ALTERNATIVE METHODS FOR MITIGATING NATURAL …

65
ALTERNATIVE METHODS FOR MITIGATING NATURAL PHOTOVOLTAIC VARIABILITY: DYNAMIC HVAC LOAD COMPENSATION AND CURTAILED PV POWER BY JOHN ALEXANDER MAGERKO III THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Computer Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2016 Urbana, Illinois Adviser: Professor Philip Krein

Transcript of ALTERNATIVE METHODS FOR MITIGATING NATURAL …

Page 1: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

ALTERNATIVEMETHODSFORMITIGATINGNATURALPHOTOVOLTAICVARIABILITY:DYNAMICHVACLOADCOMPENSATIONANDCURTAILEDPV

POWER

BY

JOHNALEXANDERMAGERKOIII

THESIS

SubmittedinpartialfulfillmentoftherequirementsforthedegreeofMasterofScienceinElectricalandComputerEngineering

intheGraduateCollegeoftheUniversityofIllinoisatUrbana-Champaign,2016

Urbana,Illinois

Adviser: ProfessorPhilipKrein

Page 2: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

ii

AbstractContinuedintegrationofrenewableenergyresourcesontotheelectricgridincreasesvariabilityand

decreasesgridstability.Energystoragecanhelpmitigatesomeoftheseeffects,butconventionalenergy

storagesuchasbatteriesistypicallyexpensiveandhasotherdisadvantagessuchasroundtrip

inefficiencyandlimitedlifetime.Real,high-speedsolarpaneldataisusedtocharacterizethestochastic

energyoutputofPVsources,andthenumerouschallengesfacedandmethodsusedwhenmanipulating

thisreal-lifedatasetaredetailed.Twoalternativemethodsarethenpresentedtoabsorborreducethe

variabilityimposeduponthegridbyPVorothergeneration.(1)DynamicHVACloadcompensationis

showntoabsorbor“filter”short-termPVvariabilityandactaseffectivegridinertia.Aproposed

Butterworthfilterpowertargettechniquebalancesenergystoragedemandswithdecreased

uncertainty.Asmall-scalemodelofavariablespeedblowerandfanisusedtoprovideaconversion

betweenfanspeedandpowerconsumedandtoestimatefilteringlimitationsimposedbyundesirable

acousticeffects.Consideringtheacoustic,physical,andthermallimitationssimultaneously,thevariation

absorptionorfilteringcapabilityofdynamicHVACloadcompensationisanalyzedforvariousbuilding

sizesandon-sitePVpenetrations.Theresultingreductioninbatterystoragecapacityandutilizationis

brieflyinvestigated.(2)PVoperatingreservecurtailmentisintroduced.ThesameButterworthfilter

powerset-pointisused,itsimplementationisshownasfeasiblethroughsimulation,andthevariability

reductionisquantifiedintwodifferentways.TheclaimismadethatPVshouldbetreatedandpriced

likeconventionalgridgeneration,whichisresponsibleforbothenergyandregulationcapabilities.PV

operatingreservecurtailmentisthenshowntobeeconomicallyfavorableforatleastsomelevelof

reserve.Finally,aproposedmetricofoptimalityispresentedthatbalancesenergyproductionwith

decreasedvariability.

Page 3: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

iii

Acknowledgments

Tomyever-supportivefamilywhohasledbyexampleandprovidedtheencouragementandadvicethat

enabledmetoreachthismilestone.

ThisworkwasprimarilysupportedbytheGraingerCenterforElectricMachineryandElectromechanics

attheUniversityofIllinoiswithadditionalsupportfromtheSiebelEnergyInstitute.

Page 4: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

iv

Contents

1. IntroductionandMotivation..............................................................................................................1

1.1. Windandsolaras“negativeloads”............................................................................................1

1.2. Variabilityandinertiainthegrid................................................................................................2

1.3. Understandingandquantifyingtheproblem.............................................................................3

1.4. Energystorageandproposedalternatives.................................................................................3

1.4.1. Traditionalenergystoragesolutions......................................................................................3

1.4.2. VariablespeeddrivesinHVAC................................................................................................4

1.4.3. CurtailedPVpower.................................................................................................................6

2. High-speedSolarData........................................................................................................................7

2.1. Dataacquisitionhistory..............................................................................................................7

2.2. Capturingallpossibledynamics..................................................................................................8

2.2.1. Demonstratingsmoothdynamicsduringcharacteristicallynoisyperiod..............................8

2.2.2. Verificationduringflickeringshadows.................................................................................10

2.2.3. Investigationofdynamicsintermsofpotentialenergyloss................................................11

2.3. Dataprocessingchallengesandapproaches............................................................................13

2.3.1. Missingdata..........................................................................................................................13

2.3.2. Substituteddataforpublicuse.............................................................................................14

2.3.3. Datasynchronization............................................................................................................16

2.3.4. Parametercalculation...........................................................................................................17

2.4. Slowmetercurrentsaturationandactiontaken......................................................................20

2.5. PublicandauxiliaryusesforPVdataset...................................................................................20

3. DynamicHVACLoadCompensation.................................................................................................22

3.1. Desiredsolarpowervariationabsorption................................................................................22

3.2. Scalemodelsetupandfan-power/-speedprofiling..................................................................25

3.2.1. Smallblowercharacterization..............................................................................................26

3.2.2. Scalingassumptions..............................................................................................................27

3.3. Variationabsorptioncapability.................................................................................................27

Page 5: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

v

3.3.1. Amplitudevariancebounds..................................................................................................28

3.3.2. Rampratelimit.....................................................................................................................29

3.4. EffectivenessofdynamicHVACcompensation.........................................................................32

3.4.1. Reducedbatterystoragerequirement.................................................................................34

4. PVOperatingReserveCurtailment...................................................................................................36

4.1. Operatingreservecurtailmentscheme....................................................................................36

4.2. PVsystemsasagridresource...................................................................................................37

4.3. EconomicjustificationofPVcurtailment..................................................................................38

4.4. Measuresofvariabilityandoptimality.....................................................................................40

5. Implementationanalysis..................................................................................................................43

5.1. Incrementalconductance–areview........................................................................................43

5.1.1. Conventionalalgorithm........................................................................................................43

5.1.2. Modifiedalgorithm...............................................................................................................44

5.2. Modelingprocedureandverification.......................................................................................45

5.2.1. Stage1:Basecase.................................................................................................................46

5.2.2. Stage2:Averagecircuitmodel.............................................................................................46

5.2.3. Stage3:Constantcurtailment..............................................................................................47

5.2.4. Look-uptablecreation..........................................................................................................48

5.2.5. Butterworthcalculation........................................................................................................50

5.2.6. Results..................................................................................................................................51

5.3. Economicjustificationforimplementation..............................................................................51

6. Conclusion........................................................................................................................................54

6.1. Futurework...............................................................................................................................55

References..................................................................................................................................................57

Page 6: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

1

1. IntroductionandMotivationIntermittentrenewableenergyresourcesarerapidlybecomingsignificantplayersinthepower

generationlandscape[1],buttheyhavebeenshowntobeextremelyvariable,evenovershorttime

scalesofsecondstotensofseconds.Solarinparticularcanexhibitrapidpowerchangesinthevicinityof

80%peakpowerondayswhereintermittentcloudsblockthesun.Figure1.1representsonesuchtypical

daywithintermittentcloudcover.Thisunpredictabilitycoupledwithreducedtraditionalgenerationthat

solarisreplacingthreatensthestabilityandreliabilityoftheelectricgrid[2].Thedefaultsolutionto

thesechallengesistypicallyenergystorageintheformofbatteries,butthisthesisfocusesoncheap,

partial,alternativesolutionsthatprovidenumerousbenefitswithouttheneedforsignificantadditional

costorhardware.

Figure1.1.Samplepoweroutputfrom20WsolarpaneldemonstratingrapidchangesinPVpoweroutput.

1.1. Windandsolaras“negativeloads”Thefundamentalkeytosuccessfuloperationoftheelectricgridismaintainingpowerbalanceatall

times.Thatmeansthatateveryinstantintimepowerdemandedmustbemetbypowersupplied.

Thankstoanumberofmarketstructuresandgridcontrols,small-tomid-sizeelectricityconsumers

couldturnonandoffanyelectricload,unannounced,atanytime,andthegridcouldmaintainstable

Page 7: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

2

operation.Whenwindandsolarenergygeneration,specificallyphotovoltaics(PV),wereintroducedto

thegrid,theyweretreatedinthesamewayasloadshadbeen;independentlyownedwindandsolar

couldproducelargelyunregulatedamountsofpowerwheneveritwasavailable.Despitebeingelectric

generationunits,neitherwindnorsolarwereoriginallyresponsibleformaintainingstabilityorreliability

oftheelectricgrid.Incontrast,theywereincreasingvariabilityanduncertainty.Forthisreason,these

renewableresourcesweredeemed“negativeload”astheybehavedjustliketypicalelectricloadsmight

withtheexceptionthattheyproducedpowerratherthanconsumedit,andthereforeutilitycompanies

couldnotchargethemforthepowerfloworvariationinpowerthattheyproduced.Paymentstructures

forelectricityavailabilityinsuranceorelectricitypricesforreverseflowareoutsidethescopeofthis

thesis;however,thecostofvariabilityimposeduponthegridisrelevant.Arguably,aswindandsolar

becomeincreasinglysignificantsourcesofenergyandastheircostscontinuetofall,they,asgeneration

sources,shouldberesponsibleformitigatingsome,ifnotall,oftheirvariability.Thefocusofthisthesis

isentirelyonsolarPVgeneration,thoughmanyofthesameproblemsandpotentialsolutionsexistfor

windorotherresourcesaswell.

1.2. VariabilityandinertiainthegridUnlesseverygeneratorandloadschedulesitsfutureactivities,temporaryimbalanceswillbeintrinsicto

thegrid,andthisisnormal;smallload-changevariationsoccurallthetime,andthegridhasoperated

satisfactorilywiththeseandmuchlargerdisturbances(suchaslightning,faults,orgeneratoroutages)

formanydecades.Thekeytogridstabilityistheinertiafoundmostlyinlargeturbinegenerators.Any

timeagriddisturbanceoccurs,therotationalspeedoftheon-linegeneratorschanges,buttheirlarge

inertiakeepsthemmoving.Thisformofenergystoragepermitsgovernorsorotherfastcontrol

mechanismstomaintainsynchronousoperationofgeneratorsandthusstabilityofthegrid.

Unfortunately,PVgeneratorsconnecttothegridthroughpowerelectronicinverters,andtheydonot

possessanyinherentinertiaorsignificantenergystorage;changesinirradianceonasolarpanel

translatetonearinstantaneouschangesinelectricalpoweroutput.Ontopofthis,asPVproducesmore

andmorepower,traditionalgeneratorswillbetakenoff-line,furtherreducingtheavailablestabilizing

inertiaonthegridandreplacingpredictable,controllablegenerationwithhithertostochasticsources.

IEEEstandard1547compoundedalloftheseissuesbyrequiringinverterstodisconnectduringfaults,

thoughsuchstandardshavebeenrevisedinrecentyearstoallowforlow-voltageridethrough[3].

Nevertheless,thetakeawayisthatcontinuedpenetrationofdistributedPVsystemsisnotsustainable

unlesstheuncertaintyandstabilityissuescanbeaddressed.

Page 8: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

3

1.3. UnderstandingandquantifyingtheproblemToaddresstheissueofPVvariability,itisimportanttoidentifytherelevanttimescalesusinglong-term,

reallifesolardata.Nootherrandompatterngeneratorcanaccuratelysimulatethestochasticityofreal-

lifechangesinirradiance,atleastnotuntilitiswellunderstood.Oneofthemajorfociofthisthesisisto

quantifythevariabilityatvarioustimescalesandensurethatallpossibledynamicswerecapturedand

consideredwhenperformingthisanalysis.Previousworkhasdifferedinitsdefinitionofhigh-frequency

solardatawithsamplingratesrangingfrom1min[4]to20s[5],[6]andtoppingoutatabout1Hz[7],

[8].Aswillbeshown,allofthesefallwellshortofthesamplingfrequencyrequiredtocaptureall

possiblefluctuations.Chapter2willdetailtheoriginsofthereal-lifedatausedandtheassertionthatthe

testsetupcapturedallpossibledynamics,discusschallengesencounteredinusingtherawdataset,

outlinetheproceduresusedtocleanupthedatasetandmakeituseable,andpresentsomeresultson

whatwasdeemedtobethemagnitudeofvariationassociatedwithvarioustimescales.

1.4. EnergystorageandproposedalternativesAfterdeterminingtheextentofvariabilityduringtheday,thequestionbecomeshowtomitigateit.In

thisthesis,thefocusislargelyonshort-termdiurnalstorageasopposedtoovernight,multi-day,or

seasonalstoragerequirements(thoughthermalstorageforsuchdurationsispossible,suchasfull-day

energystoragewithice[9]orphasechangematerials[10]).Todate,therearethreemainstrategiesfor

absorptionormitigationofPVinducedgridvariationswithbatterystoragebeingthemostcommon

approach.Theothertwoaregenerallycalleddemand-sideresponseandcurtailedPV.Variationson

thesetwolatterstrategieswillbethefocusofthisthesis.

1.4.1. Traditionalenergystoragesolutions

Traditionalenergystoragetypicallyconsistsofalargebankofbatteries(orsupercapacitors)[11]–[13].

TheseunitseitherconnecttothePVstringDCbus(Figure1.2.a)orthroughabidirectionalconverterto

anaccircuitbreakerorgrid(Figure1.2.b).Therearesomepositiveaspectsofbatteriesasavariability

reductionsolution.Thesystemcanbehighlymodularandisthereforeexpandableandrelativelyeasyto

implementasapost-marketsolution.Unlikethealternativesolutionsthatwillbepresented,batteries

canalsoenablelong-termenergystorageinplaceof,oreveninadditionto,short-termvariability

reduction.Suchcapabilityhighlightsthecyclinglimitationassociatedwithbatteries,however.Batteries

designedforlong-termdeepdischargeareusuallynotalsocapableofshort,high-powerburstswithout

degradingthebatterylifetime(thenumberoftimesitcanbechargedanddischargedbeforerequiring

replacement).Inaddition,allbatterystoragesolutionspresentpossiblechemicalandfirehazards;they

Page 9: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

4

alsosufferfromround-tripinefficiencies,i.e.energylossesassociatedwithvoltageconversion,

Coulombicefficiencies,andotherlossesassociatedwithcharginganddischarging.Perhapsthelargest

downsidetobatterystorageiscost.Long-termgoalsof$150/kWhand$0.010/kWh/cycle

($10/MWh/cycle)ofcycledenergyhavebeendiscussedforstorage[14].Incontrast,thetwo

alternativesproposedherecostverylittletoimplementandshouldbecheaperalternativesoverall,

evenwhentakingintoaccountthecostofenergylosses.Othersolutionssuchassupercapacitorbanks

orflywheelswerenotinvestigated,thoughtheysufferfromtheirownshort-comings,primarilycost.

(a)

(b)

Figure1.2.EnergyflowforaPVsystemwithbatterystoragewhere(a)thebatteryisconnectedtothedcbusand(b)the

batteryisconnectedthroughabidirectionalinverterontothegridside.

1.4.2. VariablespeeddrivesinHVAC

Energy-efficientbuildings,includingseveralnet-zeroenergycommercialbuildings,havebeen

constructedaroundtheglobe.Researchactivitiesonthistopichaveincreasedinrecentyears[15]–[18],

andmanyoccupantshaveshowninterestinhavingnet-zeroenergybuildingsastheirfutureofficessuch

asthenewApple“Spaceship”inCupertino,California[19].Energyefficientornet-zeroenergybuildings

oftenincludeonsitephotovoltaic(PV)solarpanelsthat,asmentioned,providenon-constantpowerthat

canvaryrapidly.ConsideringthisinconstancytorepresentanunwantedacsignalfromaPVsystem,a

suitablefiltercouldbeimplementedbutwouldrequirestorage.Ifinsteadoneutilizesthethermal

storagecapacityorthermalinertiainherentinabuilding,thenHVAC(heating,ventilation,andair-

conditioning)systemadjustmentcanemulateelectricalstorage,muchlikeanelectricswingbus[20]–

SolarPanel dc/dcConverter dc/acInverter PowerGrid

dc/dcConverter

SolarPanel dc/dcConverter dc/acInverter PowerGrid

dc/dcConverter dc/acInverter

Page 10: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

5

[24].Toclarify,afterconvertingelectricitytothermalenergy,thereversewouldnottakeplaceassuch

conversionisinefficient.Instead,the“release”stageofthisenergystoragewouldbeexperiencedwhen

anHVACsystemconsumeslessenergythanitotherwisewouldtoheatorcoolthegivenspace.Suchan

electricswingbuscouldoffsetfastvariationsoflocalsolarpowerfromagridperspectivewithreduced

needforconventionalstorage.Thescalingpotentialissizeable,giventhatnearly40%ofannualU.S.

energyisconsumedinresidentialandcommercialbuildings[25]withnearlyhalfofthatconsumedby

HVACsystems[26].

