Alternative technologies and possible competitors in the ... · Space applications have been so far...

18
1 Allianz Global Corporate & Specialty Alternative technologies and possible competitors in the satellite business By AGCS Space Risks Department

Transcript of Alternative technologies and possible competitors in the ... · Space applications have been so far...

1

Allianz Global Corporate & Specialty

Alternative technologies and

possible competitors in the satellite business

By AGCS Space Risks Department

2

Table of contents

HAPS (High Altitude Pseudo-Satellites)

Stratospheric Airships

Stratospheric Balloons

HTS-LEO and MEO

Space tug and refueling

Insurance aspects

4

3

2

5

1

6

Are those projects credible as satellite services competitors?

3Allianz Global Corporate & Specialty, 2017

INTRODUCTION

� Space applications have been so far characterized by the use of high tech and expensive systems.

� With the advent of new technologies, some wireless communication alternative to satellites may appear.

� Thus, while GEO satellites have provided broadcasting solutions for more than 5 decades, some other cost efficient platforms are being tested.

� Concept: High altitude very lightweight UAV:

� Flying above commercial airspace (typically 20,000 m / 60,000 ft or above – down to 15,000 m at the end of the night)

� Low speed sufficient to maintain a sustained flight

� Powered by solar arrays (ex.: on the upper wing surface) and possibly batteries during night time.

�To be aloft several consecutives weeks.

� Advantage :

�Easily deployable / Low cost (approx. 5,000,000 to 10,000,000 USD, depending on size)

� Low MRO foreseen: flying above convective atmosphere and below harsh space conditions.

4Allianz Global Corporate & Specialty, 2017

HAPS (High Altitude Pseudo-Satellites)1

Right: Zephyr HAPS being launched by a team of runners …. Easier available and cheaper than a rocket launch (photo: Qinetiq)

� Background with HALE (High Altitude Long Endurance) aircraft :

�Use of Proteus aircraft as broadcasting relay was abandonned after tests over Los Angeles area in 2000s.

�More recently: Boeing Phantom Eye and Global Observer failed so far to attract customers

�Noticeable futur project : Titan SOLARA for Google (up to 7 kW of total power, 5 yearsendurance)

5Allianz Global Corporate & Specialty, 2017

HAPS (High Altitude Pseudo-Satellites)1

� Limitation and risk :

�Light structure design induces limited payload weight and power

�Valuable long operation capacity still to be demonstrated (AD&S Zephyr has achieved a 14 days demonstration flight so far)

�Light structures very sensitive to weather condition in atmosphere prior to reachingthe cruise altitude

6Allianz Global Corporate & Specialty, 2017

HAPS (High Altitude Pseudo-Satellites)1

Right: HELIOS UAV falling in the Pacific Ocean afterencountering wind shear conditions in 2003

- AIRBUS DEFENSE and SPACE ZEPHYR -

�Ready to be marketed in Zephyr S version (summer 2017)

�Payload characteristics:

� ~5 kg for Zephyr S (~100 Mbps)

� up to 22 kg, with 300 W available for Zephyr T (Twin) – from 2020

� Applications: narrowband mobile communications and imagery for local surveillance.

More suitable for observation and surveillance missions in the near future than for high throughput data transfer.

7Allianz Global Corporate & Specialty, 2017

HAPS (High Altitude Pseudo-Satellites) - Example1

8Allianz Global Corporate & Specialty, 2017

Stratospheric Airships

� Concept:

�Blimps (helium)

�Platform power consumption used for maintaining geostationary position

�Endurance: up to several years (typically 5 y)

� Advantage :

� Low cost (approx. 5,000,000 to 30,000,000 USD, depending on size)

� Limitation :

� Long endurance operations with payload not yet demonstrated

� Light structures could age prematurely

2

- THALES ALENIA SPACE STRATOBUS -

� Payload weight and performance:

�TAS plans for up to 250 kg for StratoBus (equivalent to the TAS EliteBus platform, subsequently used for Globalstar 2)

�Power: ~ 6 kW (~0.2 only for the payload)

� Introduction on the market: in a 4 years time frame

� Other competitors / projects: Lookheed Martin, Raven Aerostar etc.

Appears more credible than « pseudo-satellite » for data transfer, with Ka-Band system implemented.

9Allianz Global Corporate & Specialty, 2017

Stratospheric Airships - Example2

� Concept:

�Gas balloons (helium)

�Operating altitude: typically 30,000 m / 100,000 ft or above (depending on winds profile)

�Powered by solar panel (no consumption for station keeping)

�Life duration ~ 100 days (systems might be safely descended back to Earth with a parachute)

� Advantage :

� Very Low Cost: 1,000,000 to 2,000,000 USD

10Allianz Global Corporate & Specialty, 2017

Stratospheric Balloons3

11Allianz Global Corporate & Specialty, 2017

Stratospheric Balloons

� Limitation :

�No propulsion (possibly difficult to maintain a strict geostationary position).

�Low data rate: around 10 Mbps.

