Algorithm Theoretical Basis Document (ATBD) for Ocean ... · ICESat-2 Algorithm Theoretical Basis...

143
ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12) Release 003 Release Date 01 April 2020 ICE, CLOUD, and Land Height Satellite (ICESat-2) Project Algorithm Theoretical Basis Document (ATBD) for Ocean Surface Height Prepared By: ICESat2 Science Definition Team Ocean Working Group Contributors /Code: James Morison David Hancock Suzanne Dickinson John Robbins Leeanne Roberts Ron Kwok Steve Palm Ben Smith Mike Jasinski Bill Plant Tim Urban Goddard Space Flight Center Greenbelt, Maryland

Transcript of Algorithm Theoretical Basis Document (ATBD) for Ocean ... · ICESat-2 Algorithm Theoretical Basis...

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    Release Date 01 April 2020

    ICE, CLOUD, and Land Height Satellite (ICESat-2) Project

    Algorithm Theoretical Basis Document

    (ATBD) for

    Ocean Surface Height

    Prepared By: ICESat2 Science Definition Team Ocean Working Group

    Contributors /Code: James Morison David Hancock Suzanne Dickinson John Robbins Leeanne Roberts Ron Kwok Steve Palm Ben Smith Mike Jasinski Bill Plant Tim Urban

    GoddardSpaceFlightCenterGreenbelt,Maryland

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    Release Date 01 April 2020

    Abstract

    This document describes the theoretical basis of the ocean processing algorithms and the products that are produced by the ICESat-2 mission. It includes descriptions of the parameters that are provided in each product as well as ancillary geophysical parameters, which are used in the derivation of these ICESat-2 products.

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    Release Date 01 April 2020

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    iiRelease Date 01 April 2020

    CM Foreword

    ThisdocumentisanIce,Cloud,andLandHeight(ICESat-2)ProjectScienceOfficecontrolleddocument.ChangestothisdocumentrequirepriorapprovaloftheScienceDevelopmentTeamATBDLeadordesignee.ProposedchangesshallbesubmittedintheICESat-IIManagementInformationSystem(MIS)viaaSignatureControlledRequest(SCoRe),alongwithsupportivematerialjustifyingtheproposedchange.Inthisdocument,arequirementisidentifiedby“shall,”agoodpracticeby“should,”permissionby“may”or“can,”expectationby“will,”anddescriptivematerialby“is.”Questionsorcommentsconcerningthisdocumentshouldbeaddressedto:ICESat-2ProjectScienceOfficeMailStop615GoddardSpaceFlightCenterGreenbelt,Maryland20771

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    iiiRelease Date 01 April 2020

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    ivRelease Date 01 April 2020

    Preface

    ThisdocumentistheAlgorithmTheoreticalBasisDocumentfortheprocessingopenoceandatatobeimplementedattheICESat-2ScienceInvestigator-ledProcessingSystem(SIPS).TheSIPSsupportstheATLAS(AdvanceTopographicLaserAltimeterSystem)instrumentontheICESat-2SpacecraftandencompassestheATLASScienceAlgorithmSoftware(ASAS)andtheSchedulingandDataManagementSystem(SDMS).ThesciencealgorithmsoftwarewillproduceLevel0throughLevel4standarddataproductsaswellastheassociatedproductqualityassessmentsandmetadatainformation.TheICESat-2ScienceDevelopmentTeam,insupportoftheICESat-2ProjectScienceOffice(PSO),assumesresponsibilityforthisdocumentandupdatesit,asrequired,asalgorithmsarerefinedortomeettheneedsoftheICESat-2SIPS.Reviewsofthisdocumentareperformedwhenappropriateandasneededupdatestothisdocumentaremade.Changestothisdocumentwillbemadebycompleterevision.ChangestothisdocumentrequirepriorapprovaloftheChangeAuthoritylistedonthesignaturepage.ProposedchangesshallbesubmittedtotheICESat-2PSO,alongwithsupportivematerialjustifyingtheproposedchange.Questionsorcommentsconcerningthisdocumentshouldbeaddressedto:TomNeumann,ICESat-2ProjectScientistMailStop615GoddardSpaceFlightCenterGreenbelt,Maryland20771

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    vRelease Date 01 April 2020

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    viRelease Date 01 April 2020

    Review/Approval Page

    Prepared by: Jamie Morison Applied Physics Laboratory University of Washington

    Reviewed by:

    Bea Csatho University of Buffalo

    Tom Neumann NASA GSFC, Code 615

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    viiRelease Date 01 April 2020