ThisthesiswilldemonstrateinChapter3howintelligentcontrolofHVACdrivescancompensate,within

predeterminedfrequencyandamplitudelimits,foronsitesolarpowerovershorttimeintervalswithout

disruptingbuildingtemperatureandcomfort.Theprocessisbasedonconceptsin[20]–[22].In

particular,[20]showshowbandwidthconceptscantakeadvantageofHVACdynamicadjustmentto

offsetenergyresourcevariability.Powerelectronicsenablesthiscontrolviadc-dcconverters,inverter-

baseddrives,andotherexistinghardware,asillustratedinFigure1.3.Theresultsformallytake

advantageofthermalenergystorage,butinthisthesistheemphasisisonmitigatingfastdynamic

variability,moreakintotreatingHVACasaccessingthermalinertia.Utilizingthermalinertiacanalleviate

theneedforinherentlyexpensive,fast-varying,grid-side(orbuilding-side)resources.Thisisnearly

equivalenttoplacingalow-passfilteronabuilding’snetgenerationandusage,requiringgrid-side

assistanceonlywhenchangesinload-sidedemandpersistbeyondanextendedinterval[27].Giventhe

slowthermalresponseofabuilding,wemightanticipatethattimescalesofafewminutesorfastercan

beusedtoadvantagetooffsetresourcevariabilitywithoutnoticeableimpactonoccupants.

Figure1.3.Energyflowinsideabuildingwithvarioustypesofconvertersthatmaybeutilizedtoimplementdynamicenergy

filtering.

AfundamentaladvantageofHVACadjustmentforeffectivedynamicthermalstorageisthatitis

relativelyeasytoimplement.Conventionalbuildingenergymanagementsystemsandthermostatsare

designedtoperforminslowcontrolloops,ontimescalesofminutes.HVACadjustmentcanusetime-

Page 11: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

6

scaleseparationandstayawayfromthis“effectivedc”loopaction.Inthissense,anacfeedforward

signalisinjectedintoadrivetoadjustpowerflowonfasttimescales,whileavoidinginterferenceon

slowtimescales.TheaverageperformanceoftheHVACsystemremainsintact,andthefastadjustment

canbemadetransparenttousers.

1.4.3. CurtailedPVpower

Insteadofusingstorageelementsorcreativealternativessuchasdynamicloadcompensationwith

HVAC,PVvariabilitycanbepartiallyreducedatthesource,whichinthisanalysiswouldmeanatthe

photovoltaicmodule.ThisistheideaofPVcurtailmentbasedonoperatingreserve:sacrificingabitof

energyproductionforareductioninuncertaintyandvariability.PVcurtailmentisnotespeciallynew,

butitistypicallyusedasalastresortwhenvoltageriseondistributionlinesbecomesproblematic[28].

Runningwithoperatingreserveisalsonotnewandhasbeenshowntobeeconomicalforwindenergy

[29],butpoorimplementationandworriesaboutcosteffectivenessmayhavepreviouslylimitedits

adoptionforPV.

CostinparticularhastypicallybeencalculatedwiththemindsetthatPVis,andshouldbe,treatedas

negativeload.Therefore,curtailmenthasanopportunitycostequaltothecostofenergy(below

$0.05/kWhforsystemswith25yearwarranties)timestheamountofenergysacrificed.Thisthesiswill

makethecaseinChapter4thatthisisanincompletepicturesinceintermittencyandinconsistentgrid

supportcapabilitiesmeanthatPVsystemscannotbetradedagainstmostelectricitygeneration

resources.Acomparablecoststructurewouldincludestorage.ContinuingcostreductionsthattakePV

belowcostparityintroducemoredirectopportunitiesformitigatingintermittencyandprovidingactive

gridsupport.Chapter4willdiscusshowdecreasesinPVsystemcostscanbeleveragedagainststorage

andgridsupporttoprovide“true”system-levelcostparitycomparabletolarge,cyclingutilityplants.

Curtailmenthastypicallybeentreatedasanad-hocsolutiontoproblemssuchasovervoltage[30].Ithas

beendoneoutofnecessityandthereforeonlyaffectsperiodsofhighorpeakpoweroutput.Ithasalso

beenunidirectional–abletobackoffofpowerproduction,butunabletoprovideadditionalpower

capability.Theproposedmethodofoperatingreservecurtailmentprovidesbothpositiveandnegative

operatingheadroom,enablesvariabilityreductionthroughoutthefullsolarday,anddoesnotrestrict

overvoltageprotectionalgorithms.Ifimplementedproperly,PVcurtailmentwithoperatingreserve

couldeconomicallytransformPVintoagridresourceratherthanagridnuisanceandenabledeeper

penetrationofPVwithoutdestabilizingthegrid.Chapter5detailssuchaproposedoperatingreserve

curtailmentimplementation.

Page 12: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

7

2. High-speedSolarDataAlargeportionoftheresultsinthisthesisareeitherderivedfromdirectanalysisofsolardataor

simulationsthatdependuponit.Therefore,itisimperativetodiscusstheoriginofthehigh-speedsolar

datasetused,theprocessingmethodsfromwhichtheuseablemetricswerederived,andthe

assumptionsmadeinestimatinghigh-speedchangesinsolarpower.Afterall,photovoltaicarraysand

panelsaretypicallyconnectedthroughmaximumpowerpoint(MPP)controllerstothegrid,anditis

thusthevariabilityoftheMPPpowerthatistrulyseenbythegridoranet-zerobuilding.Inaddition,the

rawdatacontainednumerousimperfectionsandinconsistenciesthatpresentedprocessingchallenges,

sotheassumptionsmadeaswellasapproachesusedincreatingacontinuous,useabledatasetwillbe

presented.Finally,thesolardatarepresentsavaluableresource,notonlyforthisthesiswork,but

potentiallyfornumerousothersinterestedinthereal-life,long-term,high-frequencysolardata.Forthis

reason,theessentialcontentisslatedforeventualpublication,andtheadditionalprocessingsteps

performedontherawdataarepresented.

2.1. DataacquisitionhistoryProfessorRobertPilawaoftheUniversityofIllinoisUrbana-Champaignandhisstudentsdesignedand

implementedafastsolardataacquisitionsetupin2012[31].While[31]describestheexperimental

setupinmoredepth,hereisasummaryasitpertainstothiswork:Duringdatacollection,two,identical,

rooftop-mounted,20W,PVpanels,connectedtotwodifferentmeters,wereplacedsidebysideto

eliminatespatialvariationasmuchaspossible.OnemeterwasaKeithley2420thatperformedasweep

acrossthecurrent-voltage(I-V)curveevery2.5-3.9seconds,andtheotherwasanAgilent34410Athat

recordedshort-circuitcurrentat5kHz.ThedataacquisitionmechanismisdepictedinFigure2.1.The

sweepsfromtheKeithley(“slow”)meterenableustocalculateopen-circuitvoltage(VOC),short-circuit

current,andMPPvoltage,current,andpower(VMPP,IMPP,PMPP).TheAgilent(“fast”or“high-speed”)data

provideshigh-frequencyshort-circuitcurrentreadings(ISC)that,aswillbeshown,canbeusedto

calculatehigh-frequencychangesintheavailablepower.Toclarify,bothmetersmeasuredshort-circuit

current,butinthisthesisISCwillalmostalwaysrefertothefastdata.Slowshort-circuitcurrentdatawas

usedforverificationofmeasurementaccuracyagainstthefastmeterandasacheckofinstrument

synchronization.

Page 13: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

8

Figure2.1.Solardataacquisitionhardwaresetup[31].

2.2. CapturingallpossibledynamicsFivekHzshort-circuitdatawasrecordedbythefastmetertoensurethatallpossibledynamicswere

captured.Theexplanationforwhyshort-circuitcurrentshouldcapture(oratleastindicate)the

presenceoffast,irradiance-baseddynamicshasbeenaddressed[32].Whenitcomestosolarpanels,

thefastestdynamicsarelikelytobeshadow-based,inducedprimarilybycloudsandflyingobjects.

Considerthefastestdynamicthatcouldreasonablybeexpected:ashadowfromapassingbird.A

CanadaGoosehasatypicalcruisingspeedof40mph(64km/h)[33]andaminimumwingchordof

about0.4m[34].Thismeanstheshadowcouldpassontheorderof1/45thofasecond.Bysamplingat5

kHz,eventhishypotheticaloccurrencecouldberecreatedwithmorethan110datapoints.Atmospheric

noisehasthepotentialtoinducestillfasterdynamicsbutgiventhebroadareacoveredbysolararrays,

theeffectsareassumedtoaverageoutbyspatialvariationandwillnotbespecificallyaddressedinthis

thesis.Rigorouslydemonstratingthatallofthesedynamicswerecapturedusingnumericaldatais

difficult.Thefollowingsubsectionswilldescribeproposedsolutionsthatrelyuponknowledgeof

reasonablyexpecteddisturbances.Theywillshowthatevenflickeringshadowsarefullycapturedat100

Hz,andthatfasterdynamicsaresufficientlyinsignificantastonotbeconsidered.

2.2.1. Demonstratingsmoothdynamicsduringcharacteristicallynoisyperiod

Thedominantandmostfrequentdynamicsinsolardata,otherthanbasicdiurnalvariation,arecaused

bypassingclouds,sothefirstandsimplesttestistovisuallyensurethateventhemostrapidtransients

arecapturedbythefastmeter.Thatistosaythatenoughsamplesweretakensuchthattheoriginal

signalcouldbeaccuratelyrecreated,whichwouldbeevidentifthedatawere“smooth”anddidnot

containvisualjumpsordiscontinuitiesbetweensamples.Todemonstratethatindeedthesamplingrate

issufficient,oneofthedynamicdaysintheentiredataset,namelyMarch31st,2013,isclosely

investigatedinFigure2.2.Onthisday,thesolarpanelsexperiencedintermittentcloudcoverandrapid

Page 14: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

9

rampratesasseeninthetopimageofFigure2.2.Thesubsequentimagesdepictsomeofthemost

dynamicsubsetsofdatafromthatdaytodemonstratethatevenduringsomeofthemostvariable

moments,allpossibledynamicswerecapturedintheirentirety.Infact,thebottomsub-figureinthis

casestillcontains100,000datapoints,providinganexceptionally“smooth”recreationoftheanalog

irradiancechange.

Figure2.2.Sampledaycontainingnumerousrapidtransients(top)andsubsequentclose-upviews.

Page 15: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

10

2.2.2. Verificationduringflickeringshadows

Variabilityinsolarirradiancecanarisefromsourcesotherthanclouds.Whiletypicallylessfrequent,the

fastestdynamicsarealmostalwayscausedbytheflickeringshadowsoflargebugs,birds,orairplanes

passingbetweenthepanelandthesun.Inordertomoreeasilyidentifytheiroccurrence,ahigh-pass

Butterworthfilterwasappliedtotheraw,short-circuitcurrentdata(thick,bluelineinFigure2.3)and

anyultra-narrowspikesweresingledout.Thespikesofinterestdonothavethecharacteristiccurveson

eitherside;suchinstancesareabyproductofanonidealfilterappliedtorapidcloudtransients.Example

powerdipsofinterestarecircledinFigure2.3andappearasblipsonmoderatetimescales(secondsto

hours).Nevertheless,zoominginonthesecircledregionsasinFigure2.4revealsthateventhefine

detailsofthesetransientsarefullycapturedat5kHz.Instance#4(Figure2.4onright)revealsfourlocal

minimathatmightbearesultofabirdflyingacrossthefourcolumnsofcellsonthesolarpaneltested.

Whilea100Hzsubsamplingdoesnotcapturethesecell-leveldynamics,itdoescapturethepanel-level

powerdipwith3-4points.Fromapanelenergyproductionperspective,thisisshowntobesufficientin

Section2.2.3.

Figure2.3.SamplesolardatafromJuly16th,2013containingmultiple,veryrapiddipsinpoweroutput(circled).

Page 16: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

11

Figure2.4.Highlyzoomed-inviewsofthetwomostsignificantcircledinstancesfromFigure2.3.

2.2.3. Investigationofdynamicsintermsofpotentialenergyloss

Insection2.2.2,thefastestexpectedclassofshadingdynamicswereeasilycapturedbya5kHzsignal,

andcouldlargelyberecreatedwithasamplingfrequencyofjust100Hz.Thequestionthenbecomes:

Arethereunknownsourcesofdynamicsinsolarpower,andeveniftheyexist,aretheysignificant

enoughtobeworthcaringabout?Forexample,atmosphericnoisewasmentionedinSection2.2,butif

itseffectonsolarpoweroutputdoesnotmeaningfullychangethepotentialoutputpower,then

arguably,itisnotworthtracking.Uptothispoint,high-speedvariationswereobservedintheshort-

circuitcurrent,but[32]arguesthatatleasttofirstorder,high-speedvariationsinpowercanbe

obtainedfromthehigh-frequencyshort-circuitdatainconjunctionwithslowerI-Vsweepdata.Thefull

processwillnotbeoutlinedhereasthiscanbefoundin[32];onlytheresultispresentedhere.

Assumingthatamaximumpowerpointtracker(MPPT)withconstantupdaterateisusedtomaximize

poweroutputfromaPVpanel,thenfastdynamicswillresultindecreasedpoweroutputuntiltheMPPT

updatestothenewMPPvoltage.Thecumulativeenergymissedduringtheseperiodsissummedfora

given10daysampleasdiscussedinSection2.3.1.Then,theenergysacrificedforagivenMPPTupdate

rateisdividedbythetotalpossibleenergyavailable(assumedtobethesameastheMPPmeasuredat5

kHz).ThisratioisplottedagainstthegivenupdateratesinFigure2.5.Notethatifanydynamics

thereforeexistabove100Hz,forexample,theenergysacrificedwillonlybeabout1partin4000.Atthis

point,thepotentialenergylostorgainedbyknowingthehighestfrequencyvariationisnegligible.

Perfectinsightintotheanalogvariationswouldonlyamounttoabout$0.35ofenergyproductionvalue

fora250Wpaneloveritslifetime[32].Therefore,whatmeaningfulirradiancedynamicsexistare

Page 17: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

12

arguablycapturedcompletelywith100Hzdata,andanyadditionalhigh-speeddynamicsarenotworth

investigatingforMPPTpurposes.

Figure2.5.Modeledenergysacrificeof10,10-daysampleswithvaryingMPPTupdateratesandmeaninboldedblack.

Entriesinlegendrepresentfinaldayin10-dayseries.

Whileperhapslessinsightfultopowerengineersthansacrificedenergy,fastFouriertransform(FFT)

analysisofthreeverydifferentdayscorroboratedthe100Hzconclusion.Figure2.6depictstheFFTsofa

cloudless(smooth)day,alargelyovercast(noisy)day,andadaywithacloudlessmorningandpartly

cloudyafternoon(partiallynoisy).Eachhasdifferingcharacteristicsatlowerfrequencies,butabove100

Hz(oreven50Hz)thefrequencycontentiswellbelowonepartinonemillionwiththeexceptionofthe

180Hzcoupledgridharmonic.Atthesescales,frequencycontentiseffectivelynegligibleandisonthe

orderoffinemeasurementaccuracyanyway.

Page 18: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

13

Figure2.6.Full-dayFFTsof5kHzshort-circuitcurrentforthreedifferentdays.

2.3. DataprocessingchallengesandapproachesTherawdataset,asthenameimplies,wasnotimmediatelyconducivetoanalysis.Missingdata,

formattinginconsistencies,anddataratevariabilityweretheprimaryobstacles.Morespecificdetails,

alongwiththestrategiesusedtocorrectoravoidtheseunexpectedobstacles,areoutlinedinthe

followingsections.Additionally,therawdatadidnotdirectlyprovideuswiththedesiredparameters,

namelyhigh-frequencyvaluesforthemaximumpowerpoint(MPP)power.Asafirststeptowardthis

end,thefinalsubsectionwilladdresstheprocedureusedtocalculateslowMPPvaluesfromcurrent-

voltage(I-V)sweeps.