� Project: Google Loon (Raven Aerostar) for internet

�Power ~0.1 kW

�A balloon to be launched every 30 min

3

Need for a very large fleet to create and sustain a regional network.

12Allianz Global Corporate & Specialty, 2017

HTS-LEO and MEO

� Up to the 90s, the LEO were rather for EO, with some on the insurance market.

� The first LEO-MEO for telecommunications failed to compete against the traditional GEO market (Globalstar, Iridium, Orbcomm G1)

� The second generation is already in service (Globalstar 2, Orbcomm G2 or O3B) or will be launched and progressively deployed in the coming years (Iridium Next etc.)

� Cube and microsatellites currently rather research orientated (labs and university), could alsoembark small camera for EO, but may not act as a new player in the telecom business.

4

This may lead to a higher number of LEO versus GEO sat ellites, and thus a possible higher proportion of uni nsured spacecraft.

13Allianz Global Corporate & Specialty, 2017

HTS-LEO and MEO – projects examples

� Oneweb : between 650 to 1000 satellites ,~150 Kg each, in LEO constellation with nearly polar orbit (heights ~1200 Km).

�Very low price per satellite: estimated <$500,000

� SpaceX : up to 4,000 satellites in LEO 1,100 Km orbit

4

These large fleets could lead to less frequent use of insurance, with a mission robust to a certain number of losses.

Image credit: OneWeb

Image credit: ESAImage credit: NASA

14Allianz Global Corporate & Specialty, 2017

Space tug and refueling

� Concept:

�Spacecraft to refuel and / or repair satellites in orbit

�More global “in orbit services”

� Projects:

�Orbital ATK Mission Extension Vehicle (Space Logistics LLC): docking to satellites reaching theirEOL providing station keeping capacity extension linked to MEV AOCS – first flight by 2018.

�Airbus DS Space Tug : kind of launcher upper stage remaining on a parking orbit to position new satellites on their final orbit and also act as a “space gas station” .

5

Once in service, these mission extension vehicles may have an impact on renewal of the fleet.

Image credit:

Orbital ATK

� Advantage of HAP versus satellites:

�Low cost per unit.

�Possibility to change the payload.

�Better signal strength for a given output Power (due to low operating altitude).

�Geostationary position over a given area anywhere in the world (only above equatorfor GEO sats).

� But:

�All the concepts tested or being studied have a regional span only.

�Narrow spot beam due to « low » altitude operation.

�Need for between 100 and 200 of HAPS for the equivalent capacity of a single current GEO-HTS.

�Space is still mainly unregulated, while the HAP may need to go through airworthiness processes prior to being in service with private operators.

However, once in service, the HAP could be proposed on the insurance market: Space or Aviation?

15Allianz Global Corporate & Specialty, 2017

Summary and insurance aspects6

� HTS GEO and LEO may have more impact on satellite industry and insurance on the short term:

�HTS spot beams satellites currently developped will have:

� 1,000 times the capacity (up to 1 Tbps) to a single FSS / BSS dedicatedplatforms launched in 2000 – 2010,

�100 times the capacity of the early HTS.

�This capacity may create an hold in the existing fleets renewal, thus leading to a deficit in launches.

�Decreasing need in term of number of GEO satellites.

�With the developpement of internet services worldwide, the new HTS-LEO constellation could be some business change players.

The HAP use appears more adequate to fill the gap between low altitude UAV and satellites services in a near future. HTS is an already proven solution to provide data transfer and connectivity over large regions.

16Allianz Global Corporate & Specialty, 2017

Summary and insurance aspects6

Allianz Global Corporate & SpecialtyAt a Glance

� Full range of products and services covering corporate and specialty insurance worldwide

� Allianz Global Corporate & Specialty (AGCS) teams in 29 key countries

� A combined Allianz and partner network in more than 160 countries worldwide

� Global team of 5000 employees from over 70 nationalities with more than 650 claims experts and 300 risk engineers worldwide

� Diversified risk portfolio and capital efficiency offers stability and long term consistency

� Provides insurance for nearly three quarters of the Fortune Global 500 companies and large specialty clients

� Managing 2500 global programs with more than 18000 foreign local policies attached

� Market leading capacity – to handle the largest risks

� Consistently strong ratings : AA (‘Very Strong’) from Standard & Poor’s, A+ (‘Superior’) from A.M. Best

Allianz GroupAs Allianz, 85 million customers in over 70 countries rely on our knowledge, global presence, financial strength and solidity. 5 million customers

Allianz Global Corporate & Specialty, 201717

18

Space insurance within AGCS SE

Based in Paris, the Space Underwriting Team forms part of the Specialty Division within AGCS SE.

With a market leading position, AGCS SE is able to meet any demand of the challenging field of Space. We provide worldwide insurance capacity and expertise in relation to space risks insurance in the following fields:

• Launch and commissioning

• In-Orbit

• In-Orbit incentives

• Service Interruption / Loss of Revenue / Broadcast Events

• Pre-Launch

• Third Party Liability.