    Change History Log

    Revision Level Description of Change

    Date Approved

    Initial Release 7/27/2019Section5.3.4.1codestepsA:replacesnoothrechistwithsmoothrechist7/30/2019–globallyreplacetermMaximumLikelihoodwithExpectationMaximizationtoclarifythattheMatlabdevelopmentalcodeandtheASASFORTRANcodebothuseexpectationmaximization.7/30/2019Changethethirdparagraphof5.3.4.2(H)to:-Toapplytheexpectationmaximizationapproach,wefirstderiveaseasurfaceheightspatialseriesfromtheheightdistributionY,whichisdefinedoverarangeofheightsthesameasthereceivedheighthistogram(i.e.,jlowtojhighfromsurfacefinding).ThisisaccomplishedbyfirstmultiplyingYby10,000,roundinganddeletinganyvalueslessthanorequaltozero(afewunrealisticweaklynegativevaluestooccurinYassociatedwiththeWeinerdeconvolutionprocess)toproduceanintegerdistribution,YI.Aseries,XY,isassembledbyconcatenatingforeachvalueofYI(i)forindexicorrespondingtoheightsshx(i),YI(i)valuesequaltosshx(i).Theshifttoheightsincludingmeanoffit2wasaccomplishedindevelopmentalcodebyaddingmeanoffit2toeachvalueinXY.(ASASFORTRANcodedoesnotaddmeanofffit2atthispointbutaftertheGaussianMixturecalculation.)7/30/2019Addxbindasanoutputvariablein5.3.3(14)andattheendof5.3.3ToTable6add:xbind=1x710elementarrayof10-mbinaveragesofalong-trackdistanceAndchangethedescriptionofxbinto:“Centerof1x710elementarrayof10-mbins.Notethismaybeincludedasadatadescriptionorotherstaticarrayequalto[5,15,25,35…..7095m]

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    viiiRelease Date 01 April 2020

    7/30/2019InTable6changedfrom70010-mbinsto71010-mbinstoaccountforoceansegmentslongerthan7,000m7/30/2019Change5.3.4.1(G)points1-4to:“Thesurfacehistogramshouldbethesamelengthandhavethesamehorizontal(height)axisasthereceivedhistogram,rechist.Inthispart,wecomputethedistributionofsurfaceheightasaprobabilitydensityfunction(PDF),Y,startingwiththeFouriertransformofthatPDFoutputbytheWeinerdeconvolution.Thestepsare:

    1. ComputeYfi,astheinverseFourierTransformofYfdividedbybinsize.YfiasitcomesfromtheinverseFouriertransformisNFFTpointslongwiththefirsthalfappearingdisplacedtotheendofthearray.WereorderthisbyfirstputtingthelastNFFT/2pointsaheadofthefirstNFFT/2points.Toestablishthesurfaceheightprobabilitydensityfunction,Y,wethenremovethefirst(rzbin-1)pointswhererzbinistheindexofthecentroid(heightequalszero)indexofthereceivedhistogram.WekeepasYtheremainingpointsequaltothelengthoftherechist.InthecaseoftheASASFORTRANcode,whichpadseachendofrechisttoreachheightsof±15m,rzbinisthecenterbinofrechist.

    2. Setthex-axisofY,derivedsshxequaltothex-axis,xrechist,ofthereceivedhistogramrechist.”

    7/30/2019Clarifybincenteringin5.3.1(B)bychanging(B)to:“Establishaninitialcoarsehistogramarray,Hc,spanning±15mwithbinsizeB1equalto0.01mwithcenterbincenteredatzeroandbincentersatwholecentimeters.Alsoestablishadataarray,Acoarse,forupto10,000photonheightsandassociatedinformation(index,geolocation,time)plusnoisephotoncounts.Thiswillbepopulatedwithdataaswestepthrough14-geobinsegmentssearchingforanadequatenumberofsurfacephotoncandidates.“andchange5.3.2(A)to:“Setupforthesurfacefindinghistogram,N,byestablishingthevector,Edges,(withalengthonegreaterthanN)ofhistogrambinedgeswithbinsBfwidebetween-15mto+15m.Also

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    ixRelease Date 01 April 2020