2.3.1. Missingdata

Thefirstproblemencounteredwasthatoflocalmissingdataornon-sequiturtimestamps.Suchgaps

aretobeexpectedfromreal-lifedatasetsduetoequipmentglitchesorfailures,instanceswherethe

codewasupdated,orotherincidences.Thefirststeptoaddressthisproblemwastoidentifyandflag

missingorunexpecteddata.Thiswasaccomplishedbycomputercodethatrecordedanyinstances

whereactualtimestampsdidnotfallwithinwindowsofreasonablyexpectedtimestamps.Asampleof

theoutputdataisshowninFigure2.7withredboxesindicatingmissingsegments.Apartialdayis

missingfortheafternoonofMarch28th,2013,andafulldayismissingonApril12th,2013.

Page 19: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

14

Figure2.7.Solarpanelshort-circuitcurrentvs.timewithhighlightedmissingdatasegments.

SuitabledatasubstitutionsfromotherportionsofthedatasetarediscussedinTable2.1,butforthe

energysacrificeanalysisofSection2.2.3,adifferentapproachwastaken.Tendifferent,randomly

selected,non-overlapping,10-daysamples(100totaldays)weretakenfromtheroughly500daysof

datatoobtainarepresentativesampleoflong-termsolardata.Thiswasaccomplishedbyrandomly

selectingastartingday,andthenproceedingtousethatdayandtheninesubsequentdays,provided

thatnoneofthemoverlappedwithothersamplesorcontainedasegmentofmissingdata.Forexample,

ifthefirstrandomnumbergeneratedcorrespondedtoMarch31st,2013,thenthesegmentofdata

spanningMarch31st,2013toApril9th,2013wouldbeusedsinceFigure2.7indicatesthatitdoesnot

containasegmentofmissingdata.Asacounterexample,ifthenextrandomnumberhappenedto

correspondtoApril7th,2013,thentheselectionwouldbeinvalidatedandanewrandomstartingdate

selectedsincethesegmentbeginningwithApril7thoverlapswiththefirstsample(andcontainsmissing

dataforApril12th,2013).Thisprocesswasselectedbecauseitcontainedrepresentativesegmentsfrom

alltimesofyear,incorporatedlong-termeffectsthatmightappearinmulti-dayweatherpatterns,and

enableddirectuseofthesolardatawithoutadditionalcomplicationsoruncertainty.

2.3.2. SubstituteddataforpublicuseThelong-term,high-speedPVdatasetisusefulforanalysisinthisthesis,butithaslongbeenagoalto

prepareaversionforpublicuse.Thefinalizeddatasetprovidesonecontinuousyearofdatathatcanbe

usedinsimulationstoaccuratelyrepresentreal-lifepoweroutputsfromapanel.Nomatterthestart

datechosen,though,no365consecutivedayswerewithoutsomemissingdatasegments.Dismissing

thework-aroundmentionedinSection2.3.1,missingorincompletedaysthushadtobesubstituted.To

avoidintroducingsuddenchangesorstarkweatherpatterncontrasts,wholedaysweresubstitutedeven

whenpartialdatawasavailable.Table2.1summarizesallincompletedaysbetweenNovember1st,2012

andNovember1st,2013,theportionandtypeofdatamissing,andtherespectivedailysubstitutes.

31-Mar-2013 12 AM 07-Apr-2013 12 AM 14-Apr-2013 12 AM

Shor

t-circ

uit c

urre

nt (A

)

00.20.40.60.8

11.21.41.6

Page 20: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

15

Table2.1.SummaryofDayswithMissingDataandSubstitutionsUsed

MissingDay PartMissing MissingSlowand/orFastMeterData

ReplacementDay ScalingFactor

11/23/2012 1minsection Fast 11/23/2013 1.0000000

12/02/2012 Allday Slow 12/02/2013 1.0000000

02/26/2013 Partialday Slow 10/05/2012 1.0000000

02/27/2013 Morning Both 10/02/2012 0.9163347

03/28/2013 Afternoon Both 03/21/2013 1.0405904

04/12/2013 Allday Both 08/13/2013 1.0000000

07/27/2013 Partialday Slow 07/27/2012 1.0000000

08/05/2013 Partialday Slow 08/05/2012 1.0000000

08/29/2013 Partialday Slow 08/12/2012 1.0000000

08/31/2013 Partialday Slow 08/20/2012 1.0000000

09/02/2013 Partialday Slow 08/10/2012 1.0000000

10/14/2013 Partialday Both 10/25/2012 1.0000000

Substitutedayswerechosenwiththefollowingpreference:

1. Ifanon-repeated,completeday(containingalldata)wasavailablefromoneyeareitherprioror

subsequent,thisdaywasselectedasareplacement.

2. Else,ifanon-repeated,completedaywasavailablefromanequidistanttimeawayfromthe

WinterorSummersolstice,thisdaywasselectedasareplacement.Inotherwords,the

replacementdaywouldbeasmanydaysafterthesolsticeastheoriginalwasbeforeit,orvice

versa.

3. Else,dayswithsimilarhistoricweatherpatternsandtemperatureswereselectedwitha

preferencefordaysclosetotheoriginaldate(inapriororsubsequentyear)andsecondary

preferencefordaysclosetoanequidistantWinterorSummersolsticecounterpart(asin2).

Typically,unityscalingfactorswerechosen,butincaseswherepartialdataexisted,substitutedata

couldbescaledslightlytobettermatchtheoriginaldata.

Page 21: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

16

2.3.3. Datasynchronization

Inshort,datasynchronizationwasaccomplishedbyaligningdatawithmatching,correspondingtime

stamps.Inreality,however,theprocesswasabitmoreinvolved.Firstofall,therewasnoconsistentfile

length,duration,ornumberofdatapointsperfile.Forexample,thefastshort-circuitcurrentdata

variedinratebetweenabout5010Hzto5014Hzwiththefirstfilerecordingatabout5250Hzandtime

stampsspanningbetween57and59seconds.Settinganominalincrementof200𝜇s(inverseof5kHz)

thereforecausedsignificantoffsetsoverthetensofthousandsofsecondsrecordedeachday.Toresolve

thisoffsetandenablesynchronizationwiththeslowsweepdata,thecomputerprogramhaditsown

masterclockwhichitwouldincrementwiththemeanperiodTmeanbetweendatasamplesasdetermined

bythefollowingsimpleequation:

𝑻𝒎𝒆𝒂𝒏 =𝒕𝒆𝒏𝒅 − 𝒕𝒔𝒕𝒂𝒓𝒕

#𝒔𝒂𝒎𝒑𝒍𝒆𝒔𝒊𝒏𝒇𝒊𝒍𝒆 (2.1)

Whiletimestampsonlyhadprecisiondownto0.01s,thiswasovershadowedbythefactthattheslowI-

Vsweepsdidnotidentifytimestampsbetweenregionsofthesweep.Thatistosaythattheopen-circuit

voltage,MPPvalues,andshort-circuitcurrentmeasurementstookplaceambiguouslywithinthe2.5-3.9

seconddurationofeachsweep.

Toimprovesynchronizationofdata,rawshort-circuitdatafrombothfastandslowsetswerecompared

overa±1swindow.Sincewewouldexpecttheshort-circuitcurrenttobethesameonbothpanels(the

onemeasuredbythefastmeterandtheonemeasuredbytheslowmeter),itwasreasonabletoassume

thatsimilarvaluesshouldberecordedatthesameinstantintime,andthuswecouldadjusttheslow

metertimestamptobettermatchtheinterpolatedtimestampofthefastmeter.Thiswasaccomplished

bymaximizingthecorrelationofthetwocurrentmeasurementsoverthecourseofeachday.Ifnisthe

totalnumberofpointsinadayandmisthemaximumsampleoffsettobeconsidered,thenthemost

likelytimestampoffsetfortheslowmeterwillbethevalueoftoffsetthatmaximizes

𝑻𝒐𝒇𝒇𝒔𝒆𝒕 = 𝐦𝐚𝐱 𝑰𝑺𝑪𝒔𝒍𝒐𝒘 𝒕 ×𝑰𝑺𝑪𝒇𝒂𝒔𝒕 𝒕 − 𝒕𝒐𝒇𝒇𝒔𝒆𝒕

𝒕<𝒏=𝒎

𝒕<𝒎

, −𝒎 < 𝒕𝒐𝒇𝒇𝒔𝒆𝒕 < 𝒎 (2.2)

Theeffectivenessofthiscalculationispresentedatsevenequallyspacedpointsthroughouteachdayto

visuallyverifythatthecalculatedoffsetimprovedoverallalignmentofshort-circuitdataintime.A

sampleoftwoofthesevenwindowsfrom3/31/2013isshowninFigure2.8.Thesesamplesvisually

depictbetteralignmentofdatafromthetwoseparatemetersduringperiodsofrapidirradiance

changes.Thesolidbluecurverepresentsthehigh-speedshort-circuitdata,thereddashedline

representstheslowmetershort-circuitcurrentwithoriginaltimestampsandthegreendottedline

Page 22: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

17

representsmeasurementsfromtheslowmeterwithoptimaloffset.Inanidealcase,theapparent

verticesoftheslowmeterwouldliepreciselyontopofthesmooth,high-speeddataasifbeingsampled

fromthesamedataset.Notethatthisanalysiswasonlyperformedforthetwoshort-circuit

measurements.I-Vsweepdataandopen-circuitvoltagewouldhaveadditionaloffsetsastheywere

recordedsubsequenttotheshort-circuitcurrentontheslowmeter.However,aligningthese

parametersusingthesamemethodwouldassumethatincreasesanddecreasescorrelatetoincreases

anddecreasesinshort-circuitcurrent,whichmaynotalwaysbetrue,especiallygiventhevariabilityof

wherewithintheI-VsweepMPPvaluesoccurred.

Figure2.8.TwosamplewindowsofdataalignmentfromMarch31st,2013showingbetterdataalignmentwithtimeoffset.

2.3.4. ParametercalculationEvenafterallofthedatawassynchronizedandmissingdatasegmentsfilled,someofthedesired

parametershadtobecalculatedbeforetheywereused.The5kHzdatacameinanimmediatelyusable

form,buttheslowI-Vcurvedatarequiredspecificprocessingtechniquesinordertoobtainshort-circuit

current,open-circuitvoltage,MPPcurrent,MPPvoltage,andMPPpowervalues.Slowshort-circuit

currentdataconsistsofthreedatapointsnear0V,thesquaresymbolsinFigure2.9.Open-circuit

voltages(VOC)wereobtainedfromthesweepsthatcrossedthevoltageaxis,thetrianglesymbolsin

Figure2.9.MPPvoltage,current,andpowertookthemostprocessing.InFigure2.9,theMPPregion

contains100pointsonthe“knee”oftheI-Vcurve.AscanbeseeninFigure2.10,themeasurements

containacombinationofhigh-frequencyfluctuationsandmeasurementnoise.Simplypickingthepoint

withthepeakvaluecanleadtomisleadingandinaccurateMPPvalues.Toalleviatethis,a4th-order

polynomialleast-squaresfitwasappliedtothedatatocapturetheoverallnatureofthesweep.

Page 23: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

18

Figure2.9.Slow,current-voltage(I-V),full-rangesweepcontainingdatapointsneartheshort-circuit,open-circuit,and

maximumpowerpointregion.

Figure2.10.SlowI-VsweepinMPPregionandmaxpowercurvewithpolynomialleastsquaresfits.

Implementinga4th-orderfitinsteadofthe2nd-orderpolynomialusedin[31]increasedtheregression

coefficientfromR2=0.95toR2=0.995foratypicalMPPsweep.Higher-orderpolynomialsorother

functionsmaybeusedinstead,butthe4th-orderpolynomialcapturestheexpectedshapeofthepower

curvewell.Ratherthansolvingforthepeakalgebraically,itwascomputationallymoreefficientto

evaluatethepolynomialfunctionat500equallyspacedpointsoverthesamerangeofvoltagesasthe

originalMPPregionandthenselectthemaximumvaluefromthisfinelydiscretizedset.

Page 24: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

19

Forinstanceswhereapeakvaluewasnotfound,thepolynomialkeptincreasingordecreasing

monotonicallybecausetheslowmetermissedtheMPP.Inthiscase,themaximuminterpolatedvalue

(anendpoint)waschosenastheMPP.AnexampleisprovidedinFigure2.11inwhichthreeconsecutive

MPPsweepsareshownwiththemiddle(orange)sweepfailingtospanthepeakpowervalue.This

failureislikelyduetoasuddendropinirradiancefollowingapreviouslyincreasingtrend.Accordingto

theprocedurementionedabove,theMPPpowerwouldbethatassociatedwiththepowerattheleft

endofthemiddlecurve,or16.00Vinthisspecificinstance.Sometimesthefluctuationsweresofast

thatwithinasinglesweep,thepolynomialapproximationgeneratedtwopeaks(orpotentiallymoreifa

higher-orderpolynomialweretobeused).Figure2.12exemplifiessuchascenario,wherethe

polynomialwasapoorapproximationoftherawdata.Incaseslikethis,themaximumvalueoftheraw

sweepdata(marked)waschoseninsteadofthepolynomialpeak.Moregenerally,polynomial

approximationswithR2<0.99weredeemedinvalidandtherawdatapeakusedinstead.Thepolynomial

fitisonlybeneficialifitcloselyrepresentstheoriginaldata.Thus,theinstanceoftwopeaksinFigure

2.12wouldberuledoutduetoapoorpolynomialfit.Aftercomputingvaluesfromtheslowmeterdata,

theresultsweresynchronizedwiththefastmetermeasurementsusingtimestampsrecordedinboth

datasets.

Figure2.11.ThreeconsecutiveMPPpowercurvesweepswiththemiddlesweepmissingtheMPP.

Page 25: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

20

Figure2.12.RapidtransientduringMPPsweepandassociatedpoorfitpolynomialapproximation.

2.4. SlowmetercurrentsaturationandactiontakenWhenverifyingthedatasynchronizationinSection2.3.3,itwasobservedthatslowmeterI-Vsweep

currentssaturatedatapproximately1.35-1.375Adespitesimultaneousfastmetershort-circuit

measurementsrecordinghighercurrents,uptoalmost1.8Aattimes.Saturationaffectsabouthalfof

therecordeddaysafterApril2nd,2013,andwaslikelyaresultofanimproperrangesetting.This

deductionisbackedbytwopiecesofevidence.First,thebeginningoftheinaccuratedatacoincideswith

abreakinthedataduringwhichdatarecordingformatswerechanged.Secondly,thesaturationpointis

justslightlygreaterthantheratedpeakcurrentof1.29A.Thismeansthe1.35Aset-pointwouldbe

suitableformostinstancesexceptforwhenthesunappearedbetweencloudsonbright,partlycloudy

days.Intheshortterm,nothingmuchcanbedoneabouttheinaccuratedata.ResultsofSection2.2.3

mightbeslightlyskewedandcouldberecalculatedwithonlydaysunaffectedbythesaturation.Longer

term,theproposedpublisheddatasetalreadyexcludesanypotentiallyinaccuratesweepdataanda

repeatexperimentfordataacquisitionisencouraged.

2.5. PublicandauxiliaryusesforPVdatasetTheprimarypurposeofthehigh-speedsolardata,asitpertainstothisthesis,istoobtainarealisticdata

settobettermodeleffectsofsolarpowervariability.Asmentioned,though,acleaned-upversionofthe

long-termPVdatasetisintendedforpublicuse.Thankstolessonslearnedthroughutilizationofthe

high-speeddata,afewchangesweremade.Timestampsandfilelengthweremademoreconsistent

acrosstheslowandfastmeterdata;sweepdatawassimplifieddowntothekeypointsofinterestsuch

asMPPcurrentandopen-circuitvoltage;andthankstotheanalysisperformedonthedynamiccontent,

Page 26: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

21

high-speeddatacouldbedown-sampled(afterpassingamedianfiltertoeliminatemeasurementnoise)

tojust100Hztoreducefilesizeswithoutlosingsubstantiveinformation.

AsinSection2.2.2,findingthefastestdynamicstookconsiderableeffort.TheButterworthfilterusedto

isolaterapidchangeshadtobeappliedtobillionsofpointsperdayandanomalieshadtobeidentified

manually.Withthedown-sampleddataset,thissearchbecomesmucheasier.Themedianfilterapplied

beforedown-samplingeliminatespresumedmeasurementandatmosphericnoiseenablinga

computationallysimplederivativetobetaken.Stringsofdatawithlargederivativesshouldindicatea

rapiddynamicandcanbefurtherinvestigated.

