Allylic Oxidations and Oxidation of Ketones to Enones...2011/12/05  · Mechanism of IBX Oxidation...

19
Allylic Oxidations and Oxidation of Ketones to Enones Jeff Cannon Chemistry Topics May 3, 2011 OH [O] O O [O]

Transcript of Allylic Oxidations and Oxidation of Ketones to Enones...2011/12/05  · Mechanism of IBX Oxidation...

  • Allylic Oxidations and

    Oxidation of Ketones to Enones

    Jeff Cannon!Chemistry Topics!

    May 3, 2011!

    OH

    [O] O O[O]

  • Common Allylic Oxidation Techniques Selenium dioxide:

    Transition Metal C–H Insertion:

    OAcPd(II), ox.

    SeO2

    tBuOOHOAc OAc

    OH

    CuCl

    t-BuOOH, AcOH

    OAc

    Palladium:

    Copper:

  • Mechanism of Selenium-Mediated Allylic Oxidation Se HO

    O SeOHO

    Se OHO

    OSeOH

    Ene

    reaction

    [2,3]

    H

    OSeO

    δ+

    SeOHO

    δ–

    RR

    Me SeO2 RR

    Me

    OH

    RSeO2

    R

    OH

    R R

    R

    R R

    R

    OHSeO2

    Displays good selectivity trends for substituted olefins:

  • Examples of Selenium Dioxide Allylic Oxidation in Synthesis

    MeCO2Me

    OSEMSEMO

    cat. SeO2t-BuOOH

    CH2Cl2, rt(61%)

    MeCO2Me

    OSEMSEMO

    OH

    MeCO2Me

    OSEMSEMO

    O

    cristatic acid

    Fürstner Org. Lett. 2000, 2, 2467:

    Stork J. Am. Chem. Soc. 2009, 131, 11402:

    O

    NMeO

    O

    OMe

    O

    NMeO

    O

    OMe

    OHHH

    SeO2, t-BuOOH

    CH2Cl2, H2O(61%)

  • Common Allylic Oxidation Techniques Selenium dioxide:

    Transition Metal C–H Insertion:

    OAcPd(II), ox.

    SeO2

    tBuOOHOAc OAc

    OH

    CuCl

    t-BuOOH, AcOH

    OAc

    Palladium:

    Copper:

  • Mechanism of Transition Metal-Catalyzed Allylic Oxidation

    PdOAc

    Pd(OAc)2

    R(AcO)2Pd

    R

    Pd(0)

    R

    HOAc

    R

    OAc

    Oxidant

    Oxidant•H2

    ArCO3t-Bu [Cu] OCOAr

    [Cu]OCOAr

    OCOAr

    Copper:

    Palladium:

  • Examples of Transition Metal-Catalyzed Allylic Oxidation White:

    Stahl:

    Andrus:

    N

    O

    CuN

    OEtEt

    Ph PhPF6O

    OO

    O2NCH3CN, –20, 8 d(41%, 99% ee)

    +O

    NO2

    O

    HN O

    OBenzoquinone

    AcOH(64%)

    Pd(OAc)2

    SPh

    O

    HN O

    O

    OAc

    N N

    O

    Pd(OAc)2

    AcOH, O2 (atm)60 °C(76%)

    OAc

  • Summary of Allylic Oxidation Reactions Selenium dioxide mediated allylic oxidations: •  Proceed through a double-pericyclic (ene, [2,3]) mechanism •  Are often highly selective •  Can have multiple byproducts:

    •  Selenoxide elimination •  Pummerer-type reactions •  Selenium dioxide readily oxidizes ketones to 1,2-diketones •  Overoxidation products can be problematic

    Transition metal-catalyzed allylic oxidations: •  Palladium-catalyzed reactions currently only effective on terminal olefins •  Palladium regioselectivity can be tuned by ligand selection •  Copper reacts with internal olefins, but regioselectivity is poor •  Enantioselectivity is possible, but not general yet

  • Common Ketone to Enone Techniques

    Saegusa Oxidation:

    Pd(II)

    Ox.

    O Me

    TBSO

    LDA

    TMSCl

    OTMSMe

    TBSO

    O Me

    TBSO

    Selenoxide Elimination:

    O O OSePh

    LDA

    PhSeCl CH2Cl2, Py

    H2O2

    IBX Oxidation: O

    H

    TIPS

    O

    H

    TIPSIBX

  • Mechanism of Selenoxide Elimination

    R

    OSePh [O]

    R

    OSe

    H

    O

    Phsyn elimination

    R

    O

    •  Syn elimination produces selectively the trans olefin in acyclic systems!

    •  Endocyclic double-bonds formed selectively unless no syn hydrogen is available!

    •  Conjugated products formed selectively!

  • Examples of Selenoxide Elimination Tadano, J. Am. Chem. Soc. 2003, 125, 14722:!

    Smith, J. Am. Chem. Soc. 2009, 131, 2348:!