    establishthevector,Cntrpt,ofbincenterpointswithlengthequaltoN.InpracticeBfequals1cm,Cntrptvaluesarewholecentimeters,andEdgesareathalfcentimetervalues.Alsoestablishavectorarray,BinB,aslongasht_initialforbinassignments.”8/6/2019Change5.3.4.1(G)neartheendfrom“Yisdefinedoveravectorofbincenters,sshx,butYwillbeoutputasa1001elementvectorforeverysegmentwiththe501stcenterbinbeingforheightzero,bin501-YlowX/binsizebeingthelowestbinwithnonzeroYandbin501+YlowX/binsizebeingthehighestbinwithnonzeroY.“To“Yisdefinedoveravectorofbincenters,sshx,butforbinsize=1cmYwillbeoutputasa3001-elementvectorfrom-15mto+15mforeverysegmentwiththe1,501stcenterbinbeingforheightzero.Valueswillbezeroforbinsoutsidetherangeofsshx.OwingtonoiseandtheeffectoftheFFT-deconvolution-inverse-FFTprocess,smallnegativevaluesoccurinYwithintherangeofsshx.ThesewillbesettozerointheoutputYvector.”8/28/2019Replacesection5.3.3tousesimplifiedandmorerobustmethodofcomputingphotonreturnrateinSSBcalculation:xrbin=nbind/109/9/2019in5.3.37.-Addclausetoendofsentencetoclarifyusingonlybinswithphotonsforssbcalculation,i.e.,

    7. Compute,binAVG_Xr,theaverageofbinneddatarate,xrbin,overthe10-mbinswithphotons.

    11/5/2019Modified5.3.2tochangesurfacefindingbasedonthedistributionofphotonheightstosurfacefindingbasedonthephotonheightanomalyrelativetoamovingbinaverageofhighconfidencephotonheights.Thisisdonetoexcludesubsurfacereturnsunderthecrestsofsurfacewavesthatotherwisefallinsidethehistogramoftruesurfaceheights.AddedtoTable5conf_lim,thelimitingconfidenceleveltobeincludedinthemovingbinaverage,nphoton,thenumberofphotonseithersideofacentralphotontobeincludedinthemovingbinaverage,e.g.,fornphoton=10,a21pointaverageisused

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    xRelease Date 01 April 2020

    11/18/2019Addedsection5.3.3.2tocomputenharms+1harmoniccoefficients,a,ofsurfaceheightforsurfacewavesandpossiblerelationtodegreesoffreedomanduncertainty.AddedtoTable5nharmsandaddedtoTable6wnanda.wnisavectorofnharmswavenumbers.a(1)isthecoefficientforthezerowavenumbercomponentofthefittotestifthisisamorestableestimateofaverageheights.a(3,5,7,..2*nharms+1)aresinecoefficientsforwn(1,2,3,..nharms).a(2,4,6,..2*nharms+1)arecosinecoefficientsforwn(1,2,3,..nharms).11/27/2019Addedasectiontotheendof5.3.6.1toestimatetheeffectivenumberofdegreesoffreedom,NP_effect,andassociateduncertainty,h_uncrtn,inseasurfaceheightoveranoceansegment.Theestimatesarebasedontheintegralofautocorrelationof10-mbinaveragesurfaceheight.Addedh_uncrtnandNP_effecttoTable6.03/24/2020Parametersregardingharmonicsandeffectivedegreesoffreedom,whilementionedinthisdocument,willnotbepresentonATL12granulesuntilrelease004.

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    xiiRelease Date 01 April 2020

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    xiiiRelease Date 01 April 2020

    List of TBDs/TBRs

    Item No.

    Location Summary Ind./Org. Due Date

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    14Release Date 01 April 2020

    Table of Contents

    Abstract .......................................................................................................................... 2-iCM Foreword .................................................................................................................... iiPreface ............................................................................................................................ ivReview/Approval Page .................................................................................................... viChange History Log ........................................................................................................ viiList of TBDs/TBRs .......................................................................................................... xiiiTable of Contents ........................................................................................................... 14List of Figures ................................................................................................................. 18List of Tables .................................................................................................................. 211.0 INTRODUCTION ................................................................................................... 232.0 OVERVIEW AND BACKGROUND INFORMATION .............................................. 25

    2.1 Open Ocean Background ................................................................................... 262.2 The Importance of Waves .................................................................................. 28

    2.2.1 Waves and Reflectance ............................................................................... 282.2.2 Waves and Sea State Bias ......................................................................... 302.2.3 ICESat2 Height Statistics and Sea State Bias ............................................. 36

    3.0 Open Ocean Products ........................................................................................... 443.1 Open Ocean Surface Height (ATL12/L3A) ......................................................... 44

    3.1.1 Height Segment Parameters ....................................................................... 453.1.2 Input from IS-2 Products .............................................................................. 473.1.3 Corrections to height (based on external inputs) ......................................... 47

    3.2 Gridded Sea Surface Height - Open Ocean (ATL19/ L3B) ............................... 493.2.1 Grid Parameters .......................................................................................... 49

    4.0 ALGORITHM THEORY ......................................................................................... 534.1 Introduction ........................................................................................................ 534.2 ATL12: Finding the surface-reflected photon heights in the photon cloud ......... 53