Page 27: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

22

3. DynamicHVACLoadCompensationDynamicloadcompensationisavariability-reducingalternativetochemicalstorage.Itcanberelatively

cheapandeasytoimplement,provideeffectivegridinertia,andreducevariabilityofonsitePVpower

variations[35],[36].Whenheating,ventilation,andairconditioning(HVAC)systemsaretobeusedas

theloadmedium,though,dynamicloadcompensationalsohasitslimits.Thischapterfocuseson

variablespeeddrivesinvolvedindynamicHVACcompensationwithmultipleportionshavingbeen

previouslypublishedin[35],[36].

HVAC-implementedenergyresourcefilteringhasbothupperandlowerfrequencybandboundsbeyond

whichitshouldnotoperate.Thelowerfrequencylimit,meaningthelowestupdaterateforHVACspeed

andpowercommands,isestablishedtoshieldbuildingusersfromsubstantialtemperatureswings,

ideallykeepingvariationsimperceptible.Anupperfrequencylimit,meaningthehighestupdateratefor

HVACspeedandpowercommands,isneededsuchthatthefollowingconditionsaremet:(1)HVAC

drivesarecapableofresponding,(2)unduewearandtearisnotinducedondrivesormechanicalparts,

and(3)updateratesdonotcreatediscomfortingaudiblepitchoramplitudechanges.

Frequencydomainanalysisisperformedtoillustrateavailablefilteringpotential,andapproximateupper

andlowerfrequencyboundsarediscussed.ThisanalysisutilizesPVdatafromthehigh-frequencydata

setpresentedinChapter2.IftheHVACsystemcaneffectivelyfilterpowerusageoverausefulfrequency

band,thepowergridwillthenbebetterabletoprovideandabsorbslowerchangesindemandto

balancethelonger-termbuildingenergyflow.Conventionalonsiteenergystoragecouldabsorb

additionalpowershortagesandsurpluseswhereHVACfallsshort,suchaschangesextendingoutsideof

frequencybandboundaries.Asaresult,theelectricgridbenefitsfromamuchslowervariedenergy

demand,andconventionalenergystoragesizeissubstantiallyreduced.Thischapterwillinvestigate

whathigh-frequencyvariationstherearetoremoveandhowtheyweredetermined.Itwillalsopresent

thefandriveexperimentperformedandthebandwidthpermissibleforfilteringcapabilities.Finally,

simulatedfilteringcapabilityofdynamicallycontrolledHVACsystemsispresentedforvariouscaseswith

differingsizesofPVinstallationsandHVAClimitations.

3.1. DesiredsolarpowervariationabsorptionInanidealscenariowheredynamicHVACloadcompensationhasinfinitestoragecapacityand

instantaneousresponsetimes,fixedpowertargetscanbeset,andsolarenergyvariationcanbefiltered

completelybytheHVACsystem(withoutbeingimposedonthepowergrid).Inotherwords,theideal

Page 28: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

23

systemwouldstoreorreleasebuildingthermalenergyviatheHVACsystemsothatthecombinedpower

ofthePVsystemandHVACperturbationwouldexactlymatchthedesiredpowertargetateach

moment.Withthefrequencydomainanalysis,wemodeltheeffectsofanidealizedHVACsystemthat

offsetsvariationsbypassingthesolardatathroughvariouslow-passfilters,eachwithadifferentcut-off

frequency,toobtainthedesiredpowertargets.Formostoftheanalysisinthissection,rawdatacame

fromJune15th,2013,shownasday1(hours0-16)inFigure3.1.

Figure3.1.SolarpowerprofilefromJune15th-18th,2013(only4a.m.to8p.m.shownperday).

Figure3.2showslow-passfilteredsolarpanelpowertargetsfromJune15th,2013underfilterswith1,

5,15,and30mincut-offtimeconstants.Powervaluesarenormalizedtoacloud-freedailymaximum.

Figure3.2.IdealsolarpowerprofileseenfromthegridafterHVACfilteringeffect.

Page 29: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

24

Figure3.3showsthepowerthattheidealHVACsystemwouldneedtoabsorborsupplyinorderto

realizethefilteredoutputsofFigure3.2.Thispowerwouldbeimposedontopofabaselinepower

consumptiondictatedbyconventionalthermostaticcontrols.Asamplebaselineprofileandprofilewith

dynamicfilteringimposedonitareshowninFigure3.4.Inthefigure,theprofileisgivenintermsof

commandedHVACfanspeeds,butthegeneralideaisthesame;increasedspeedsabovethebaseline

correspondtopositivepowerdemandorpowerneedingtobeabsorbed,whiledecreasedspeedsbelow

thebaselineprofilecorrespondtonegativepowerdemand.

Figure3.3.SolarpowertobefilteredbytheHVACsystems.

Figure3.4.FandrivespeedprofilewithoutandwithdynamicHVACfilteringsuperimposed.

Page 30: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

25

Inreality,HVACsystemshavelimitedfilteringcapability,soacompromisebetweenpowerdemandand

certaintyofnetpoweroutputisneeded.Byfollowingthegeneralorlarge-featuretrendsinthesolar

data,loadcompensationpowerdemandsaredecreased,whilestillprovidingincreasedconfidencethat

netpowerinthenextmomentwillnotvarydrasticallyfromitscurrentlevel.Figure3.5illustratesthe

differenceinfilteringpowerrequiredbetweentwodifferentset-pointalgorithms.Inone,setpoints

consistofButterworthfilteroutputwithanuppercut-offpointof15min,whileintheother,15min

sample-and-holdvalues(takenfromthefiltereddata)constituteconstantobligationsetpoints.As

wouldbeexpected,theconstantobligationrequireslongerperiodsofincreasedpowercompensation

whencomparedtothefilteredpowersetpoint,especiallyintimesofslowerdynamics.

Figure3.5.FilterpowerrequestedofHVACcompensationforJune15th,2013.

CompensationinFigure3.5stillneglectsramprate,thermal,andacousticlimitationsoftheHVAC

system.Suchlimitationsandtheireffectarediscussedinsubsequentsections.

3.2. Scalemodelsetupandfan-power/-speedprofilingAscalemodelHVACtestbedwasimplementedtodemonstrateandvalidatethepotentialofanHVAC

systemtofilterenergycontent.Thisproofofconceptblowersetupneededtobecharacterizedto

understandtherelationbetweenrotationalspeedandpowerconsumed.Duringtheexperiment,

acousticvariationswererecordedandanalyzedforlateruse.Oncevalidated,scaledupfiltering

capabilitiescouldbecalculatedgivenproperassumptions.

Page 31: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

26

3.2.1. Smallblowercharacterization

Asmallfandrivewasusedtofollowscaledresponsestovariousband-limitedsolarpowerprofiles.Since

thecontrolleracceptsfan-speedsasinputandnotpower,aconversionwasnecessary.Forour

experiment,theelectricalsynchronousfandrivespeed𝜈inHzanditspower𝑃inwattsarerelatedby

𝑷 𝝂 = 𝟏. 𝟔𝟐𝟔𝟔×𝟏𝟎=𝟒𝝂𝟑 + 𝟐. 𝟗𝟗𝟗𝟕×𝟏𝟎=𝟑𝝂𝟐 + 𝟕. 𝟕𝟗𝟐𝟓×𝟏𝟎=𝟑𝝂 + 𝟕. 𝟖𝟎𝟔𝟒 (3.1)

wherethecoefficientswereidentifiedbyaleastsquaresfitasinFigure3.6.

Figure3.6.Small-scalemotorblowerpowervs.electricalspeed.

Acousticeffectsofthefandrivewererecordedwithahighfidelitymicrophonetotestwhethermachine

speedupdateratescausedistractingsounds.Figure3.7showstheexperimentalsetup.A1/3HP,three-

phase,four-pole,inductionmachinewascoupledwithafanblower.AYaskawaCIMR-F7U23P7drive

wasusedtocontrolthefanspeedthroughfrequencyandvoltage.Thedrivewasexternallyprogrammed

byaTIMSP430microcontrollertoadjustfanspeedwitha0.02supdateratetofollowthesolarpower

profileswithhighfidelity.

Page 32: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

27

Figure3.7.Experimentalsetupforrecordingacousticeffectsofvariousfanspeedprofiles.

3.2.2. Scalingassumptions

Acousticeffectsofthesmall-scaleblowerwererecordedatunityscaletoemulatetheairflowthrough

anindividualventinaroom.ThemeritsofthischoicearediscussedinSection3.3.2.Electrically,blower

powerresultswerescaleduptobuildinglevelbeforebeingfedintoafull-scale,filtering-potential

simulation.ScalingwasassumedlinearasafractionofpeakpowerbothforthePVdataandHVAC

variablespeeddrives.Itwasassumedthatbothsystemsarefairlymodularwithincreasedcapacity

typicallyresultingfromanincreasednumberofunits.ThisisabetterapproximationforPVsystemsthan

HVACascentralizedblowersareoftenmuchlargerthanthefanusedinthisexperimentandmaynot

scaleexactlylinearly.Peakbuilding-levelpowervalueswerebasedonprojectedpowerconsumptionof

theElectricalandComputerEngineeringBuilding(ECEB)with1.5MWpdesignedsolarcapacity[37]and

about18.6%ofthispeakpoweranticipatedforaverageloadconditions.SinceECEBisexpectedtobe

nearlynet-zero,itsaverageloadshouldapproximatelyequalthecapacityfactoroftheinstalledPV

generationforIllinois,andhencetheestimateof18.6%peakcapacity[38].

3.3. VariationabsorptioncapabilityThelimitationofanydynamicloadcompensationtechniqueisthatitrequiresfullcooperationonthe

partoftheload,whichmayormaynotinterferewithitseffectivenessatperformingtheoriginally

intendedtask.Theabsolutepowercapabilityisalsoafactor.Ifperformanceofthenativetaskis

prioritizedoverdynamicloadcompensation,thenthecapacitytoabsorbvariabilitywillbereduced.This

willalsobetrueiftheloadpowerisinsufficienttomeetthedemandedcompensation.Variablespeed

Page 33: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

28

drivesinHVACsystemsexperienceanumberofsuchlimitations.Thereare,ofcourse,peakpower

limitationsassociatedwiththefastestpossiblefandrivespeedavailableandminimumpowerlimitations

associatedwithvariablespeeddrivesoperatingat0Hz(offorstandbymode).Inourexperiment,these

limitswereovershadowedbyanallowablerangeofspeedsassociatedwithamplitudevariationthatis

discussedinSection3.3.1.Thenthereareramplimits.Fanscannotaccelerateordeceleratefasterthana

givenrateforreasonsdiscussedinSection3.3.2.Whileramprateslimitloadcompensation’supper

frequencybound,thermalvariationtypicallylimitsthelowerfrequencybound.Absorbingor“releasing”

electricalenergyintothermalenergyaltersthetemperatureofabuilding.WorkbyCao[35]estimates

thatfilteringcapabilityassociatedwitha15mincutofffilterorfastercouldbeimplementedinlarge

structureswithoutalteringthetemperaturetoogreatlyastobenoticeablebyoccupants.

3.3.1. Amplitudevariancebounds

Whenmoreorlessenergyisdissipatedintovariablespeeddrives,airflowseitherincreaseordecrease

relativetotheirbaselinespeed.Thesechangesinairflowhavedifferingacousticamplitudes.Therefore,

absoluteminimumandmaximumfanspeedsweredefinedbasedonanobjectiveofimperceptible

acoustics.Aseriesofacousticstests,injecting1minsinusoidalspeedcommandswithvarious

amplitudesintothemotordrivecontroller,wereconducted.Taking60Hzasabaseline,thesinusoidal

amplitudesvary±5%,±10%,…,±45%.TherespectiverecordednoiseenvelopesindBareshownin

Figure3.8.Alsoshownisthepeak-to-peakamplitudeofeachcurvecomparedtothebaselinemagnitude

togenerateanormalizedexpectationaboutamplitudevariations.Asverifiedbysubjectivehuman

hearingtests,thespeedvariationcorrespondingto0dBinFigure3.8,orequivalentlyapeak-to-peak

changeequaltothebaselinemagnitude(±16%),seemstobeimperceptible.Thismeansthatabout50

Hzand70Hzareappropriateminimumandmaximumfanspeedlimitsfora60Hzbase.Notethatthis

introducesamorestringentconstraintontheoverallHVACfilteringcapabilitythanthemaximumand

minimumpowerlimits.Filteringcapabilitywiththisnarrowerconstraintisconsideredinthefarright

columninTable3.1inSection3.4.

Page 34: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

29

Figure3.8.Acousticnoiseamplitude(top)andrelativeamplitudechangecomparedtobaseline(bottom)forvarious

sinusoidalfanspeedprofiles.

3.3.2. Rampratelimit

Inconventional,thermostaticallycontrolledenvironments,HVACblowermotordrivesnormallyoperate

atfixedfrequenciesasmightbeobservedinredinFigure3.4.Imposeadditionalfilteringdynamics,

however,andthefanspeedwilllikelyvaryconstantly,muchlikethebluecurveinFigure3.4.Ifthis

variationisrapidenoughitwillattractunwantedattentionfrombuildingoccupants,soaramplimit

shouldbeimposedtoneverallowcommandeddynamicstoexceedacertainrate.Todeterminethis

allowablelimit,approximately1minofsolarpowerdatafromJune15th,2013at10:00AMwasusedfor

audioanalysis.Thissamplewaschosenbecauseitincludedamixofrelativelyconstant(±3%)andrapidly

varying(±20%)power.Thescenariotestedwasforabuildinginwhich50%oftheaveragepowerwould

comefromsolarandabout45%ofthisaverageloadwouldbeattributabletotheHVACsystem[26].

Variousrampratelimitswereappliedandtheresearchteamcommentedonwhichtheyfoundtobe

highlynoticeable.Intheend,theteamagreedthata9Hz/sramp-limitedprofilesignificantlyreduced

theattentiondrawntotheblower’soperation,thoughtheyadmittedthatthechangeswouldstill

probablybedistractingifoccupantsweretofocusonthem.Inthisexperiment,9Hz/smeansthatthe

motordrivewouldrampfromastandstilltopeakspeed(cappedatabout90Hz)in10s.

Page 35: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

30

AspreviouslymentionedinSection3.2.2,unscaledacousticmeasurementsinthisexperimentwere

takenfroma0.5maway.Theideawastoemulateairflowoutofasinglevent,butinsuchasetupmotor

soundsdominatenoiseproduction.Incontrast,motorsandblowersinmorerealisticHVACsystemsare

distantfromtheoccupants,hencedampeningthesoundofallbutthechangingairflow.Therefore,real

rampratelimitsandamplitudelimitscouldlikelyberelaxed,andarepeatexperimentwithatypicalair

ventsandductsisrecommended.Still,initialresultsandsubjectiveperspectivesindicatethata9Hz/s

frequencyrampappearstobeaplausibleupperlimit.Acommandedspeedprofileabidingbythis

limitation(inadditiontothehard-setmax/minlimit)isshownasadashedlineinFigure3.9alongwith

thepurelycapacity-limitedspeedprofile.Notethattheminimumandmaximumvaluesineffectin

Figure3.9are0%and~120%ofbaselinespeed(60Hz),evenoverthecourseofjust1min.Therefore,

thelinearfrequencychangelimitsareenforcedanytimethedesiredfrequencychangeexceeds9

Hz/sec.

Figure3.9.Commandedspeedprofilewithspeedcapsandramp-limiting.

Anunfortunatesideeffectoframplimitingisthatduringperiodsofrapidpowerfluctuationthereare

timesduringwhichtheHVACfilterisslowenoughtobecounterproductive.ThisiseasiertoseeinFigure

3.10whentheramplimitedpowercompensation(dottedorangeline)iscomparedtotheidealpower

compensation(solidlightgraycurve).Insuchcases,aproportional-derivative(PD)controlmight

producebetterperformance.

Page 36: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

31

Figure3.10.Desiredpowercompensationrequestedfromfull-scaleHVACsystemswithandwithoutspeedclampsandramp

limiting.

