  contacting  material,  but  the  effect  can  ben  observed  only  when  

the   surface   areas   available   for   reaction   are   relatively   large,   as   is   the   case  with  

sintered   specimens.     Higgings   attributed   pitting   of   single   crystals   by   cesium  

vapor  at  600  OC  to  silicon.  And  barium  impurities;  neutron  irradiation  increased  

the  attack.  C.  E.  Addams  (1959)  observed  that  rubidium  effectively  condensed  at  

high   temperatures   only   on   oxides   with   which   it   could   form   stable   complex  

compounds.  Cowan  and  Stoddard  (1964)  stated  that  glasses  could  not  be  used  in  

thermionic  converter  seals  because  of  alkali  metal  (cesium)  corrosion.    

 

 

 

 

Alkaline  Earth  Metals    

Page 78: Alumina Membranes

  78  

 

Jaeger   and   Krasemann   (1952)   observed   no   reaction   of   calcium,   barium,   or  

strontium   to   their  boiling  points   (about  1150  OC).  This   is   likely,   since  BaO  and  

SRO  can  be   reduced   to   the  metals   (thermite   reaction)  by  metallic  aluminum  at  

1100   OC   in   a   vacuum   (Gvelisiani   and   Pazukhin).   Magnesium   also   shows   no  

attract  to  its  boiling  point  (1100  OC).  

 

Aluminum  

 

Aluminum  reacts  with  alumina  at  1100  OC  to  form  Al2O,  and  at  1600  OC  to  form  

AlO  (Hoch  and  Johnston).  

 

Antimony,  Arsenic  

 

Jaeger  and  Krasemann  claimed  no  attract  of  sintered  alumina.    

 

Beryllium    

 

Beryllium  (melting  point  1500  OC)  shows  no  attract  of  sintered  alumina.    A  slight  

darkening   of   the   Alumina,   caused   by   formation   an   interfacial   layer   of  

chrysoberyl,  BeO  ∙  Al2O3  (melting  point  1870  OC),  and  Be  ∙  3Al2O3  (melting  point  

1910   OC)   are   identified   compounds   (Lang,   Fillmore,   and   Maxwell,   1952;  

Galakhov,  1957).    

 

Bishmut    

 

The   corrosion   resistance   is   good   to   1400   OC   (Reed).   The   reaction   product   is  

Bi2O3∙2Al2O3  (Levin  and  Roth,  1964).  

 

Carbon  

 

Carbon  reduces  alumina  to  normal  carbide  Al4C3  (Prescott  and  Hinckle)  at  above  

1700  OC  (Jaeger  and  Kresemann),  initiating  at  as  low  as  1310  OC  (Komarek  et  al.),  

Page 79: Alumina Membranes

  79  

but   requiring   about   2400   OC   for   complete   conversion   (Kohlmeyer   and  

Lundquist).   Two   oxicarbides   also   exist   at   about   2030   OC,   Al4O4C   (Foster,   Long  

and  Hunter;   Cox   and   Pidgeon).   The   presence   of   Fe2O3,   SiO2,   TiO2,   and   V2O5   as  

impurities  in  sintered  alumina  might  induce  deterioration  at  lower  temperatures  

(Stroup),   as   low   as   1380   OC   (Kroll   and   Schlechten).   The   reduction   to  metallic  

aluminum  occurs  at  about  2000  OC  (Miller,  Foster,  and  Baker).  Graphite  does  not  

wet  molten   alumina,   but   severely   pitted   in   contact  with   it   in  water-­‐free,   inert  

atmosphere  or  vacuum  (Barlett  and  Hall).    

 

Cerium    

 

Ceric  oxide,  CeO,  forms  no  compounds  with  alumina  (Wartenberg  and  Eckhardt).  

Cerous   oxide,   Ce2O3,   forms   Ce2O3  ∙  11   Al2O3   and   Ce2O3  ∙  Al2O3,   both   of   which  

decompose  in  air  to  form  Al2O3  and  CeO2  at  temperatures  above  800  OC  (Leonov  

and  Keler).    