    4.2.1 Selection of Signal Photon Heights ............................................................. 554.2.2 A Priori Sea State Bias Estimation and Significant Wave Height ................ 59

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    15Release Date 01 April 2020

    4.3 ATL12: Correction and Interpretation of the Surface Height Distribution ........... 604.3.1 Separating the Uncertainty due to Instrument impulse response ................ 604.3.2 Characterizing the Random Sea Surface .................................................... 634.3.3 Maximum Likelihood Versus Expectation Maximization .............................. 64

    4.4 Calculation of Uncertainty .................................................................................. 644.5 ATL19: Gridding the DOT and SSH ................................................................... 65

    5.0 Algorithm Implementation ...................................................................................... 665.1 Outline of Procedure .......................................................................................... 665.2 Input Parameters ................................................................................................ 66

    5.2.1 Parameters Required from ICESat-2 Data .................................................. 665.2.2 Parameters Required from Other Sources .................................................. 695.2.3 Control Parameters for ATL12 Processing .................................................. 69

    5.3 Processing Procedure ........................................................................................ 69 Coarse Surface Finding and Setting of Segment Length .................................... 695.3.1 ........................................................................................................................ 695.3.2 Processing Procedure for Classifying Ocean Surface Photons, Detrending, and Generating a Refined Histogram of Sea Surface Heights ................................ 725.3.3 Processing to Characterize Long Wavelength Waves, Dependence of Sample Rate on Long Wave Displacement, and A Priori Sea State Bias Estimate 785.3.4 Processing Procedure for Correction and Interpretation of the Surface Height Distribution ................................................................................................... 835.3.5 Applying a priori SSB Estimate .................................................................... 99 Expected Uncertainties in Means of Sea Surface Height .................................... 995.3.6 ........................................................................................................................ 99

    5.4 Ancillary Information ......................................................................................... 1035.4.1 Solar Background Photon Rate and Apparent Surface Reflectance (ASR) 1035.4.2 Additional Ancillary Data ............................................................................ 103

    5.5 Output Parameters ........................................................................................... 1055.6 Synthetic Test Data .......................................................................................... 1085.7 Numerical Computation Considerations ........................................................... 115

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    16Release Date 01 April 2020

    5.8 Programmer/Procedural Considerations .......................................................... 1155.9 Calibration and Validation ................................................................................ 115

    6.0 Browse Products .................................................................................................. 1166.1 Data Quality Monitoring .................................................................................... 116

    6.1.1 Line plots (each strong beam) ................................................................... 1166.1.2 Histograms (each strong beam) ................................................................ 116

    7.0 Data Quality ......................................................................................................... 1177.1 Statistics ........................................................................................................... 117

    7.1.1 Per orbit statistics ...................................................................................... 1178.0 TEST DATA ......................................................................................................... 120

    8.1 In Situ Data Sets .............................................................................................. 1208.2 Simulated Test Data ......................................................................................... 120

    9.0 CONSTRAINTS, LIMITATIONS, AND ASSUMPTIONS ...................................... 1219.1 Constraints ....................................................................................................... 1219.2 Limitations ........................................................................................................ 1219.3 Assumptions ..................................................................................................... 122

    10.0 References ........................................................................................................ 123ACRONYMS ................................................................................................................. 125GLOSSARY .................................................................................................................. 126APPENDIX A: ICESat2 Data Products ......................................................................... 127 APPENDIX B: Sea State Bias Computations for a Photon Counting Lidar ................. 132APPENDIX C: Expectation-Maximization (EM) Procedure .......................................... 13811.0 References ........................................................................................................ 140

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    17Release Date 01 April 2020

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    18Release Date 01 April 2020

    List of Figures

    Figure Page Figure1-Characteristicsofanidealizeddistribution……………………………………………….51Figure2.Geodeticheight………………………………………………………………………………………….53

    Figure3.Reflectanceasmodeled……………………………………………..……………………………...55

    Figure4.TypicalGram-Charlierdistribution……………….………………………………………….56Figure5.Trochoidalshapeofsurfacewaves…………………………….……………………………..57

    Figure6.ShortwaveMSS&standarddeviationMSS……………….…………………………….…58Figure7.SimulatedsurfacedisplacementandMSS…………………..….…………………………..59

    Figure8.Heightduetolong-waves&MSS……………………………...…….…………………………..59

    Figure9.Heightduetolong-waves&probability……………………..….…………………………..60Figure10.SurfacereturnheightsfromMABEL…………………..……...…………………………….64

    Figure11.ATL12processingblockdiagram……………………………......…………………………..78Figure12Coarse,smoothed,andfinehistograms…………………………………………………….82