Ramp-rateacousticchangeswhenfollowingafilteredprofileasinFigure3.9canbedecomposedinto

changesinamplitudeandchangesinfrequency.Thesedominantfrequenciescanoriginatefrommotor

propertiesorstructuralresonancesandcorrespondtodifferentoperatingregions.Figure3.11highlights

therecordedsoundfrequencyamplitudesacrosstheaudiblespectrumwhenmovingfromahigh-speed

“Loud”regiontoalowspeed“Quiet”region.Theregionsaredesignatedinthetoppartofthefigureby

thelight(pink)regionaround20sandthedarker(green)regionaround32s.Themiddledepictsthe

frequencycontentforcomparisonoffrequencyamplitudes.Obviously,louderperiodswillcontain

greaterbroadbandfrequencycontent,buttofocusonjustthepitchchanges,thebottomportionof

Figure3.11normalizesthepeakfrequencyamplitudes.Thisisolatesthepitchesfromchangesin

amplitude.Theencircledregionsindicatedominantfrequenciesthatariseorbecomenoticeablyabsent

relativetobaselineoperation.Therefore,whilenotanexplicitconstraint,frequencychangesshouldnot

beignoredastheywilllikelycontributetotheconspicuousnessofspeedchanges.

Page 37: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

32

Figure3.11.Soundamplitudesacrossaudiblefrequencyspectrumforthebaseline,“Loud”sample,and“Quiet”sample.

3.4. EffectivenessofdynamicHVACcompensationDependingonthePVcapacityinstalledandtherelativesizeofthebuildingload,thecapabilityof

dynamicloadcompensationwilldiffer.Table3.1summarizescapabilitiesfordifferentbuildingtypes

withaveragesolarpowerinstallationsrangingfrom25%to100%ofaveragebuildingload.Figure3.12

depictsthesamedataingraphicalform.Tounderstandtheoriginsoftheseresults,a1minsampleof

thispotentialpowercompensationwasdepictedingrayinSection3.3.2,Figure3.10.Thefiltering

capabilitiesofTable3.1formaximumandminimumlimitationswerefoundbyintegratingthearea

underthedashed(blue)curvesandsolid(lightgray)curvesandthenfindingtheratiobetweenthetwo.

Theramp-limitedcaseismorecomplicatedbecause,asobservedinFigure3.10,thepowerconsumption

representedbythedotted(orange)curveiseffectivelytime-delayedrelativetotheidealfilter.Table3.1

confirmsthisunfortunatesideeffectwithramp-limitedfilteringpercentagesthatarestrictlylessthanor

equaltothecapacitylimitedcase.

Page 38: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

33

Table3.1.FilteringCapabilityPercentageComparedtoIdealHVACFilter

UpperFilter

Limit(periodinmin)

Max/MinLimitedFilteringCapacity

Ramp-RateLimitedFilteringCapacity

AcousticAmplitude&Ramp-RateLimitedFilteringCapability

AverageSo

larC

apacity

(as%

oftotallo

ad)

100

1 73.20% 57.90% 47.00%5 70.70% 65.40% 44.50%15 66.90% 63.90% 39.90%30 65.20% 62.90% 37.70%

50

1 89.50% 74.20% 62.20%5 85.80% 79.40% 61.00%15 84.70% 81.10% 56.00%30 83.50% 80.80% 54.40%

25

1 98.80% 92.30% 80.30%5 96.60% 91.70% 77.70%15 95.90% 93.00% 75.40%30 95.70% 93.40% 73.70%

Thereareafewgeneraltake-awaypointsfromTable3.1orFigure3.12.Mostobviously,thefiltering

capabilityofHVACsystemsapproachestheidealcase(100%desiredfiltering)astheaveragepowerofa

solarinstallationdecreasesinrelativesizetotheaverageHVACpower.Decreasingoreliminating

limitationssuchasramprateandacousticamplitudeofcoursepermitsincreasedcapabilityaswell.

Moresubtly,whiletheidealHVACfilterincreasesineffectivenesswithshorterperiodfilters(lessenergy

tofilter),realisticimplementationsincludingramplimitingcontrolsperformmoreideallyforlongerfilter

cut-offperiods(30or15min)duetotheslowerdynamics.Fortunately,thiscoincideswithutility

aspirationsofmoreconstantpoweroverperiodsof15ormoreminutes[20].

Inthescenariosstudied,notalldesiredvariationcouldbeabsorbedthroughdynamicHVAC

compensation.However,inbuildingswithoccupancysensors,lessstringentlimitationscouldbesetin

unoccupiedroomsorzones,enablingincreasedenergystoragepotential.Dynamicloadcompensation

mightalsobesufficientifsomePVvariationcouldbeeliminatedatthestart,aswillbediscussedin

Chapter4.Otherwise,themissedorunfilteredenergymustbeabsorbedbyotherenergystorage

mechanisms,asmentionedinSection1.4.1.

Page 39: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

34

Figure3.12.GraphicalrepresentationofTable3.1.

3.4.1. Reducedbatterystoragerequirement

Implementingdynamicloadcompensationshouldrequirenomorethananoutercontrolloopbuilton

topofexistingthermostaticcontrolsandvariablespeeddrives,whicharebecomingthenorminnew

commercialbuildings.Therefore,thecostofimplementationisalmostcertaintobelowerthanthe

additionalbatterystoragethatitismeanttooffset.Resultsfromaten-daysamplesuggestthatabattery

storageunitcouldbedowngradedinsizebyatleast25%withthedynamicHVACcompensationstrategy

discussed[39].Thebenefitsofdynamicloadcompensationarevisiblypresentaswell.Onesampledayis

providedinFigure3.13andindicatesthereductioninbatterydemand(filled-inregions)whendynamic

HVACloadcompensationisimplementedvs.thebaselinecaseofrawsolarpower(middlevs.top).

Figure3.13alsoincludesanadditionalscenariowheretheprincipleofdynamicloadcompensationis

extendedtoalargewaterreservoirusedforchilledbeamcooling(bottom).Inthiscase,batterystorage

requirementsarenearlyeliminated.

Page 40: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

35

Figure3.13.Gridandbatteryenergycontributionfor:rawsolarprofile(top),filteredsolarprofileusingjustHVAC(middle),

andfilteredsolarprofilewithHVACandwatertankactingasdynamicloadcompensators(bottom).

Anotherbenefitofdynamicloadcompensationisthereductionofenergyenteringandexitingthe

battery,degradingbatterylifetime.Comparedtothebaselinecase,HVACfilteringcanreduceenergy

cyclingbymorethan25%foranovercastday,andnearlyeliminateenergycyclingwhencombinedwith

dynamicloadcompensationofaverylargewatertank.Whileexcessthermallossesassociatedwith

increasedtemperaturegradientshavenotyetbeenconsidered,thereispotentialforsignificantenergy

savingsfromreducedpowerelectroniclossesandbatterycyclinginefficiencies.

Page 41: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

36

4. PVOperatingReserveCurtailmentPVoperatingreservecurtailmentcaneliminateshort-termsolarpowervariabilitybypartiallycontrolling

thepowerproductionofaPVpanelorsystem.Inotherwords,thetechniqueenablesmorepredictable

poweroutputbyattemptingtosupplycertainpowerset-pointsratherthansimplytrackingthenatural

dynamics.PVoperatingreservecurtailmenthasbeenshowntoeffectivelyandeconomicallypreventthe

productionofsignificantvariabilityatthepanellevel[40].Thischapterrestatesmanyofthearguments

andfindingspreviouslypublishedin[40].Asanoverview,thischapterfocusesonwhatismeantby

dynamicoperatingreservecurtailment,theelectricalbenefitsthatPVsystemscanprovide,the

economicargumentforwhysomelevelofreserve-basedcurtailmentmakessense,andafewdifferent

variabilityandoptimalitymetrics.

4.1. OperatingreservecurtailmentschemeBothcurtailmentandreservecanhavemultipledefinitionsdependingupontheapplication.Forthis

thesis,curtailmentmeansoperationofaPVpanelatsomepowerset-pointbelowitsMPPwhilereserve

isthepower(orpercentageofpower)availableontopofthecommandedset-point.Dynamicoperating

reservecurtailmentisthecombinationofthesetwoinatime-varyingenvironment.Toclarify,operating

reservecurtailmentisnotequivalenttocontinuousoperationatanominalfractionofMPPoutput.

Instead,anominalfractionisset,andthenalow-passfiltercontrolorotherslowstrategyisusedto

calculateaslow-changingset-pointorpowertarget.Inthisway,aPVsystemactivelyoffsetssomeofits

ownvariability.Theset-pointscouldalsocomefromhistoricalsolardata,weatherforecasts,generic

outputprofiles,15minconstantorfirst-ordergridcommands,orcombinationsoftheseorotherinputs.

Toillustratetheconcept,aPVsystememployingoperatingreservecurtailmentwithalow-passfilter

wassimulatedandanalyzedonthesameJune15th,2003datausedthroughoutChapter3.Muchlike

Section2.2.3,variationsintheMPPpower(notcurrentorvoltage)wereofconcern.AsubsetofMPP

powerdataandthecalculatedreservepowers(nominal10%heldinreserve)isseenasthesolid,jagged

curves(gray)nearthetopofFigure4.1.Theheavy,dottedanddash-dottedcurves(inred)are

calculatedfroma1st-orderlow-passButterworthfilterappliedtothepeakandreservepowercurves.

Sincethesefiltersarecausalandslow-changing,ahigh-probabilityestimateofthenextmoment’s

powertargetcouldbefoundthroughextrapolationmethodsbasedonpastdata.RelativetotheMPP

filteredset-point,excessesorshortagesimposeduponthegridarecalledfluctuationsandis

representedasthejagged,dashedcurveneartheaxis(pink)inFigure4.1.Ifpurecurtailmentis

permitted,thenallinstancesofexcesspowercanbeeliminated.Additionally,ifthereserveset-pointis

Page 42: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

37

usedinsteadoftheMPPset-point,thenpowershort-fallscanbepartiallyorcompletelysuppliedthanks

totheavailablepowerreserve.Suchascenariowith10%reservecanbedescribedastheheavier,solid,

mostlyflatcurvenearzero(purple)inFigure4.1.Notethatamajorityofthetime,thepowertarget

couldbeachieved(fluctuationfromset-points=0)andthatresidualdeviationsarereducedin

magnitudecomparedtotheMPPcase.

Figure4.1.MPPPVpoweravailable,reservepower,associated"filtered"powertargets,andremainingfluctuationsimposed

uponthegrid.

Amodifiedincrementalconductancealgorithmwasdesignedandsimulatedthatwouldoperateatthe

powertargetwhenpossibleandmaximizepoweroutputwhenexperiencingashortage.Chapter5

containsdetailsoftheproject,thealgorithm,andsimulatedresults.

4.2. PVsystemsasagridresourceWhenphotovoltaictechnologywasnewandinherentlyexpensive,itmadesensetocontinuously

operateatpeakcapacitytomaximizeenergyoutput.Unfortunately,thismeantthatsolarinstallations

behavedlike“negativeload”gridconnections–introducingstochasticvariability,producingunregulated

poweroutput,andpotentiallydegradingsystemdynamicperformance[41].AsthecostofPVcontinues

todecrease,however,itmaybetimetotransitionfromPVasaliabilitytoPVasagridresource.Whenit

comestotraditionalspinninggeneration,activegridsupport,implyingdynamiccontrol,isessentialfor

full-functionsupply-sideresources.WithoutsimilarcontrolsforPVsystems,modelsofPVgeneration(as

Page 43: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

38

in[42])typicallyaddfossilfuelreservecapacitytohelpoffsetintermittency.However,wedonothave

tooperatePVthisway.Itcannotonlyoffsetsomeofitsownvariability,butalso,togetherwithan

“active”grid-readyinverter,itcanactuallyoffergridsupportbeyondwhatconventionalgeneration

provides.

Notincludingenergystorage,someexamplesofactivegridsupportinclude:

• Voltagesupport–Reactivepowercapabilitytohelpregulatelocalvoltage.

• Frequencysupport,includingregulationupanddown–Realpoweradjustmenttomaintain

fixedfrequency.

• Operatingreserves–Additionalcapacitythatcanbeconnectedwhenrequired.

• Rampratecapability–Trackexpectedloadrampingatneararbitraryrates.

• Stabilitymaintenance–Rapidlyrespondtofaults,lineremovalsorinsertions,orlarge

instantaneousloadchanges.

TheinvertersforgridconnectioninmanyPVsystemsoperateatunitypowerfactorandmaximum

powercapacityatalltimes,andthereforedonotprovideanyoftheseactivesupportcapabilities.The

situationischangingrapidlyinEurope,however,asrequirementsforactiveinvertersmovetoward

standardization[43].Reactivepowerandvoltagesupportarefeasibleinthesedesigns,andthe

implementationofreservecouldmeanavailableinvertercapacityevenduringtimesofpeakpower

production.Low-voltageridethrough,requiringcontinuedoperationthroughanexternalfault,is

emerginginPVsystems.Frequencysupportandotherregulationrequirementstendtobeone-sided,

requiringpowerreductionduringover-frequencyconditionsorpowercurtailmentinsomesituations

[30].Operatingreservecurtailmentcouldexpandthiscapabilitytoincludesomelevelofpowerincrease

duringunder-frequencyconditions.Broaderactivegridsupportistypicallyassociatedwithstorage,but

dynamiccontrolsforactivegridfunctionsarepossibleevenwithsmallinverters[44].

4.3. EconomicjustificationofPVcurtailmentAllofthepotentialbenefitsofPVcurtailmentwithoperatingreservemustbemadeeconomically

competitiveagainstalternativesolutions.Thissectionarguesthatsomereservecapacitydoesmake

economicsensegivengridsupportasaninherentrequirementofsupply-sideresources.

Forsometangiblemetrics,considerthecostofPVenergytobeabout$0.05/kWh[45]andthecostof

conventionalspinningreservetobe$0.0058/kWh[42].Photovoltaic(PV)energysystemshavequoted

installationcostsatorbelowUS$2perpeakwattacrossscalesfromresidential[46]toutility[47].In

Page 44: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

39

systemswith25yearwarranties,thismeansthatelectricityisproducedbelow$0.05/kWhatthis

installedcost.Asasidenote,thisapproachescostparity,atwhichPVenergyproductioncostsare

comparabletothosefromotherfuelsmeasuredatdistributionpointsinthegrid[45].Thecostof

operatingreserveshasbeenexploredindepthbyNREL[42]andaveragesabout$5.80/MWh,orthe

$0.0058/kWhfigure.ConventionalPVpracticetreatsanyenergysacrificedashavinganopportunitycost

of$0.05/kWh;however,thisneglectsthecostofregulationwhicheithermustbesuppliedbytraditional

generationorbatterystorage.Batterystorage,forcomparison,hastargetcostsof$250/kWh,installed

[14].Assuminglineardegradation,morethan40,000equivalentcycleswouldbenecessarytobecost

competitivewithspinningreserves.Thisisunlikelywithmodernbatterytechnology.

ConsiderinsteadthescenarioinwhichthevalueofaPVsystemasagenerationresourceismaximized

ratherthanjusttheenergyproduction.Saythat,onaverage,10%ofavailablepowerissetasideforgrid

support.Therefore,thecostofthisreservewouldbe10%oftheoverallcostofenergy,withthecaveat

thattheremainingenergyisnowabout10%moreexpensive.Afterall,forthesameinstalledsystem,

10%reservemeansthatyouwouldonlybereceiving90%asmuchenergyaswithoutreserve.

Mathematically,thecostofreserveiscalculatedtobe

𝑪𝒓 =𝑷𝒔𝒐𝒍𝒂𝒓𝟏 − 𝝌

⋅ 𝝌 (4.1)

wherethecostofsolarenergyislabeledasPsolarandthereservefractionasχ.WeseeinFigure4.2the

costofPVoperatingreservecurtailmentplottedovervariousamountsofreserve.Thecircles(blue)

curverepresentstheapproximatecostofmodernPVtechnology,asdiscussed,whilethetriangles

(orange)curverepresentsahypotheticalfuturecostasPVcontinuestogetcheaper.Thesolid(yellow)

linerepresentsthecostofspinningreserve,belowwhichPVreservehasacostadvantage.

Aswouldbeexpectedfrom(4.1),increasingreservecorrespondstosignificantlyincreasedcost.Thisis

becauselargeramountsofreserveconstitutelargerfractionsofthebaselinePVcostandeffectively

causetheremainingenergytobemoreexpensive.Incontrast,smallpercentagesofreservecostvery

little.ThismeansthatforanyPVpricelevel,includingtheverypessimisticgray(squares)costcurvein

Figure4.2,somepercentageofreserveischeaperthanconventionalreserveresources. Curtailmentcost

issueserodeasPVinstalledcostscontinuetofallandasPVinvertersbecomeresponsibleformorethan

justenergyconversion.Inthisanalysis,noeconomicvaluewasattributedtopotentialPVinvertergrid

supportcapabilities,thoughthesecouldcertainlydefraysomereservecosts.