    O

    OOO

    OSePh

    O

    OOO

    O

    NaIO4, rtTHF/H2O

    (90%)

    O

    OOO

    O

    HO

    Pinnick

    (–)-okilactomycin

    O

    OO OH

    OMPM

    O

    OO OH

    OMPM

    i) PhSeCl, Et3N

    ii) mCPBA, CH2Cl2 –50 °C (>48%) O

    OO

    HH

    O

    HH

    OH

    (+)-macquarimicin A

    H

  • Common Ketone to Enone Techniques

    Saegusa Oxidation:

    Pd(II)

    Ox.

    O Me

    TBSO

    LDA

    TMSCl

    OTMSMe

    TBSO

    O Me

    TBSO

    Selenoxide Elimination:

    O O OSePh

    LDA

    PhSeCl CH2Cl2, Py

    H2O2

    IBX Oxidation: O

    H

    TIPS

    O

    H

    TIPSIBX

  • Mechanism of Saegusa Oxidation OSiR3

    Pd(OAc)2OSiR3Pd(OAc)2

    OPdOAc O

    PdOAc

    O

    HPdOAci) Red. Elimination

    ii) Reoxidation (BQ or O2)

    •  Often requires a large amount of Pd(OAc)2 (>0.5 equiv) to acquire a substantial rate!

    •  Fairly mild oxidation conditions!

    •  Enol silanes are easily formed from corresponding ketones!

  • Examples of Saegusa Oxidation Sasaki, J. Am. Chem. Soc. 2002, 124, 14983:

    O

    O

    O

    OTBS

    O

    RO

    RO

    Me

    H

    Me

    H

    H

    H H 1) LHMDS, TMSCl

    2) Pd(OAc)2O

    O

    O

    OTBS

    O

    RO

    RO

    Me

    H

    Me

    H

    H

    H H

    (>94%)

    gambierol

    Crimmins, J. Am. Chem. Soc. 1986, 108, 3435:

    Me

    O

    H1) EtMe3SiOAc TBAF

    2) cat. Pd(OAc)2 benzoquinone Me

    O

    Me

    Me

    silphinene

  • Common Ketone to Enone Techniques

    Saegusa Oxidation:

    Pd(II)

    Ox.

    O Me

    TBSO

    LDA

    TMSCl

    OTMSMe

    TBSO

    O Me

    TBSO

    Selenoxide Elimination:

    O O OSePh

    LDA

    PhSeCl CH2Cl2, Py

    H2O2

    IBX Oxidation: O

    H

    TIPS

    O

    H

    TIPSIBX

  • Mechanism of IBX Oxidation

    •  Will oxidize ketones, enol silanes, and alcohols directly to enones.

    •  More cost-effective than Saegusa conditions

    •  IBX will oxidize alcohols to ketones and aldehydes

    O OYI

    O

    O

    HO O OI

    O

    OHOY

    O

    OI

    O

    OHOY

    O

    OI

    O

    OHOY

    OH

    OI

    O

    O

    HO

    –YO–

    Y = H

    Y = H or SiR3

    SET

  • Examples of IBX Oxidation Charette, J. Am. Chem. Soc. 2008, 130, 13873:

    BzN

    H

    OHH

    OAc

    Me IBX

    toluene/DMSO(75%)

    BzN

    H

    OH

    OAc

    MeHN

    H

    HOH

    Me

    ent-lepadin B

    Overman, J. Am. Chem. Soc. 2008, 130, 5368:

    NH

    N

    O

    MeO2CNBoc

    N

    O

    MeO2C

    1) IBX, 70 °C

    2) TFA (40%)

  • Summary of Oxidations of Ketones to Enones Selenoxide Elimination: •  Syn-elimination mechanism usually provides high stereoselectivity •  Requires use of toxic and odorous selenium reagents •  Similar reactivity extends to sulfoxide elimination

    Saegusa Oxidation: •  β-Hydride elimination of palladium enolate mechanism •  Often requires >0.5 equiv. of Pd(OAc)2 to proceed, though truly catalytic

    examples exist

    •  Oxidation is site-selective if enol-silane can be generated selectively, including from conjugate addition reactions.

    IBX oxidation: •  Single-electron transfer oxidation mechanism •  Mild reaction conditions can provide enone directly from ketone or alcohol •  Will react with other oxidizable alcohols in the molecule

  • Seminal References Selenium Allylic Oxidation:

    Guillemonat, A. Annali di Chimica Applicata 1939, 11, 143–211.

    Metal-catalyzed allylic oxidation: Campbell, A. N.; White, P. B.; Guzei, I. A.; Stahl, S. S. J. Am. Chem. Soc.

    2010, 132, 15116–15119. Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am. Chem. Soc.

    2005, 127, 6970–6971. Andrus, M. B.; Lashley, J. C. Tetrahedron 2002, 58, 845–866.

    Selenoxide elimination: Reich, H. J.; Renga, J. M.; Reich, I. L. J. Am. Chem. Soc. 1975, 97, 5434–5447.

    Saegusa oxidation: Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011–1013.

    IBX oxidation: Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y.-L. J. Am. Chem.

    Soc. 2002, 124, 2245–2258.