    Figure13.BlockdiagramfortheATL19gridding……………………....…………………………….89

    Figure14.Coarse,smoothed,finalMabelhistograms…………………………………………….…98Figure15.Instrumentimpulseresponsehistogram……………………………………………..…104

    Figure16.ProbabilitydensityfunctionsofthesyntheticSSH………………………………....105

    Figure17.Synthesizedreceivedprobabilitydensityfunctions….………………………….…106Figure18.Single-sidedspectraofthereceivedPDFs…………….….………………………….…110

    Figure19.Single-sidedspectrumofimpulseresponse…………………………….………….…110Figure20.Single-sidedamplitudespectraoftheWienerfilters..….………………………….111

    Figure21.Single-sidedamplitudespectraofthesurfacePDF….………………………….…..112

    Figure22.PDFofSSHandcalculatedPDFfor8000photons..….….…………………………...114Figure22.PDFofSSHandcalculatedPDFfor800photons..…...….…………………………...116

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    20Release Date 01 April 2020

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    21Release Date 01 April 2020

    List of Tables

    Table Page Table 1 Reflectance…………………………………………………………………. 67Table 2 Input parameters (Source: ATL03)……………………………………………….. 68Table 3 Input parameters (Source: ATL09) ……………………………………………… 92Table 4 Control Parameters - Surface Finding……………… ………………………….. 94Table 5 Control Parameters for Refined Surface Finding and Analysis……………...…….96 Table 6 Output (See Appendix A for full product specifications)……………………......124 Table 7 ATL12 Output Variables for per Orbit Statistics…………………………………135 Table 8 ATL12 Test Data …………………………………………………………………138

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    22Release Date 01 April 2020

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    23Release Date 01 April 2020

    1.0 INTRODUCTION

    ThisATBDwillcovertheretrievalofSeaSurfaceHeight(SSH)fromICESat2ATLASlaserreturns.Forthepurposeofthisearlydraft,thelevelsofspatialandtemporalaveragingtobeincludedarestilltobedefinitivelydecided,asistheamountofhigh-leveldataprocessingtoproducegriddedfieldsofSSHandsuchthingsasDynamicOceanTopography(equaltoSSHminusthegeoid).

    OtherICESat2ATBDsdescribetheproductsforicesheets,vegetation,seaiceandinlandwater,thelattertwohavingcloserelationswiththeoceanATBD.TechnicalATBDsincludeorbitandattitudecalculations,correctionsforatmosphericpath-lengthdelays,andcorrectionsforchangesinthesurfaceheightsduetotidaleffects;theseotherdataareneededtoconvertrangesintoabsolutesurfaceheightswithrespecttothegeoid.

    Thisdocumentwilladdresssamplingtheice-freeworldocean,butnotice-coveredorinlandwaters,becausetheICESat-2samplingschemeisdifferentfortheopenocean,generallysamplingstrongbeamsonly,andbecausethedefiningcharacteristics,(e.g.,welldevelopedsurfacewaves)areuniquetotheopenocean.Itwillincludecoastaloceanwaters.Becauseoftheincreasingseasonalvariationintheseaicecover,theboundarybetweentheopen-oceanandice-coveredoceandomainswillvaryseasonally.ThisATBDwillsharesomeconsiderationsandfeatureswiththeseaiceATBD(surfacefindingalgorithm,concernfortidesandthegeoid)andthevegetationandinlandwaterATBD(concernwithwavesinlargebodiesofinlandwater).Weconsiderasinputdatalevel2photonheightsforeachofthethreestrongbeamsalongthesatellitetrackalongwiththerequirednavigationinformation.(Incertainoceanregionsnearlandorseaice,theweakbeamsmaybealsobeactive.Inthesecasestheweakbeamdataovertheoceanshouldbeprocessedthesamewayasthestrongbeams.)Asoutput,theprocessingtobedescribedwillproduceATL12/L3A(AppendixA),theheightoftheopenoceansurfaceatalengthscalesbetween70m(100Hz)and7km(1Hz),determinedbyanadaptivesurfacefindingalgorithm.Outputwillincludeestimatesofheightdistributions(decilebins),significantwaveheight,surfaceslope,andapparentreflectance.

    Section2providesanoverviewoftheoceanaltimetryissues,Section3discussestheoceanproductstheparametersthatresideineachproductas

    wellasancillarygeophysicalparameters,ofinteresttoscienceusers,whichareusedinthederivationoftheseICESat-2products.

    Section4providesatheoreticaldescriptionofthealgorithmsusedinthederivationoftheoceanproducts.

    Section5describesthespecificimplementationsofthealgorithmsthatarerelevanttothedevelopmentoftheprocessingcode.Includedherearebothalgorithmicdetailsandsomesoftwarearchitecturedetailsonthroughputoptimizationandcomputationalloading.