Page 45: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

40

Figure4.2.Opportunitycostofreservefordifferentpricesofsolarascomparedtoconventionalreserves.

4.4. MeasuresofvariabilityandoptimalityPVvariabilitycanbedefinedinanumberofdifferentways.Section4.1referstovariabilityasthe

deviationfromthelow-passfilteredpeakpowerprofile.Thiscanbedefinedinatleasttwodifferent

ways-eitherthemaximumabsolutedifferenceortheintegralofpowerdifferences.Thissection

presentshowtheoperatingreservecurtailmentschemereducesvariabilityinbothmetrics.Additionally,

whilethefocusofthisthesisistoreducevariability,thevalueofrenewableenergyisnottobeignored,

soonemeasureofoptimalityispresentedthattriestomaximizeenergyproductionwhileminimizing

variabilityimposeduponthegrid.

Letusfirstconsidervariabilityasdefinedbythepeakdifferencebetweenthepoweravailableandthe

outputpowersetpoint.Allowingforcurtailmentmeansthatonlynegativevariability(powerbelowthe

setpointthatcannotbesupplied)willpersist,becausepositivevariabilitywouldrepresentanexcess

thatcouldbecurtailedtomeetthesetpoint.Figure4.3showscomparativeoperationonadaywith

substantialcloudcovervariationandintermittency.Intheleftplot,actualsolarproduction(scaledtoan

arbitrarypowerpeak)isshownasthelighttrace,andthedesiredoutputbasedonalow-passfilter

invertersetpoint,butnoreserve,isshownasthedarktrace.Allnegativevariabilityisimposeddirectly

onthegrid,andassuch,themaximum,traditional(spinning)operatingreservewouldbetheratioofthe

negativepeakinvariabilitytothepositivepeakinthesolardata,inthiscaseabout5/11.5or43%.Inthe

rightplot,thesamecontrolisemployedwithanominal85%operatingsetpoint.Thisallowsforsome

$0.00

$0.01

$0.02

$0.03

$0.04

$0.05

0% 10% 20% 30% 40% 50%

Opp

ortu

nity

Cos

t of R

eser

ve ($

/kW

h)

PV Reserve as Percentage of Peak Energy Possible

$0.05 $0.04 Current Cost of Traditional Reserves $0.10

Page 46: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

41

negativevariabilitytobereducedbyutilizingsomereservepowercapability,andthusthereisa

substantialreductioninvariabilityimposedonthegrid.Theoperatingreserverequirementdropsto

3.6/11.5or31%;thedropisnotquitea1:1reduction(15%PVfor12%conventional),butitisstill

substantial.

Thealternative,integraldefinitionofvariabilityisperhapsbettersuitedtobatterystoragemetrics

ratherthanspinningreservesasitrepresentswatt-hoursofenergystorageratherthanjustwatts.A

claimed“reductioninvariability”wouldbethedifferencebetweenthebasecaseandthereservecase

fluctuationintegral.Thiscorrespondstothedifferencetakenbetweentheintegralsofthebottom

(purple)curvesinFigure4.3.

Figure4.3.Variabilitymitigationoveradaywithsubstantialsolarintermittency(June15th,2013).Leftplot:noreserve

capability.Rightplot:nominal15%reserve.

TheintegraldefinitionofvariabilitywasusedtocalculatetheoptimalPVreservepercentage.Generally

speaking,increasingthenominalreservewillreducevariabilitybutincreaseenergysacrifice.Muchlike

theabsolutevariabilityrelatedtospinningreservereductions,theintegralvariabilitydoesnottradeoff

withenergysacrificeina1:1manner.Instead,itisnonlinearanddependsuponthe“type”ofdayasit

pertainstovariousamountsofcloudcover.Figure4.4showsthereductionratiovs.thenominal

curtailmentlevelforthesamethreedaysasFigure2.6.Eachtypeofdayexperiencesalevelofreserve

abovewhichincreasedreservehasdiminishingreturns.Thepeakofthiscurverepresentsonemeasure

ofoptimalityasthemarginalbenefitofincreasedreserveismaximizedatthispoint.Thispointof

optimaloperationtypicallysupportstheoverallcost-benefitanalysis,too.

Page 47: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

42

AccordingtoFigure4.2,moderndaysystemsoperatingwith0-10%reservecorrespondtodirectenergy

reductioncoststhatarelowerthanreducedoperatingreservecostsinthepowergrid.Forexample,in

Figure4.4anoptimaltrade-offisobservedatabout8%reservefortheovercastday.Givena$2/WPV

system,acurtailmentof8%translatestoeffectiveoperatingreservescosting$174/kWand$4.35/MWh

usinganapproachsimilarto(4.1).Thesevaluesaresubstantiallylowerthanexistinggridreserve

methods,andforclearandovercastdaysthisislikelytobethecase.Dayswithintermittentcloudcover

posealargerobstacletovariabilityreductionsotheoptimalenergyvs.variabilitypointmaylietothe

rightofthecross-overcostinFigure4.2andmaythusbecostlimitedandnotquiteideal.

Figure4.4.Cost-benefitcurvesforfindingoptimalreservepercentage.

TheoptimalitycurvesofFigure4.4indicatethatthebestreservelevelshouldadapttoconditions.

Thoughoutsidethescopeofthisthesis,ahybridapproachoflow-passfilteringandweatherforecasting

mayleadtoimprovedenergycaptureandvariabilityreduction.Forexample,weatherforecastsfor

partialorfulldayscouldbedistributedtocontrolalgorithmsthroughinternetconnectivityandset

recommendedreservecapacitybasedonpredictedcloudcovertypeandquantity.Then,thelow-pass

Butterworthfilterwouldusetheupdatedcurtailmentlevelwhendeterminingpowerset-points.

Alternatively,reservepercentagescouldbedynamicallyincreasedanddecreasedbasedonthe

perceivedvolatility,relaxingduringperiodsofclearskyandslowchangesandincreasingduringperiods

ofpartialcloudcover.

Page 48: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

43

5. ImplementationanalysisTheproofofconceptSimulinkmodelpresentedheredemonstratesthesuccessfulmodificationofan

incrementalconductancemaximumpowerpointtracking(MPPT)algorithmtoachievethedesired,

arbitrarypoweroutput.Morespecifically,themodelsetsatargetpoweroutputbasedon“filtered”

historical,curtailedsolardataandthenoperatesatvaryinglevelsofcurtailmenttobestmatchthe

desiredoutput.Thiscapabilityiscoineddesiredpowerpointtracking(DPPT).

Asabroadoverview,Section5.1reviewstheconventionaloperationoftheincrementalconductance

algorithmandintroducesthemodificationusedtooperateatpointsawayfromtheMPP.Section5.2

thenbuildsupthemodelpiecebypiece,beginningwithasimplecontrolloopandevolvingintothefinal

controlsystemwithcrosscomparisonsandverificationsbetweenversionsalongtheway.Thefinal

outputtosomesampledatamaybefoundattheconclusionofthissection.Section5.3thenprovides

somebriefeconomicjustificationandanalternativeperspectiveforwhytradinguncertaintyforenergy

productionmightmakesense.

5.1. Incrementalconductance–areviewTheproposedimplementationofpowercurtailmentisbasedonanincrementalconductanceMPPT

algorithm,soitisimportanttounderstanditstypicaloperationbeforeproceeding.Inaddition,ahigh

leveldescriptionofhowDPPTadaptsthisalgorithmispresented.

5.1.1. ConventionalalgorithmIncrementalconductancereliesuponmeasurementsbeingtakenatdiscreteinstancesintime.Ateach

timestepthealgorithmcomparesthelatestvoltageandcurrentmeasurementstotheprior

measurementsandthencalculatesthedifferencetoobtain∆Vand∆I.Bycomparingtheinstantaneous

conductance,I/V,tothenegativeofthediscretechangeinconductance,-∆I/∆V,adecisioncanbemade

toeitherincreaseordecreasetheoperatingvoltagesetpoint.Thederivationoftheincremental

conductancerelationshipisasfollows:Theslopeis0atpeakpoweronthepowervs.operatingvoltage

curve(Figure5.1).ThisMPPisindicatedinthefigurebythecirclesatopeachirradiancecurve.Put

simply,

𝒅𝑷𝒅𝑽

= 𝟎 (6.1)

attheMPP.Next,weexpandoutthepowerPintoitsvoltageandcurrentcomponentsandevaluatethe

derivativeusingtheproductrule.

Page 49: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

44

𝒅𝑷𝒅𝑽

=𝒅(𝑰 ⋅ 𝑽)𝒅𝑽

=𝒅𝑰𝒅𝑽

𝑽 +𝒅𝑽𝒅𝑽

𝑰 =𝒅𝑰𝒅𝑽

𝑽 + 𝑰 = 𝟎 (6.2)

Weapproximatethatforrapidsampling(fasterthanthedynamicsfoundinthesolardata)wecan

replacetheinstantaneousderivativewitharatioofdiscretizeddifferences.

𝒅𝑰𝒅𝑽

≈∆𝑰∆𝑽

(6.3)

Implementingthisapproximationandsimplifyingtheexpressionintotwoconductanceterms,wehave

∆𝑰∆𝑽

+𝑰𝑽= 𝟎 →

∆𝑰∆𝑽

= −𝑰𝑽

(6.4)

wherethetermontheleftoftheequalssigniscalledtheincrementalconductanceandthetermonthe

rightistheinstantaneousconductance.

Figure5.1.Powervs.operatingvoltagecurvesforthreedifferentirradiancelevels.

Thefinalstepfortheincrementalconductancealgorithmistoeitherincrementordecrementthe

operatingvoltage(x-axisinFigure5.1).ConsideringthatdP/dVisgreaterthan0totheleftoftheMPP

wecanusethefinalexpressionin(6.2)and(6.4)toinferthatwhentheincrementalconductanceis

greaterthanthenegativeofinstantaneousconductance,theoperatingpointislikewisetotheleftofthe

MPPandthatthevoltagesetpointshouldbeincremented.Thecomplimentarystateandactionsfor

dP/dVlessthan0likewisehold.

5.1.2. ModifiedalgorithmTheconventionalalgorithmpresentedintheprevioussubsectionisdesignedtooperateatpeakpower,

butforDPPT,itismostoftenthecasethatthedesiredoperatingpointwillnotbetheMPP.Itwas

thereforenecessarytogeneralizetheincrementalconductancealgorithmtoaccepttargetoperating

Page 50: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

45

pointsbelowtheMPPandcorrespondingnon-zeroslopes.Mathematically,ratherthansearchingforthe

zeroslopepointasin(6.1),wearenowsearchingforwhere

𝒅𝑷𝒅𝑽

= 𝐒 (6.5)

whereSisthevariableforslope.FollowingthesameprocedureasinSection5.1.1,weobtain

∆𝑰∆𝑽

=𝑺 − 𝑰𝑽

(6.6)

atourdesiredoperatingpoint.Justasbefore,iftheincrementalconductanceisgreaterthanthe

negativeofthisnew,modified,instantaneousconductance,thentheoperatingpointistotheleftofthe

DPPandthusthevoltagesetpointshouldbeincremented.Thecomplimentarystateandactionsagain

hold.

Figure5.2representssuchascenariowherethepowerdemandedis90%ofpeakpowerforthat

irradiance.Thetargetpowerandassociatedslopeareindicatedbythegreendotandstraightlinethat

passesthroughit.Notethatonlythenon-shadedregiontotherightofeachMPPisutilized.Eventhough

therearetwopointsatwhichoutputpowerequalsthedesiredfractionofpeakpower,theslopetothe

leftoftheMPPislargelyconstant,whichleadstopoorconditioningofthelook-upvaluestobe

discussedinSection5.2.4.

Figure5.2.Usefulregionofpowervs.operatingvoltagecurves(non-graysection)withanewtargetpower(greendot)and

associatedpowervs.voltageslopeindicatedonthepeakirradiancecurve.

5.2. Modelingprocedureandverification

Toensureaccuracyofthefinalresult,thesimulationwasbuiltinmultiplestageswitheachsuccessive

stageaddingeitheranewsubsystemorasimplifyingapproximation.Additionally,thesimulationutilized

90%

Page 51: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

46

PVdatafromthefinalizeddatasetpresentedinChapter2tomodeltheresponsetoreal-lifePVpower

profiles.

5.2.1. Stage1:Basecase

Thebasecaseconsistedofaclassicalincrementalconductancealgorithmwrappedaroundaboost

converter.TheboostconverterwasimplementedwithamodelMOSFETanddiodeaswellasPWM

generatorbuiltfromatrianglewaveformgenerator,theoutputfromthecontrolloop,anda

comparator.Theoutputoftheboostconverterwasconnectedtoafixed-voltagebusof95.2V.Suchan

arbitraryvalueistheresultofascalingapproximation.Initialmodelplanswereforamore-typical235W

panelwith30VMPPtobeconnectedthroughtheboostconvertertoanidealvoltage-sourcedinverteras

inFigure5.3.Theconfigurationmightresembleatypicalmicroinverterthatconnectsasinglesolarpanel

directlytotheacelectricgrid.Inordertooutputa120VRMSwaveformtothegrid,theboostconverter

wouldneedtosupplya170Vdcbus(foranidealinverter).Inordertotransformthepanelparameters

fromChapter2(20W,16.8VMPP)intothoseforthe235Wpaneldesired,alinearscalingapproachwas

taken,muchlikeSection3.2.2.Thatis,aconverterboosting30Vto170Vwasassumedtohavelinearly

proportionaldynamicpropertiestooneboosting16.8Vto95.2V.

Figure5.3.BlockdiagramillustratingtheenvisionedimplementationofaMPPTboostconverteraspartofamicroinverter.

Inordertopermitnumericalintegrationwithoutasingularsolution,Simulinkrequiredasmallresistance

inserieswitheitherthevoltagesourceoroutputcapacitor.Consequently,an8.13×10=]p.u.resistor

wasinsertedinserieswiththeinfinitebus.Theresistorwasplacedhereinsteadofinserieswiththe

capacitortoavoidexcessESR-relatedvoltagejumpsattheoutput.Theselectedplacementconveniently

resembleslineresistancethatwouldbelikelyencounteredifimplementedinreallife.

5.2.2. Stage2:Averagecircuitmodel

Simulatingjust0.1sofmodeltimeinthebasecasetookconsiderablecomputationalpowerandtime-

probablyover100sona2.4GHzdualcoreprocessor.Significantsolarvariationcausedbycloudsoccurs

overaperiodofafewsecondstominutes,sothesimulationhadtobedrasticallysimplifiedifitwereto

provideanymeaningfulresultsintime.Tothisend,theswitchingcircuitwasreplacedwithanaverage

SolarPanel dc/dcConverter dc/acInverter PowerGrid

Page 52: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

47

circuitmodeltoobservetheresponseoftheconverterontimescalesmuchlongerthanafewswitching

periods.

Modificationsfromtheswitchingmodelincludedswitchreplacementandanincreaseinoutput

capacitance.Thediodeinthebasemodelwasreplacedbyadependentcurrentsourcevaluedat

1 − 𝐷 ⋅ 𝐼`where𝐼`istheaverageinductorcurrent;theMOSFETwasreplacedbyadependentvoltage

sourcevaluedat 1 − 𝐷 ⋅ 𝑉bcdwhere𝐷isthecommandeddutyratio;andtheoutputcapacitancewas

increasedsignificantly.Sincetheaveragemodelhasatendencytoexaggerateoscillations,theincreased

capacitorsizedampenstheresponsetocreatesimilaroutputpowerresponsestodutyratio

perturbations.Theoutputpowerwaveformsfromthebasecasewithswitchingandtheaveragecase

arelargelyconsistent(Figure5.4).Differencesincludeaslightphaseshiftduetotheeffectoflocal

averaging,andlargersteady-staterippleinthebasecaseduetotheswitchingripple.

Figure5.4.Poweroutputresponsetostart-updisturbance.

5.2.3. Stage3:Constantcurtailment

Beforeimplementinganyadvancedcontrol,itwasimportanttoensurethatthemodeledboost

convertercouldproperlyoperateatadesiredlevelofcurtailment.Inthisstage,afixedfractionof

reservewasset,namely10%.Figure5.5showsthepoweroutputoftheconverterwith10%reservein

green.Maximumpossiblepowerfromthepanelisshowninorangeandthedesiredoutputpowerof

90%peakpowerisshowninblueforcomparisonwithactualpoweroutput.

Page 53: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

48

Figure5.5.Poweroutputwithafixedcurtailment(reserve)commandrelativetoidealcase.