 

Chlorine    

 

Chlorine   does   not   attack,   except   in   the   presence   of   carbon   (Singer   and  

Thurnauer).  

 

Chromium    

 

Chromium   wets   alumina   at   1650   OC   in   a   reducing   atmosphere   (Blackburn,  

Shelvin  and  Lowers).  

 

Cobalt    

 

Cobalt  neither  wets  nor  reacts  with  sintered  alumina  to  above  its  melting  point  

(1480  OC)  in  a  reducing  atmosphere  (Sieverts  and  Moritz;  Tumanov  et.  al.).  

 

Copper  

 

Page 80: Alumina Membranes

  80  

Copper   reacts   with   the   transition   aluminas   at   800   OC   in   air   to   form   CuAl2O4,  

which   is   stable   to  1000  OC.   It   then  converts   to  CuAlO2,  which   is   stable   in  air   to  

about  1260  OC  (Hahn  and  de  Lorent,  1955;  Misra  and  Chaklader,  1963).  

 

Fluorine    

 

Winzer  claimed  attack  of  sintered  alumina  at  1700  OC  by  dry  fluorine.    

 

Gallium    

 

Sintered  alumina  is  inert  to  gallium  to  1000  OC  (Kelman  et  al.).  Wartenberg  and  

Reusch  (1932)  found  solid  solutions  above  810  OC  with  Ga2O3.    

 

Hydrogen    

 

Jaeger  and  Krasemann  observed  no  reduction  of  alpha  alumina  in  hydrogen  up  to  

the  melting   point,   only   a   surface   darkening   L.   J.   Trostel,   Jr.   (1965)   noted   that  

hydrogen  attacks  alumina  refractories  below  1600  OC,  however  in  the  presence  

of  water  vapor.  

 

 

Iron  

 

Iron   can   be   melted   in   sintered   alumina   under   reducing   conditions,   but   wets  

about   1600   OC   (Blckburn   et.   al.).   The   spinel   FeO  ∙  Al2O3,   dissolves   to   about   6%  

alumina  at  1750  OC  (McIntosh,  Rait,  and  Hay;  Fischer  and  Hoffman).  

Muan   and   Gee   (1956),   and   Muan   (1958)   found   limited   solubility   for   Fe2O3   in  

corundum.   Richards   and   White;   Atlas   and   Sumida;   and   Turnoc   and   Lindsley  

investigated   the   spinel   reactions;  Fe2O3  ∙  Al2O3  has  a   structure   similar   to  kappa  

alumina,  and  requires  above  1320  OC  prepare.  

 

Lead  

 

Page 81: Alumina Membranes

  81  

No  reaction  occurs  with  alumina  at   the  melting  point  of   lead  (327  OC).   In   lead-­‐

bismuth  eutectic  alloy   (44.5%  Pb),  Gangler   found  0.000  mils/year   loss  at  1090  OC.  Lead  aluminate  is  unstable  above  970  OC  (Geller  and  Bunting).    

   

 

Lithium  (See  alkali  metals)  

 

Manganese    

 

Manganese  does  not   attack   sintered  alumina   to   above   the  melting  point   (1260  OC)   in   a   reducing   atmosphere.   Although   it   is   more   active   than   iron,   cobalt   or  

nickel   it   can   be   distilled   in   sintered   alumina   to   give   a   spectroscopicially   pure  

product  (Sieverts  and  Moritz).  

 

Mercury    

 

Kelmann  et  al.,  and  Hahn,  Frank,  et.  al.  found  no  reaction  with  alumina  at  300  OC.    

 

Molybdenum  

 

Alumina   is   not   reduced   by   molybdenum   even   above   the   melting   point   of  

alumina.  Discoloration  may  occur  at  2100  OC  in  a  dry,  inert  atmosphere  (He).  

 

Nickel    

 

No   attack   occurs   in   dry   inert   atmosphere   Nickel   can   be   melted   in   sintered  

alumina   in   hydrogen   atmosphere   (Economos   and   Kingery).   Wetting   occurs   at  

1800  OC.    

 

 

 

Niobium  

 

Page 82: Alumina Membranes

  82  

Mass  spectrometric  and  thermogravimetric  analysis  at  1800  to  2200  OC  indicates  

the  principal  reaction  is    

!!!!! + 3  !"   → 2  !"   ! +  3!"#   ! .  