    Section6providestheprocessingrequirementsfordataqualitymonitoringandcontrol.Theseareprovidedtousersasqualityassessmentsoftheindividualparameterson

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    24Release Date 01 April 2020

    eachfileandtoprovidecriteriaforautomaticqualitycontroltofacilitatetimelydistributionoftheproducttotheusers.Summarystatisticsorimagesareprovidedthatallowuserstoeasilyevaluate(orBrowse)whetherthedatawouldbeusefulandofadequatequalityfortheirresearch,andasneededtoaidinthequickapprovalordisapprovalofproductspriortopublicdistribution.

    Section7describesthetestingandvalidationproceduresthatareplanned.

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    25Release Date 01 April 2020

    2.0 OVERVIEW AND BACKGROUND INFORMATION

    TheAdvancedTopographicLaserAltimeterSystem(ATLAS)consistsofbothLIDARandaltimetrysubsystemsthatwillflyonthededicatedplatformcomprisingthemissionreferredtoasICESat2,theIce,Cloud,andLandHeightSatellite.ThefollowingsubsectionsdiscussthebasicconceptsofhowATLASworksandtheLevel2datathatwewillturnintoseasurfaceheight.ItthendescribesthebasicpropertiesoftheseasurfaceandhowtheserelatetoprocessingtheICESat2data.

    Figure1-CharacteristicsofanidealizeddistributionofATLASreturnphotonarrivaltimesassumingaGaussianinstrumentimpulseresponseandareflectivesurfacewithGaussianroughness.Ingeneralsurfaceslopeandroughnessbothbroadenthereturndistribution.Fortheopenoceantheslopeeffectislikelynegligiblecomparedtheeffectofroughnessduetosurfacewaves.Animportantcomplicationisthatsurfacewavesproduceanon-Gaussiansurfaceduetotheirbroadtroughsandnarrowpeaks.

    1 nsec

    ~10 m

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    26Release Date 01 April 2020

    TheprimarypurposeoftheATLASinstrumentontheICESat2missionistodetectsurfaceheightchanges.Withrespecttotheocean,theserepresentSeaSurfaceHeight(SSH).Bywayoftechnicalhistory,thepredecessorofICESat2ATLAS,theICESatGLASinstrument,usedalaseraltimetertomeasuretherangetothesurface.Rangesweredeterminedfromthemeasuredtimebetweentransmissionofthelaserpulseanddetectionofthepulsereflectedfromthesurfaceandreceivedbytheinstrument.TheGLASlaserfootprintdiameteronthesurfaceduetobeamspreadingwasnominally70m,andthedurationofthetransmittedpulsewas4ns.

    TheICESat2ATLASinstrumentwillsampleatahigherrate,10kHzwith1-2nspulsewidth,withasmallerintrinsicfootprint,~10m(Fig.1),andwillrelyondetectingtherangetraveledbyindividualphotons.ExperiencewithMABELsuggeststhattheinstrumentimpulseresponsedistribution,duelargelytothevariationintransmittimesforthephotonsofeachpulse,willbenon-Gaussianwithsignificantskewness.Consequently,fourpointswillbemeasuredontheoutgoingpulsedistributionandthesewillbepartoftheICESat2rawdatastream.Thedistributionofreceivetimesofthesurface-reflectedphotons,andhencephotonheights,willbebroadenedbythedistributionofsurfaceheightswithinthefootprintasdepictedinFigure1foranidealizedGaussiandistributionofphotonreturntimesorheights.Photonreturn-timeswillbedigitizedin200ps(3cm)rangebins.However,theoriginationtimeofaphotonwithinapulseisunknown,andtheuncertaintyinthetimeofflightofasinglephotonwillbebetween1and1.5nsRMS(30-45cmflighttime)duemostlytothelaserpulsewidth,withsmallercontributionsfromothereffectswithintheinstrument.Thistimeuncertaintycorrespondstobetween15and22cmRMSinrange.

    Returnphotonarrivalswillbeaggregatedatascaledependingonthesurfacetypebeingoverflown.Overtheopenocean,shortsegmentaggregateswillberetrievedat100Hz(100pulsesover70moftrack)andlongsegmentaggregatesretrievedupto1Hz(10,000pulsesover7kmcorrespondingto25timestheatmosphericsamplerate.Incontrast,toensureadequatedetectionofleads,overseaicereturnphotonsmaybetakenatthemaximumrateof10kHz(eachpulseevery0.7m).