Themodeledconverteroutputcloselytrackstheideal90%peakpowercurvewithtwodistinctfeature

typesofnote.Thefirstissmall,intermittentstepchangesthattypicallybringtheoutputclosertothe

desiredlevel.Whilenotconfirmed,thesearelikelyduetothediscretechangesinlook-uptablevalues.

Asthealgorithmtransitionsfromonebreakpointtoanother,itispossiblethatirregularitiesintheslope

valuealongthex-orpower-axisofFigure5.6couldcausesomejaggedbehavior.Theotherfeatureis

triangularoscillationaboutthedesiredoperatingpoint,mostnotablywhereincreasesinpoweroutput

aredesired.Thisnearinstabilityislikelyaresultoftheboostconverter’snaturallyoccurringrighthalf

planezeroincombinationwithcontrolactionsthataredelayedby0.01sfromthemeasurementstaken

andalimitedset-pointvoltagesteprate.Whenmorepowerisdesired,theconverteroutputvoltagewill

initiallydropbeforerisingagain.However,ifthecontrolmeasuresthisdecrease,then0.01slateritwill

demandthatthenextstepbeanincreaseandonlyaddtopotentialovershoot.

5.2.4. Look-uptablecreation

Oneofthedownsidestotheproposedalgorithmisthatyouneedadvancedknowledgeofthepowervs

voltageslopeforeachlevelofcurtailmentdesired.Unfortunately,thedesiredslopealsochangeswith

irradianceforagivencurtailmentlevel.Therefore,atwo-dimensionallook-uptablewasusedtoindicate

anapproximateslopeforagivencurtailmentlevelandpeakpower(relatedtolevelofirradiance).Figure

5.6isagraphicalrepresentationofthelook-uptablewherethexandyaxesrepresent“inputs”andthe

associatedzvalue“output”atthosecoordinatesrepresentstheslopedP/dVforthoseconditions.

Page 54: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

49

Figure5.6.Look-uptableingraphicalform.

Photovoltaiccurrentvs.voltage(I-V)curvesalsohaveatemperaturedependence,buttheseeffectswill

besecondaryinsignificanceandwouldrequirea3-Dlook-uptable,sotemperaturedependencewas

ignoredinthisanalysis.Creationofthislook-uptablewasstillcomplicated,however,andinvolvedthe

followingprocedure:

1. Extractingraw,slowmeter,I-Vsweepdata(asdiscussedinSection2.1)forAugust1st,2013.

2. Groupingwell-behavedI-Vsweeps(asdefined inSection2.3.4) into0.1Wresolutionbinsbased

onthepeakpowerofeach.

3. CalculatingthemeanI-Vsweepforeachbin.

4. DeletingvaluesofP-VpairstotheleftoftheMPP.

5. Performing “localizedmoving average” operations to smooth the P-V data to bemonotonically

decreasing.

6. Calculatingdiscretederivativeswithacentralizeddifferenceapproximation

𝑷𝒊e𝟏 − 𝑷𝒊𝑽𝒊e𝟏 − 𝑽𝒊

≈ 𝐒𝐢e𝟏𝟐

(6.7)

inordertocreateaslopevsvoltageorS-Vcurve.

7. Repeating the “localized moving average” where needed (on non-monotonically decreasing

derivativecurves).

8. UsinglinearinterpolationontheP-Vcurvetocalculateapproximatevoltageassociatedwitheach

discretizedcurtailmentlevelbetween0%and99%ofpeakpower.

Page 55: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

50

9. Correlatingeachinterpolatedvoltagewithaslopevalue,againusinglinearinterpolation.

10. Repeatingthisprocess(steps2-9)foreachpeakpowerrangeor“bin”.

11. Running a 5-element-wide windowmoving average across the peak power possible values for

constantcurtailmentratiototryandsmoothouttheratherjaggedoutputdatasurface.

Oncealloftheabovestepswereperformed,theoutputyieldedFigure5.6,whichisthesamedataused

forthelook-uptableintheDPPTalgorithm.

5.2.5. Butterworthcalculation

Oncetheconstantcurtailmentwasfunctional,mostanypiecewisecontinuouspoweroutputsequence

couldbecommanded.Inthisstudy,thesamelow-passButterworthfilterwasimplementedasin

Chapters3and4exceptwithalow-passcutoffof(1/60)Hz(orslowerthan1min).Onceachieved,this

targetpoweroutputwouldpossessmuchslowerdynamicsthantherawsolardata,decreasingthe

uncertaintyassociatedwithsolarpowerfromautilityperspective.Withthisexpectedoperatingpoint,

anytimethatavailablepowerisgreaterthancommandedpowerthesolarpowercanbecurtailedto

producetheexpectedpoweroutput.ThepurplecurveinFigure5.7representspowercommitmentor

commandthatcannotbemetwiththisstrategybecausethereisnoheadroom/reserveduringthose

times.Theintegraloftheseshortcomingsisdefinedtobetheremainingvariability,andmustbemet

withadditionalenergystorageorreservesiftheButterworth-filteredcommitmentistobemet.

Figure5.7.Rawsolardatatogetherwithfiltered,curtailedpowerdemanded,andpowerlackingcurves.

Page 56: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

51

5.2.6. Results

ThefinalstepinthismodelcreationwastoimplementtheButterworthfilterintothecontrolloop.The

filtertookasinputrawdatamultipliedbyoneminusthenominalreserveor0.90inthiscase.Theoutput

wasusedtocalculatethenextcurtailmentpercentagecommand,anddividingthecurrentpanelpower

bythefilteroutputprovidedtheneededestimateofpeakpoweravailableatthatinstant.Figure5.8

illustratesasampleofthefinaloutputinwhichthedarkestcurve(black)representstheMPPatall

times,themediumdarknesscurve(blue)isthenominal90%valueforthecasewhere10%reserveis

desired,andthesmooth,dashedcurve(magenta)isafirst-order,low-pass,Butterworthfilterwithcut-

offfrequencyof(1/60)Hz.Thelightcurve(green)representsthemodeledoutputoftheDPPT

algorithm,whichasdesired,tracksthemagentaButterworthcurvewheneverpossible,andmaximizes

poweroutput(tracksorangecurve)wheneverinsufficientpowerisavailable.Again,thereisnotable,

triangularoscillationaboutthefilteredpowersetpoint(Figure5.8)thoughthisvirtuallydisappears

whenlimitedbythepeakpower.

Figure5.8.ActualoutputofDPPTmodelcomparedtocommandedpowerset-pointwithrawMPPdataand10%reserve

curveforreference.

5.3. EconomicjustificationforimplementationSolarpower“reserve”cancertainlylowerthecostofbatterystoragenecessarytomeetpower

commitments,butthequestionisiftheopportunitycostofthereserveisgreaterthanthebatterycost

beingoffset.Toinvestigatethisquestion,twoscenarioswerecompared:(1)MPPsolarpowerisoutput

atalltimes,andsufficientbatterycapacityisrequiredtoabsorballpeaksandsupplyforallvalleys

relativetothefilteredMPPoutput.(2)Thefilteredpoweroutputtargetisbasedona90%nominal

Page 57: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

52

poweroutput,overheadorreservepowercanbeutilizedwhenbeneficial,andsolarenergycanbe

“spilled”whennotusefulinmeetingclaimedcommitment.Thesimplifyingassumptionsarethatinboth

scenariosthebatteriesarelosslessandthefilteredpoweroutputcommitmentmustbemetatalltimes

throughouttheday.

Forcase1,rawcapacitywasdeterminedtobethepeakcumulativesumofenergyeithersuppliedor

demandedfromthebatteries.Thisisbecausewewouldneedtoabsorbanypossiblevariationfromthe

filteredpowerintothebatteriestomeetourcommitment.Excessenergyandenergyshortageswould

offsetoneanotherinsaidsummation.Actualbatterycapacitywouldhavetobe~3.33timeslargerthan

therawcapacitysothatthebatterywouldoperatebetween20%and80%stateofcharge(SOC)andso

thatitcouldstartat50%SOCtoequallyhandleapotentialsurplusordeficitofequalmagnitude.

Forcase2,rawcapacityiscalculatedinasimilarmannerexceptthatfullpanelpowermaybeusedwhen

convenientandenergycanbe“spilled”byoperatingthesolarpaneloffofitsMPP.Thesamemultiplier

of3.33willbeusedforconsistency,thoughinreality,sincereserveenergyisverylikelytobeavailable

throughoutthedayandshortagesaretypicallybrief,muchlesssurplus-energycapacitywouldbe

neededandthecentralSOCmightbecloserto70%sothatoverallbatterycapacityrequiredcouldbe

reduced.Alternatively,batterycapacitycouldremainthesameascase1andbeusedfornighttime

energyratherthanpureregulationcapability.

Forthepurposeofthiscalculation,asampledaywasselectedfromtherawdataset.Allpowerand

energyvalueswillbescaledby1000torepresentacommercialsolarinstallationof20kW.Whilebattery

degradationislikelynonlinear,batterycyclinginthisanalysiswascalculatedasthecumulativetotalof

allenergyinandoutasafractionofnecessarybatterycapacity.Thetwoscenarioswerecalculated,and

fullbatterystorage(scenario1)wouldrequire0.399kWhofstoragewhilethereserve-basedmethod

wouldrequireonly0.131kWh.Additionally,thefilteringrequiredforthesampledaywouldcycle

approximately140%ofthebatterycapacityandinscenario2,3.41kWhofenergywouldbesacrificed

overthecourseoftheday.Taking,forexample,thecapacityandcostofaTeslaPowerwallbattery[48]

wecanestimateaperkWcostofbatterystoragetobe

$𝟑𝟎𝟎𝟎𝟔. 𝟒𝒌𝑾𝒉

= $𝟒𝟔𝟖. 𝟕𝟓/𝒌𝑾𝒉 (6.8)

Withtheratedcyclingestimateof5000cycles[49]at1.4cyclesperday,thatyields~9.78years.Callit

10yearsforconvenience.Thereducedbatterystoragerequirementcansave

𝟎. 𝟑𝟗𝟗 − 𝟎. 𝟏𝟑𝟏 𝒌𝑾𝒉× $𝟑𝟎𝟎𝟎𝟔. 𝟒𝒌𝑾𝒉

𝟏𝟎𝒚𝒆𝒂𝒓𝒔= $𝟏𝟐. 𝟓𝟔/𝒚𝒓

(6.9)

Page 58: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

53

Theenergysacrificedcanbeviewedintwodifferentways.Ifviewedasanoperatingcost,thenevery

kWhmissedhastheopportunitycostoftheelectricityrateofabout$0.0999/kWh[50].Thus,overone

yeartheopportunitycostwouldbeasubstantial

$𝟎. 𝟎𝟗𝟗𝟗𝒌𝑾𝒉

×𝟑. 𝟒𝟏𝒌𝑾𝒉𝒅𝒂𝒚

×𝟑𝟔𝟓𝒅𝒂𝒚𝒔𝒚𝒓

= $𝟏𝟐𝟒. 𝟑𝟒/𝒚𝒓 (6.10)

However,wearereachingapointwheresolarpowercannolongerbetreatedasanegativeload

withoutgridstabilityconsequences.Ifitistobetreatedasatraditionalgeneratorthatmustprovide

regulationcapabilityandabidebyitsforecastcommitment,thenacostcalculationparadigmshiftis

required.Thecostofregulationbecomespartoftheinitialsolarinstallationorinvestmentfixedcost.At

currentcosts,solarenergyisestimatedtocost$0.05/kWh[45].If10%reserveisassumed,thenthecost

ofthesolarenergygoesupby1/(1-10%)or111%andthereservewillcost10%ofthisnewcostor

𝟏𝟎%×𝟏𝟏𝟏%×$𝟎. 𝟎𝟓𝒌𝑾𝒉

=$𝟎. 𝟎𝟎𝟓𝟓𝟔𝒌𝑾𝒉

(6.11)

Withthisnewperspectiveonthecostofthereserve,thecostperyearbecomes

$𝟎. 𝟎𝟎𝟓𝟓𝟔𝒌𝑾𝒉

×𝟑. 𝟒𝟏𝒌𝑾𝒉𝒅𝒂𝒚

×𝟑𝟔𝟓𝒅𝒂𝒚𝒔𝒚𝒓

=$𝟔. 𝟗𝟏𝒚𝒓

(6.12)

whichisconsiderablylowerthanthebenefitgainedbyreducedenergystorageneeds,whichisalsoan

upfront,fixed,investmentcost.

Page 59: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

54

6. ConclusionContinuedintegrationofrenewableenergyresourcesontotheelectricgridincreasesvariabilityand

decreasesgridstability.Energystoragecanhelpmitigatesomeoftheseeffects,buttraditionalenergy

storage,suchasbatteries,istypicallyexpensiveandhasotherdisadvantagessuchasroundtrip

inefficiencyandlimitedlifetime.Real,high-speedsolarpaneldatawasusedtocharacterizethe

stochasticenergyoutputofPVsources,andthenumerouschallengesfacedandmethodsusedwhen

manipulatingthisreal-lifedatasetweredetailed.Twoalternativemethodswerethenpresentedto

absorborreducethevariabilityimposeduponthegridbyPVorothergeneration.

DynamicHVACloadcompensationwasproposedasamethodtoabsorborfiltershort-termPV

variabilityandactaseffectivegridinertiathatisbeingreplacedbynon-inertialgeneration.Aproposed

Butterworthfilterpowertargettechniquebalancedenergystoragedemandswithdecreased

uncertainty.Asmall-scalemodelofavariablespeedblowerandfanwasusedtoestimatefiltering

limitationsimposedbyundesirableacousticeffectsandtoprovideaconversionbetweenfanspeedand

powerconsumed.Physicalceilingandfloorlimitationsaswellasthermallimitationsfurtherconstrain

theavailablefilteringpotential.Consideringalloftheimposedlimitations,thevariationabsorptionor

filteringcapabilityofdynamicHVACloadcompensationwasanalyzedforvariousbuildingsizesandon-

sitesolarpenetrations.Aswouldbeexpected,thelargertherelativesizeoftheHVACpower

consumptiontothePVpowercapacity,thegreaterthesystemabilitytoabsorbvariationsinpower

production.Decreasedlimitationssuchasramprateandamplitudelimitswouldalsoenableincreased

filteringcapability.Thereductioninbatterystoragecapacitywasbrieflyinvestigatedandofnotewas

thesubstantialreductioninenergythathadtopassintoandoutofthebatterywhendynamicload

compensationwasimplemented.

PVoperatingreservecurtailmentwasthenintroducedasawaytoreducevariabilityboththrough

croppingofpowerspikesthroughcurtailmentaswellaspartiallycompensatingpower“valleys”by

utilizingPVoperatingreserve.ThesameButterworthfilterpowertargetmethodwasusedforanalysis,

andthevariabilityquantifiedintermsofabsolutevariationandintegrateddifferencesfromthetarget

setpoint.TheideaofoperatingreservecurtailmentthenledtotheargumentthataspricesofPV

continuetocomedown,thecostofgridregulationshouldbeincludedinthecostofinstalledPVand

renewableresourcesjustasitisforconventionalgridgeneration.PValreadycanactasagridresource

ratherthanagridnuisancebyprovidingrapidresponsetimestofaults,frequencyregulation,ramping

capability,andotherservices.Thismindsetofsolarasagridresourcemakesoperatingreserve

Page 60: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

55

curtailmentaneconomicalchoice,andthecostcomparisonwasprovidedforvaryingamountsof

curtailmentandPVpricepoints.Aproposedmetricofoptimalitywaspresentedthatbalancesenergy

productionwithdecreasedvariability.Theresultsindicatethatnoonelevelofoperatingreserve

curtailmentisoptimalforalldays,andthatdependinguponthetypeofcloudcoverexperienced,the

optimalenergy-variabilitypeakmayliebeyondtheeconomicbreak-evenpointandthusbecost

constrained.

Aproof-of-conceptmodelfordesiredpowerpointtrackingor“DPPT”wasdemonstrated.Themodel

wasbuiltupinstages,firstimplementinganMPPTincrementalconductancealgorithm,thenreplacing

theconverterwithanaveragemodelandsimilardynamics,thenoperatingatafixedfractionofthe

MPP,andfinallytrackingadynamicButterworthsignal.Theendresultwasanalgorithmthatcould

calculateandtrackafilteredversionoftherawsolarpanelpoweravailable.Bydemonstratingthatsuch

operationcanbeaccomplishedwithnothingmorethanamodifiedcontrolscheme,thereexistsaclear

pathtoreal-lifeimplementationinphotovoltaicinverterswithoutadditionalhardware.Withthe

paradigmshiftinPVvariabilitymitigationrequirements,implementingsuchachangewillprovidethe

necessaryregulationforpredictablepoweroutputatalowercostthanadditionalinvestmentin

chemicalenergystorage.