Secondary  reactions  under  neutral  conditions  are:  

!!!!! + !"   →  !!!!   ! +  !"!!   !  

!!!!! + 2  !"  +  1 2!! →  !!!!   ! + !"!! +  !"#  (!)  

(Grosmann,  1966).  

 

Nitrogen    

 

Nitrogen  does  not  attack  (Jaeger  and  Krasemann).    

 

Palladium,  Platinum  

 

Both  metals  can  be  handled  in  the  molten  conditions  in  sintered  alumina.    (Jaeger  

and  Krasemann)  

 

Phosphorus  

 

No  attack  was  observed  in  moderate  temperatures  (Jaeger).  

 

Silver  

 

No  compounds  can  be  prepared  with  silver  and  alumina  (Hahn,  Frank  et.  al.).  

 

Sulfur,  Selenium,  Tellurium  

 

These  elements  do  not  attack  alumina.  

 

Tantalum    

 

Tantalum   reacts   only   slightly   with   molten   alumina   in   water   free   inert  

atmosphere,  H2,  N2,  CO,  or  in  vacuum  (Bartlett  and  Hall).    Alloy  90  Ta-­‐10W  shows  

Page 83: Alumina Membranes

  83  

slight  reaction.  Tantalum  carbide  and  4  TaC  ∙  ZrC  react  only  slightly  (Bartlett  and  

Hall).    

 

Tin    

 

No  reaction  occurred  in  molten  tin  at  1000  OC.  

 

Titanium,  Zirconium  

 

 No   reaction   occurred   in   an   inert   atmosphere   below   1800   OC,   at   which  

temperature  black  discoloration  of  the  grains  and  corrosion  occurred  (Economs  

and  Kingery).  Titanium  nitride  wets  molten  alumina  with  negligible  corrosion  in  

water  free  inert  atmosphere  (Barlett  and  Hall).  

 

Titanium  +    Aluminum-­‐Hardened  Nickel-­‐Base  Alloy  

 

Decker,   Rowe   and   Freeman   found   that   trance   amounts   of   zirconium   or   boron  

picked  up  from  zirconia  or  magnesia  crucibled  reduced  cracking  of  the  hardened  

nickel-­‐base  alloys  during  hot-­‐working  and  increased  their  rupture  strength  and  

ductility.   It   was   desirable   to   compensate   for   this   effect   when  making   heats   in  

sintered  alumina  crucibles.    

 

Tungusten    

 

Jager   and   Kresemann   observed   no   reaction   between   tungusten   and   alumina.  

Wallace  et.  al.  (1961)  investigated  the  reactions  in  a  Knudsen  cell-­‐oven  operable  

at  2500  OC  in  conjunction  with  a  Nier-­‐type  mass  spectrometer.  Jacodine    (1961)  

observed   a   growth   of   nodules   or   hillocks   of   alumina   in   the   investigation   of  

heater-­‐cathode  breakdown  of  alumina-­‐coated  heaters  operated  at  1200  OC  and  

180  volts  dc.  Tungusten  wets  molten  alumina  with  negligible  corrosion  in  water-­‐

free  inert  atmosphere  (Barlett  and  Hall).    

 

 

Page 84: Alumina Membranes

  84  

Uranium  

 

Jaeger  and  Krasemann  found  no  reaction  between  uranium  and  sintered  alumina  

to  1200  OC.  Dykstra  (1960)  found  no  solid  solution  between  Al2O3  and  uranium  

oxide.    

 

Vanadium    

 

Burdese  obtained  reaction  between  V2O5  and  gamma  alumina  at  500  OC  to  form  

Al2O3  ∙  V2O5.    

 

Zirconium  Boride  (ZrB2)  and  Zirconium  Carbide  (ZrC)  

 

Molten   alumina   wets   and   reacts   moderately   in   water   free,   inert   atmosphere  

(Barlett  and  Hall).  