    2.1 Open Ocean Background

    Overdistancesofcmtoafewhundredmeters,theseasurfaceisroughenedbywavesandoceanswell,butoverdistancesofmanykm,theseasurfaceisalmostflat.Nevertheless,surfaceslopesandlong-wavelengthundulationsarepresent,causedbyvariationsinEarth'sgravityfieldrepresentedbythegeoid,oceancurrents,andvariationsinatmosphericpressureandseawaterdensity.Satelliteradaraltimetershaveshownremarkablesuccessinmeasuringsea-surfaceheightandtrackingchangesincirculationandmeansealevel.However,themajorsatelliteradaraltimeters,TOPEX/Poseidon/Jasondonotgobeyondabout62°latitude,andthusmissthesub-ArcticseasandsouthernpartsoftheSouthernOceanthatarecriticaltotheglobaloverturningcirculationandthefateof

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    27Release Date 01 April 2020

    seaiceintheicecoveredArcticOcean.ICESat2overtheopenoceanwillcoverthisgapbetweenthetemperatelower-latitudeoceanandtheseaicecoveredregionsoftheArcticandAntarctic

    Asdiscussedabove,thedistributionofICESatphotonreturntimes,orapparentheightsfromLevel2processing,willbedeterminedbythemeanSSH,themeansurfaceslopeandasurfaceroughnesswithinthefootprint.Amongthese,theeffectofseasurfaceslopeonthephotonheightdistributionsshouldbesmallcomparedtotheeffectofroughnessduetosurfacewaves.Fortheaggregationscalesabove,theSSHisthesumofthegeoidheight(fixedintimeandontheorderofmetersamplitude),thedynamicoceantopography(DOT,ontheorderofcentimeterstotensofcentimetersamplitude)associatedwithmeansurfacecurrents,tides(mainlydiurnaltosemidiurnalperiodswithamplitudesofuptometers),andseasurfaceatmosphericpressure(SAP,asmuchas10sofcm).Asafirstapproximation,SSHcanbeestimatedasthemeanofthedistributionofphotonheightswithinaverticalwindowabouttheellipsoidoranapproximatedcanonicalseasurfaceheight(e.g.,30mfromtheestimatedgeoid)andoverthealongtrackaggregationscalesto

    bedecidedasabove.However,thespecialandrapidlyvaryingnatureoftheseasurfaceposechallengeswiththeinterpretationandaggregationofmeaningfulSSHfromICESat2photonheights.Itisusefultooutlinetheseissueshere,keepinginmindthatthemagnitudeofthemostsoughtaftercomponentsoftheSSHsignal,changesinDOTandmeanSSH,aresignificantlysmallerthanmostoftheothercomponentsofSSH.Tides,Medium-FrequencyChangesinCirculationandAliasing:ICESat2willcompleteoneorbitofthe

    earthinabout1.5hours.Therepeatperiodisunderdiscussionbuthasmainlysettledon91days.Moreimportantly,manyofthemostimportantareasandtimestooceanographersarepronetobeingstormyandovercast.Thus,itislikelythatICESatwillonlygetgoodsurfacereturnsinfrequentlyoverlargeandimportantregionsoftheopenocean.Tidesandmediumtohigh-frequencychangesincirculationwillseriouslyaliasintoslowlysampledregions,makingaggregationintovalidlong-termmeansdifficult.AtsomepointinICESat2

    Figure 2. Geodetic height measured with a geodetic grad dual-frequency GPS with PPP processing at a drifting ice camp near the North Pole plotted with an ad hoc model of ocean tides and longer variations assumed due to the geoid and DOT variations. The geoid variations over the 60 km drift are estimated to 60 cm, tides 10 cm peak to peak, and DOT only a few cm.

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    28Release Date 01 April 2020