6.1. FutureworkWhilethesolardatausedforthisworkwassufficient,rerunningsimulationsforanentireyearormore

ofsolardatawouldleadtomorerealisticresults.Knowingnowthat100Hzeffectivelycapturesall

meaningfuldynamics,andtakinglessonsfromthefirstPVacquisition,arepeatexperimentcouldyielda

continuousdatasetsuitableforlong-termanalysisofvariabilitymitigationtechniques.

RegardingtheHVACanalysis,full-scaledataorexperimentsareessentialtoverifyoradjustthe

assumptionsmadewheninvestigatingdynamicloadcompensation.Withrecentaccesstofanpower

andairflowmeasurements,datafromfull-scaleHVACunitscouldbesubstitutedinforthescaled

approximations.Additionally,correlatedaudiorecordingsfromactuallabsorclassroomswithpower

usagedatacouldleadtobetterramprateandamplitudelimitapproximations.Occupancysensordatais

alsoavailable,sofurtheranalysisisencouragedtodeterminehowmuchofthebuildingisunoccupiedat

agiventimeandwhatadditionalflexibilitythatlendstoHVACpowerfiltering.Alongthesesamelines,

watertankstoragehasagiantpotentialcapacityforthermalenergyabsorptionandlittletono

Page 61: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

56

limitationonramprate,soifsuchsystemscanbemoreaccuratelycharacterized,theirthermalinertia

couldsupplementthatofbuildingsandair.

Muchofthisdatacouldbegatheredfromsensorsandfedtocontrolalgorithms,butpublicawareness

wouldbeexcludedfromsuchasetup.Futureworkshouldalmostcertainlyincludepubliceducationof

thevariabilityimposedonthegridbyphotovoltaicfluctuationsandthemitigationtechniquesactively

engagedincombattingit.Theformatcouldbeassimpleasanenergydashboarddisplayingprevented

powervariationandwherethatenergyisbeingstored,diverted,oreliminated.Afterall,short-term

variabilityofrenewablesisoftenoverlooked,soiftheproblemistobeaddressed,peoplefirstneedto

knowthattheproblemexistsandthenneedtoknowwhatsolutionsexistandhowtheywork.

TheDPPTalgorithmstillneedsconsiderableoptimizationrequirementsbeforeoperationalhardware

mayberealized.Ofprimaryconcernisthehigh-frequencyoscillationinpoweroutput,whichwouldbe

undesirabletoconnecttothegrid.Additionally,futureworkwillincludeinvestigatingalternativeset-

pointpowertargets.Forexample,short-termforecastsmaybesubstitutedfortheButterworthfilterset

points.

Tosummarize,bothofthetwoproposedvariabilitymitigationmethodspresentedinthisthesisare

inexpensivealternativestobatterystorage,needinglittlemorethananadvancedcontroltobe

implemented.However,eachmethodisalsoincapableofremovingallvariabilityintroducedbyPV.

Together(withotherthermalstorageoutletspotentiallyutilized),theproposedalternativescan

drasticallydecreaseoreliminatenecessarychemicalenergystorage,provideinexpensivegridstability

resources,andenableincreasedpenetrationofrenewableenergytechnologiesforaclearer,brighter

future.

Page 62: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

57

References[1] O.Ma,S.Capanna,F.Joseck,J.Nathwani,T.Nguyen,C.Richard,P.Spitsen,L.Boyd,C.Marcy,E.Doe,J.

Davis,S.Esterly,D.Feldman,R.Fu,C.Johnson,E.Lantz,A.Livecchi,J.Logan,D.Mooney,R.Newmark,G.

Porro,P.Schwabe,A.Smith,T.Tian,T.Williams,andK.Wipke,2014RenewableEnergyDataBook.Natl.

Renew.EnergyLab.,p.3,2014.

[2] S.Shivashankar,S.Mekhilef,H.Mokhlis,andM.Karimi,“Mitigatingmethodsofpowerfluctuationof

photovoltaic(PV)sources–Areview,”Renew.Sustain.EnergyRev.,vol.59,pp.1170–1184,Jun.2016.

[3] IEEEStandardsCoordinatingCommittee21,IEEEGuideforDesign,Operation,andIntegrationof

DistributedResourceIslandSystemswithElectricPowerSystems.2011.

[4] R.A.Gansler,S.A.Klein,andW.A.Beckman,“Investigationofminutesolarradiationdata,”Sol.Energy,

vol.55,no.1,pp.21–27,Jul.1995.

[5] R.Perez,S.Kivalov,J.Schlemmer,K.Hemker,andT.Hoff,“Parameterizationofsite-specificshort-term

irradiancevariability,”Sol.Energy,vol.85,no.7,pp.1343–1353,Jul.2011.

[6] T.E.HoffandR.Perez,“QuantifyingPVpoweroutputvariability,”Sol.Energy,vol.84,no.10,pp.1782–

1793,Oct.2010.

[7] Y.Yasaei,R.D.Robinett,andA.A.Mammoli,“Buildingventilationsystemasalow-passfilterfor

intermittentphotovoltaicelectricitygeneration,”in2014IEEEConferenceonTechnologiesfor

Sustainability(SusTech),2014,pp.259–263.

[8] D.B.Crawley,L.K.Lawrie,F.C.Winkelmann,andC.O.Pedersen,“EnergyPlus:Newcapabilitiesinawhole-

buildingenergysimulationprogram,”SeventhInt.IBPSAConf.,pp.51–58,2001.

[9] F.Sehar,S.Rahman,andM.Pipattanasomporn,“Impactsoficestorageonelectricalenergyconsumptions

inofficebuildings,”EnergyBuild.,vol.51,pp.255–262,Aug.2012.

[10] S.W.Wang,“Useofphasechangematerialsinbuildings—Cantheyplayaroleindemandside

managementforsmartgrid?,”HVAC&RRes.,vol.17,pp.615–618,2011.

[11] Z.Xu,X.Guan,Q.-S.Jia,J.Wu,D.Wang,andS.Chen,“Performanceanalysisandcomparisononenergy

storagedevicesforsmartbuildingenergymanagement,”IEEETrans.SmartGrid,vol.3,no.4,pp.2136–

2147,Dec.2012.

[12] C.J.C.Williams,J.O.Binder,andT.Kelm,“Demandsidemanagementthroughheatpumps,thermal

storageandbatterystoragetoincreaselocalself-consumptionandgridcompatibilityofPVsystems,”in

20123rdIEEEPESInnovativeSmartGridTechnologiesEurope(ISGTEurope),2012.

[13] T.ZhouandW.Sun,“Optimizationofbattery&supercapacitorhybridenergystoragestationinwind/solar

generationsystem,”IEEETrans.Sustain.Energy,vol.5,no.2,pp.408–415,Apr.2014.

Page 63: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

58

[14] G.Imre,M.Johnson,J.Vetrano,K.Lynn,W.Parks,R.Handa,L.Kannberg,S.Hearne,K.Waldrip,andR.

Braccio,“Gridenergystorage,”U.S.DepartmentofEnergyGridEnergyStorageReport,2013.[Online].

Available:http://www.sandia.gov/ess/docs/other/Grid_Energy_Storage_Dec_2013.pdf.[Accessed:03-Oct-

2016].

[15] X.Guan,Z.Xu,andQ.-S.Jia,“Energy-efficientbuildingsfacilitatedbymicrogrid,”IEEETrans.SmartGrid,

vol.1,no.3,pp.243–252,Dec.2010.

[16] Z.Wang,R.Yang,andL.Wang,“Multi-agentcontrolsystemwithintelligentoptimizationforsmartand

energy-efficientbuildings,”inIECON2010-36thAnnualConferenceonIEEEIndustrialElectronicsSociety,

2010,pp.1144–1149.

[17] T.Wei,T.Kim,S.Park,Q.Zhu,S.X.-D.Tan,N.Chang,S.Ula,andM.Maasoumy,“Batterymanagementand

applicationforenergy-efficientbuildings,”inProceedingsofthe51stAnnualDesignAutomation

Conference-DAC’14,2014.

[18] E.SaberbariandH.Saboori,“Net-zeroenergybuildingimplementationthroughagrid-connectedhome

energymanagementsystem,”in201419thConferenceonElectricalPowerDistributionNetworks(EPDC),

2014,pp.35–41.

[19] “Applecampusapprovedbycupertinocouncil,”SkyNews,2013.[Online].Available:

http://news.sky.com/story/1155428/apple-campus-approved-by-cupertino-council.[Accessed:15-Jul-

2015].

[20] H.Hao,T.Middelkoop,P.Barooah,andS.Meyn,“Howdemandresponsefromcommercialbuildingswill

providetheregulationneedsofthegrid,”in201250thAnnualAllertonConferenceonCommunication,

Control,andComputing(Allerton),2012,pp.1908–1913.

[21] S.Meyn,“Valueandcostofrenewableenergy:distributedenergymanagement,”presentedatTheJoint

JST-NSF-DFGWorkshop,Honolulu,USA,2014.

[22] J.GloverandF.Schweppe,“Advancedloadfrequencycontrol,”IEEETrans.PowerAppar.Syst.,vol.PAS-91,

no.5,pp.2095–2103,Sep.1972.

[23] Y.Ma,A.Kelman,A.Daly,andF.Borrelli,“Predictivecontrolforenergyefficientbuildingswiththermal

storage:modeling,simulation,andexperiments,”IEEEControlSyst.,vol.32,no.1,pp.44–64,Feb.2012.

[24] C.Szasz,“HVACelementsmodelingandimplementationfornet-zeroenergybuildingapplications,”in2014

IEEE9thIEEEInternationalSymposiumonAppliedComputationalIntelligenceandInformatics(SACI),2014,

pp.195–200.

[25] P.HernandezandP.Kenny,“Fromnetenergytozeroenergybuildings:Defininglifecyclezeroenergy

buildings(LC-ZEB),”EnergyBuild.,vol.42,no.6,pp.815–821,Jun.2010.

[26] L.Pérez-Lombard,J.Ortiz,andC.Pout,“Areviewonbuildingsenergyconsumptioninformation,”Energy

Build.,vol.40,no.3,pp.394–398,Jan.2008.

Page 64: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

59

[27] M.Maasoumy,B.M.Sanandaji,A.Sangiovanni-Vincentelli,andK.Poolla,“Modelpredictivecontrolof

regulationservicesfromcommercialbuildingstothesmartgrid,”in2014AmericanControlConference,

2014,pp.2226–2233.

[28] N.EtherdenandM.H.J.Bollen,“Increasingthehostingcapacityofdistributionnetworksbycurtailmentof

renewableenergyresources,”in2011IEEETrondheimPowerTech,2011.

[29] Y.Dvorkin,M.A.Ortega-Vazquez,andD.S.Kirschen,“Windgenerationasareserveprovider,”IETGener.

Transm.Distrib.,vol.9,no.8,pp.779–787,2015.

[30] R.Tonkoski,L.A.C.Lopes,andT.H.M.El-Fouly,“Coordinatedactivepowercurtailmentofgridconnected

PVinvertersforovervoltageprevention,”IEEETrans.Sustain.Energy,vol.2,no.2,pp.139–147,2011.

[31] R.J.Serna,B.J.Pierquet,J.Santiago,andR.C.N.Pilawa-Podgurski,“Fieldmeasurementsoftransient

effectsinphotovoltaicpanelsanditsimportanceinthedesignofmaximumpowerpointtrackers,”in

ConferenceProceedings-IEEEAppliedPowerElectronicsConferenceandExposition-APEC,2013,pp.

3005–3010.

[32] J.A.Magerko,Y.Cao,andP.T.Krein,“Quantifyingphotovoltaicfluctuationwith5kHzdata:Implications

forenergylossviamaximumpowerpointtrackers,”in2016IEEEPowerandEnergyConferenceatIllinois

(PECI),2016.

[33] “CanadaGooseinformation,photos,andfacts,”AmericanExpedition!,2015.[Online].Available:

https://forum.americanexpedition.us/canada-goose-information-facts-photos-and-artwork.[Accessed:07-

Sep-2016].

[34] M.OgilvieandS.Young,WildfowloftheWorld.NewHollandPublishers,2004.

[35] Y.Cao,J.A.Magerko,T.Navidi,andP.T.Krein,“DynamicfilteringofstochasticsolarresourcesusingHVAC

drivecontrol–Adeterminationoffeasiblebandwidth,”in2015IEEEEnergyConversionCongressand

Exposition(ECCE),2015,pp.3127–3134.

[36] Y.Cao,J.A.Magerko,T.Navidi,andP.T.Krein,“Dynamicenergymanagementneedsinlow-energy

buildingsimposedbystochasticsolarresources,”in2015InternationalConferenceonComplexSystems

Engineering(ICCSE),2015.

[37] K.KedziorandS.Knight,“ElectricalandComputerEngineeringBuildingopensattheUniversityofIllinoisat

Urbana-Champaign,”SmithGroupJJRNewsRelease,2014.[Online].Available:

http://www.smithgroupjjr.com/news_releases/electrical-and-computer-engineering-building-opens-at-

the-university-of-illinois-at-urbana-champaign.[Accessed:07-Apr-2016].

[38] A.Lopez,B.Roberts,D.Heimiller,N.Blair,andG.Porro,“U.S.renewableenergytechnicalpotentials:aGIS-

basedanalysis,”Golden,CO,2012.

[39] Y.Cao,J.A.MagerkoIII,T.Navidi,andP.T.Krein,“Powerelectronicsimplementationofdynamicthermal

inertiatooffsetstochasticsolarresourcesinlow-energybuildings,”Proc.J.Emerg.Sel.Top.Power

Electron.,2016.

Page 65: ALTERNATIVE METHODS FOR MITIGATING NATURAL …

60

[40] J.A.MagerkoandP.T.Krein,“Opportunitiesforphotovoltaicsystemoperationbelowparity:Costsand

benefitsofactivegridsupport,”inInProc.2016IEEEPhotovoltaicSpecialistsConference(PVSC),2016.

[41] A.Safdarian,M.Fotuhi-Firuzabad,andF.Aminifar,“Compromisingwindandsolarenergiesfromthepower

systemadequacyviewpoint,”IEEETrans.PowerSyst.,vol.27,no.4,pp.2368–2376,Nov.2012.

[42] M.Hummon,P.Denholm,J.Jorgenson,D.Palchak,B.Kirby,andP.Ma,“Fundamentaldriversofcostand

priceofoperatingreserves,”2013.

[43] R.Bründlinger,“AdvancedsmartinverterandDERfunctionsrequirementsinlatestEuropeanGridCodes

andfuturetrends,”inSmartInvertersandSystemBenefitsBreakoutSessionattheSolarCanada2015

Conf.,2015.

[44] P.T.KreinandR.S.Balog,“Cost-effectivehundred-yearlifeforsingle-phaseinvertersandrectifiersinsolar

andLEDlightingapplicationsbasedonminimumcapacitancerequirementsandaripplepowerport,”in

2009Twenty-FourthAnnualIEEEAppliedPowerElectronicsConferenceandExposition,2009,pp.620–625.

[45] T.Esram,P.T.Krein,B.T.Kuhn,R.S.Balog,andP.L.Chapman,“Powerelectronicsneedsforachieving

grid-paritysolarenergycosts,”in2008IEEEEnergy2030Conference,November2008.

[46] “Grid-tiedsystemswithSolarEdgepoweroptimizers,”WholesaleSolar.[Online].Available:

http://www.wholesalesolar.com/free-racking-sale.[Accessed:22-Jan-2016].

[47] H.K.Trabish,“Utility-scalesolarboomsascostsdrop,challenginggasonprice,”UtilityDiveNewsletter,

2015.

[48] “TeslaPowerwalloverview,”WholesaleSolar,2016.[Online].Available:

http://www.wholesalesolar.com/tesla-powerwall-for-solar.[Accessed:16-May-2016].

[49] “TeslaMotors(TSLA)earningsreport:Q12015conferencecalltranscript,”2015.[Online].Available:

https://www.thestreet.com/story/13142191/4/tesla-motors-tsla-earnings-report-q1-2015-conference-call-

transcript.html.[Accessed:16-May-2016].

[50] “Averageretailpriceofelectricity,monthly,”ElectricityDataBrowser.U.S.EnergyInformation

Administration,2016.[Online].Available:http://www.eia.gov/electricity/data/browser/.[Accessed:16-

May-2016].