   

 

 

 

 

 

 

 

 

 

 

Page 85: Alumina Membranes

  85  

 

REFERENCES  

Walter  H.  Gitzen;  Alumina  as  a  ceramic  material;  The  American  Ceramic  Society  Ohio;  1970      Ayral   Andre;   Colloidal   Alumina:   Definitions,   Properties,   Hydrosol   Making   and  Application  for  Ceramic  Memranes  ;  CNRS-­‐ENSCM-­‐  UM2;  France      Bhatnagar   A.,   Kumar   E.,   Sillanpää   M.,   Nitrate   removal   from   water   by   nano-­‐alumina:   Characterization   and   sorption   studies,   Chemical   Engineering   Journal,  Volume  163  (2010)  317-­‐323  

Diniz   da   Costa   J.,   Reed   G.,   Thambimuthu   K.,   High   Temperature   Gas   Separation  Membranes  in  Coal  Gasification,  Energy  Procedia.  1  (2009)  295-­‐302  

Diniz  da  Costa  J.C.,  Reed  G.P.,  Thambimuthu  K.,  High  Temperature  Gas  Separation  Membranes  in  Coal  Gasification,  Energy  Procedia,  Volume  1,  Issue  1  (2009)  295-­‐302  

Favre   E.,   Carbon   dioxide   recovery   from   post-­‐combustion   processes   :   Can   gas  permeation  membranes  compete  with  absorption,  Journal  of  Membrane  Science  294  (2007)  50–59  

Favre,   E.,   Carbon   dioxide   recovery   from   post-­‐combustion   processes:   can   gas  permeation  membranes  compete  with  absorption,  Journal  of  Membrane  Science  294  (2007)  50–59  

Feng  X.,  Pan  C.,   Ivory  J.,  Ghosh  D.,  Integrated  membrane/adsorption  process  for  gas  separation,  Chemical  Engineering  Science,  Vol.  53  (1998)  168  –  198  

Franz  J.,  Scherer  V.,  An  evaluation  of  CO2  and  H2  selective  polymeric  membranes  for  CO2  separation  in  IGCC  processes,  Journal  of  Membrane  Science  (2010)  173-­‐183  

Franz   J.,   Scherer  V.,   Impact  of   ceramic  membranes   for  CO2  separation  on   IGCC  power  plant  performance,  Energy  Procedia  4  (2011)  645–652  

Gu   Y.,   Hacarlioglu   P.,   Oyama   S.T.,   Hydrothermally   stable   silica–alumina  composite,  membranes   for   hydrogen   separation,   Journal   of  Membrane   Science  310  (2008)  28–37  

Hofmann  Ph.,   Panopoulos  K.D.,   Fryda   L.E.,   Schweigerc  A.,   Ouweltjes   J.P,   Karl   J.,  Integrating  biomass  gasification  with  solid  oxide  fuel  cells:  Effect  of  real  product  gas  tars,  fluctuations  and  particulates  on  Ni-­‐GDC  anode,  International  journal  of  hydrogen  energy  33  (2008)  2834  –  2844  

Hsieh   H.,   Bhave   R.,   Fleming   H.,   Microporous   alumina   membranes,   Journal   of  

Page 86: Alumina Membranes

  86  

Membrane  Science,  39  (1988)  221-­‐241  

Hyun  S.,  Jo  S.,  Kang  B.,  Surface    modification  of    y-­‐alumina  membranes  by    silane    coupling  for  CO2  separation,  Journal  of  Membrane  Science  120  (1996)  197-­‐206    

Hyun  S.,   Jo  S.,  Kang  B.,   Surface  modification  of  γ-­‐alumina  membranes  by   silane  coupling  for  CO2  separation,  Journal  of  Membrane  Science,  Volume  120,  Issue  2  (1996)  197-­‐206  Huang  P.,  Xu  N.,  Shi   J.,  Lin  Y.S.,  Recovery  of  volatile  organic  solvent  compounds  from  air  by  ceramic  membranes,  Ind.  Chemical  Engineering,  Res.  36  (1997)  3815  

Idrees   M.,   Yan   L.,   Hamdani   S.,   Synthesis   and   characterization   of   ceramic  (alumina)  membrane  sheet,  Proceedings  of  The  Eleventh  Symposium  of  Malaysia  Chemical  Engineers  (1995)  

Javaid   A.,   Ford   D.M.,   Solubility-­‐based   gas   separation   with   oligomer-­‐   modified  inorganic   membranes:   Part   II.   Mixed   gas   permeation   of   5   nm   alumina  membranes   modified   with   octadecyltrichlorosilane,   Journal   of   Membrane  Science  (2003)  157-­‐163  

Javaid   A.,   Hughey   M.P.,   Varutbangkul   V.,   Ford   D.M.,   Solubility-­‐based   gas  separation  with  oligomer-­‐modified  inorganic  membranes,   Journal  of  Membrane  Science  (2001)  141-­‐155  

Javaid  A.,  Membranes  for  solubility-­‐based  gas  separation  applications  –  Review,  Chemical  Engineering  Journal  (2005)  219–226  

Jiraratananon   R.,   Uttapap   D.,   Tangamornsuksun   C.,   Self-­‐forming     dynamic    membrane  for    ultrafiltration  of  pineapple   juice,   Journal    of  Membrane    Science    129    (1997)    135-­‐143  

Jones  C.,   Fidalgo  M.,  Wiesner  M.,   Barron  A.,   Alumina  ultrafiltration  membranes  derived   from   carboxylate–alumoxane   nanoparticles,   Journal   of   Membrane  Science  193  (2001)  175–184  Julbe   A.,   Farrusseng   D.,   Guizard   C.,   Porous   ceramic   membranes   for   catalytic  reactors-­‐  overview  and  new  ideas,  Journal  of  Membrane  Science  181  (2001)  3-­‐20  Kaldis  S.,  Energy  and  capital  cost  analysis  of  CO2  capture  in  coal  IGCC  processes  via  gas  separation  membranes,  Fuel  Processing  Technology  (2004)  337-­‐346  

Koros   W.J.,   Evolving   Beyond   the   Thermal   Age   of   Separation   Processes:  Membranes  Can  Lead  the  Way,  www.interscience.wiley.com  (2011)  

Koros  W.J.,  Fleming  G.K.,  Membrane-­‐based  gas  separation,  Journal  of  Membrane  Science  (1993)  83-­‐89  

Koutsonikolas   D.E.,   Kaldis   S.P.,   Sklari   S.D.,   Pantoleontos   G.,   Zaspalis   V.T,  Sakellaropoulos  G.P.,  Preparation  of  highly  selective  silica  membranes  on  defect-­‐free   c-­‐Al2O3   membranes   using   a   low   temperature   CVI   technique,   Microporous  and  Mesoporous  Materials  132  (2010)  276–281  

Page 87: Alumina Membranes

  87  

Krishnan  G.,  Simulation  of  a  Process  to  Capture  CO2  From  IGCC  Syngas  Using  a  High  Temperature  PBI,  Membrane,  Energy  Procedia  (2009)  4079-­‐4088  

Kuzniatsova   T.,   Mottern   M.L.,   Shqau   K.,   Yu   D.,   Verweij   H.,   Micro-­‐structural  optimization   of   supported   alumina   membranes,   Journal   of   Membrane   Science  316  (2008)  80–88    Lafarga   D.,   Santamaria   J.,   Menéndez   M.,     Methane   oxidative   coupling   using  porous   ceramic   membrane   reactors—I.   reactor   development,   Chemical  Engineering  Science,  Volume  49,  Issue  12  (1994)  2005-­‐2013  

Laitinen   N.,   Development   of   a   ceramic  membrane   filtration   equipment   and   its  applicability   for   different  wastewaters,   Lappeenranta  University   of  Technology  (2002)  

Laitinen  N.,  Kulovaarab  M.,  Levänenc  E.,  Luonsib  A.,  Teilleriab  N.,  Nyströma  M.,  Ultrafiltration  of   stone  cutting  mine  wastewater  with   ceramic  membranes  —  a  case  study,  Desalination  149  (2002)  121–125  

Laltmen     N.,   Luonsi   A.   ,   Levanen   E.,   Mantyla   T.,   Modified     and   unmodified    alumina   membranes   in   ultrafiltration   of   board   mill   wastewater     fractions,  Desalination    115  (1998)  63-­‐70    

Li  W.,     Cao  C.-­‐Y.,    Wu  L.-­‐Y.,     Ge  M.-­‐Fa.,   Superb     fluoride     and     arsenic     removal    performance     of     highly     ordered  mesoporous   alumina,   Journal     of    Hazardous    Materials  198  (2011)  143–    150  

Li   W.,   Cao   C.-­‐Y.,   Wu   L.-­‐Y.,   Ge   M.-­‐F.,   Song   W.-­‐G.,   Superb   fluoride   and   arsenic  removal   performance   of   highly   ordered   mesoporous   aluminas,   Journal   of  Hazardous  Materials,  Volume  198  (2011)  143-­‐150  

Metz   B.,   Davidson,   O.,   Coninck   H.,   Loos   M.,   Meyer,   L.,   Stockage   du   dioxide   de  carbone,  Rapport  spécial  du  GIEC  (IPCC)  –  résumé  à  l’intention  des  décideurs  et  résumé  technique,  International  Panel  on  Climate  Change  (2005)  

Nicolas  C.-­‐H.,  Sublet  J.,  Schuurman  Y.,  Role  of  adsorption  and  diffusion  pathwa  ys  on   the   CO   2/N   2   separation   performance   of   nanocomposite   (B)-­‐MF   I-­‐alumina  membranes,  Chemical  Engineering  Science  66  (2011)  6057  –6068  

Pacheco   S.,   Tapia   J.,   Medina   M.,   Rodriguez   R.,   Cadmium   ions   adsorption   in  simulated  wastewater  using  structured  alumina–silica  nanoparticles,   Journal  of  Non-­‐Crystalline  Solids  352  (2006)  5475–5481  

Pagana   A.E.,   Sklari   S.D.,   Kikkinides   E.S.,   Zaspalis   V.T.,   Microporous   ceramic  membrane   technology   for   the   removal   of   arsenic   and   chromium   ions   from  contaminated  water,  Microporous  and  mesoporous  materials  V.110  (2008)  150-­‐156  

Pruneanu   S.,   Mihailescu   G.,   Neamtu   S.,   Olenic   L.,   Biro   L.   P.,   Applications   of  nanoporous  alumina  membranes,  IEEE  (2001)  59-­‐62  

Page 88: Alumina Membranes

  88  

Rabiller-­‐Baudry   M.,   Chaufer   B.,   Lucas   D.,   Michel   F.,   Ultrafiltration   of   mixed  protein   solutions   of   lysozyme   and   lactoferrin:   role   of   modified   inorganic  membranes  and   ionic  strength  on  the  selectivity,   Journal  of  Membrane  Science,  Volume  184  (2001)  137  -­‐145    Ciora   R.,   Liu   P.,   Ceramic   Membranes   for   Environmental   Related   Applications,  Media   and   Process   Technology   Inc.   Fluid/Particle   Separation   Journal,   Vol.   15  (2003)  45-­‐51  

Sandeep    K.    Dalvie    and  Ruth    E    Baltus,  Transport    studies  with  porous  alumina  membranes,  Journal  of  Membrane    Scrence  (1992)    241-­‐254  

Sandeep     K.D.,   Ruth   B.,   Transport     studies   with   porous   alumina   membranes,  Journal  of  Membrane    Science,    71    (1992)    241-­‐255    

Sen   M.,   Manna   A.,   Parimal   P.,   Removal   of   arsenic   from   contaminated  groundwater   by   membrane-­‐integrated   hybrid   treatment   system,   Journal   of  Membrane  Science,  Volume  354,  Issues  1–2  (2010)  108-­‐113  

Xomeritakis,   G.,   Tsai,   C.Y.,   Jiang,   Y.B.,   Brinker,   C.J.,   Tubular   ceramic-­‐   supported  sol–gel   silica-­‐based   membranes   for   flue   gas   carbon   dioxide   capture   and  sequestration,  Journal  of  membrane  Science  341  (2009)  30–36  A.F  .M  .  Leenaars  and  A  .J  .  Burggraaf,  The  formation  of  supported  membranes,  J  .  Colloid  Interface  Sci,  105  (1985)  27.    K.   Vasanthakumar,   S.   C.   Vanithakumari,   and   U.   Kamachi  Mudali   Fabrication   of  Nanoporous   Alumina   Membranes   by   Single   Step   Anodization   and   Their  Microscopic   Characterization   Corrosion   Science   and   Technology   Group,   Indira  Gandhi  Centre  for  Atomic  Research,  Kalpakkam  603102,  India    H.P   .   Hsieh*,   R.R.   Bhave   And   H   .L.   Fleming;   Microporous   Alumina  Membranes  Aluminum   Company   Of   America,   Alcoa   Laboratories,   Alcoa   Center,   PA   15069  (U.S.A  .),  1988    R.W.   Baker,   Membrane   Separation   systems:   Recent   Developments   and   Future  Directions,  Noyes  Data  Corp.,  Park  Ridge,  NJ,  1991.    Inorganic   Membranes:   Markets,   Technologies,   Players,   Business  Communications  Co.  Inc.,  Norwalk,  CT,  Marketing    Study  GB-­‐112N  1997      Membrane   Sicence   And   Technology   Series,3;   Inorganic   Membranes   For  Separation  And  Reaction;  H.  P.  HSIEH,  Elseiver,  1996    A.   Kirchner   ∗,   K.J.D.   MacKenzie,   I.W.M.   Brown,   T.   Kemmitt,   M.E.   Bowden  MacDiarmid;   Structural   characterization   of   heat-­‐treated   anodic   alumina  membranes   prepared   using   a   simplified   fabrication   process   Institute   for  Advanced  Materials  and  Nanotechnology      

Page 89: Alumina Membranes

  89  

G.G.  Avci,  A.  Misirli,  V.  Gunay,  Processing  and  characterization  of  microfiltration  supports  prepared  from  alumina  powders,  Ceram.  Int.  22  (1996)  23–26.    Christopher  D.  Jones    a,  Maria  Fidalgo    b,  Mark  R.  Wiesner    b,  Andrew  R.  Barron  ;  Alumina   ultrafiltration   membranes   derived   from   carboxylate–alumoxane  nanoparticles    XiaoRong   Huang*,   GenLiang   Meng,   ZhongTao   Huang,   JianMing   Geng   ;  Preparation  of  unsupported  alumina  membrane  by  sol-­‐gel  techniques      Jiansheng   Li,   Xiaoyang   Wang,   Lianjun   Wang   ∗,   Yanxia   Hao,   Youla   Huang,   Ye  Zhang,   Xiuyun   Sun,   Xiaodong   Liu   Nanjing;   Preparation   of   alumina   membrane  from   aluminium   chloride   University   of   Science   and   Technology,   School   of  Chemical  Engineering,      Weon-­‐Sik  Chae,  Sung-­‐Jae  Im,  Jin-­‐Kyu  Lee,†    and  Yong-­‐Rok  Kim;  Novel  Fabrication  of   Nanoporous   Alumina   Membrane   Microtubes:   2-­‐Dimensional   Nanoporous  Arrays  on  Every  Facets  of  Microtubes;  December  15,  2004    K.L.  Yeung,  J.M.  Sebastian,  A.  Varma;  Mesoporous  alumina  membranes:  Synthesis,  characterization,   thermal  stability  and  nonuniform  distribution  of  catalyst;  USA  1996    Rocio     Redon,   A.   Vazques-­‐Olmos,   M.E   Mata   Zamora,   A.   Ordonez-­‐   Medrano,;  Contact  Angle  Studies  on  Anodic  Porous  Alumina;    Mexico  2005