    oceanprocessingthiswillhavetobeaddressed.ThiscanbedonebyreferencingthephotonheightstotheSSHpredictedbyamodelsuchastheOceanModelofCirculationandTides(OMCT)asusedfordealiasinggravitydatafromtheGravityRecoveryandClimateExperiment(GRACE).Essentially,thepredictedtidalandcirculationcontributionstoSSHaresubtractedfromeachICESat2heightobservation,theresidualisaveragedmonthlyandsimilarlyaveragedmodelresultisaddedbackin.Onlytheerrorinthemodeledresponseisaliased.ThisproceduremaybebeyondthescopeofLevel3data,butthesameoceanmodelcouldbeusedtomorenarrowlyandaccuratelydefinethephotonheightbandthatneededtobeconsideredinselectingtrueoceansurfacephotonreturns.TheGeoid,NarrowingtheWindowonPhotonReturns,andMeasuringMeanDOT:ICESat2photonheightswillbeheavilyinfluencedbythegeoid.AnexampleofthisfortheArcticOceanneartheNorthPole(Fig.2)showschangesinSSHassociatedwithgeoidheightvariationsofabout1cmperkmofhorizontaldistance.GiventhepotentiallypatchyandtemporallysparsecharacterofICESat2oceanreturns,thevariationsinthegeoidfromageoidmodel(e.g.,EGM2008oranimprovementthereonusingGOCEandGRACEdata)shouldbeextractedfromthebasicheightdatatoallowmeaningfulspatialmeansofSSHtobemade.ThespatialresolutionofthesegeoidcorrectionsisanimportantissueaffectingthesmallerDOTandSSHsignals.SurfaceAtmosphericPressureandtheInverseBarometerEffect:ChangesinsurfaceatmosphericpressureashorttimescalesdirectlycauseaninversedeflectionofSSH.Aswithtides,oceancirculationchanges,andthegeoid,thesedirectpressuredisturbancesatthetimeandplaceofeachICESat2photonretrievalshouldbeestimatedandremovedfromestimatedSSHbeforeaggregationtoavoidspatialandtemporalaliasing.ThiswillrequirebringingatmosphericreanalysisproductsordirectSAPobservationsintotheprocessingstream.Knowledgeofthelikelyinvertedbarometereffectwillalsohelpinnarrowingtherangeofreturnphotonheightsandthusidentifyingphotonsreturningfromtheseasurface.

    2.2 The Importance of Waves

    2.2.1 Waves and Reflectance

    SurfaceWavesReflectance,Scattering,andtheSeaStateBias:WeexpectsurfacewavestohavedominanteffectsontheICESat2returnsfromtheopenocean.

    Reflectance:Surfacewavesandwindspeedhaveacriticaleffectonreflectance.Menziesetal.[Menziesetal.,1998]indicatereflectanceisgivenby:

    R=WRf+(1-W)Rs+(1-WRf)Ru (1)

    whereRisthetotalbackscatterorretro-reflectance,Wisthefractionoftheoceancoveredbyfoam(uptoO[1]forwindsaboveabout7m/s)),Rfisthereflectanceoffoam,

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    29Release Date 01 April 2020

    Rsisreflectanceduetospecularreflectionfromthewaveroughenedsurface,andRuistheapparentreflectanceduetolightthatpenetratesandcomesbackupthroughthesurfaceanywhereitisnotreflecteddownwardbysurfacefoam.

    RfisconsidereddiffuseLambertianscatteringindependentofincidenceangle.Aswewouldexpect,Rsishighlydependentonincidenceangleandisthedominantformofbackscatter.RuisLambertianbutitisusuallysmall,about0.0075maximum.Menziesetal,modelthereflectanceowingtoRsandRf.ThemainpartisaninverserelationbetweenRsandthevarianceinsurfaceslope,Rs~1/,duetowindgeneratedsurfacewaves.Theyusearelationbetweenwindspeed,U10,andbyWu[Wu,1972]basedonresultsofCoxandMunk[CoxandMunk,1954];goesupasthelogofwindspeed.Themodel

    resultsaregiveninFigure3,whereinthestrongdependenceonnadirangleisapparent.Theexceptionisathighwindspeedswherethebackscatterfromfoamstartstobecomeimportant,flatteningtheRcurvesfornadiranglesgreaterthan30°.Otherresultsin[Menziesetal.,1998]showgoodagreementbetweenthemodelanddatafromtheLidarIn-

    spaceTechnologyExperiment(LITE)shuttlelidarmissionofSeptember1994.Themodeledreflectanceessentiallyagreeswiththevaluesforreflectanceusedinthedesign

    Table 1

    Case Description WaterReflectance,Lambertian,Green

    WaterReflectance,Lambertian,IR

    10a ConicalScan,lowwind 0.28 10b ConicalScan,mediumwind 0.12 10c ConicalScan,highwind 0.07

    ModeledReflectanceforZeroNadirAnglefromFigure4,Menziesetal.[1998]Figure1

    Case DescriptionWaterReflectance,Green

    10a Wind=4m/s 0.25 10b Wind=6m/s 0.20 10c Wind=10m/s 0.1

    Figure3.ReflectanceasmodeledbyMenziesetal.[1998]asafunctionofwindspeedandnadirangle.

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    30Release Date 01 April 2020

    performancestudyforATLAS(Table1).However,mostimportantwithrespecttothisATBD,thedependenceofseasurfacedirectionalreflectanceonsurfacewindstresssuggestsamethodforderivingsurfacewindspeedfromICESat2measurementsofseasurfacebackscatter.WorkingsolelywithICESat2observations,wecanconceivablyestimateU10fromreflectance.AswediscussbelowthisestimateofU10maybeusedwithSWH,estimatedfromthevarianceofthephotonheightdistributions,tocalculatetheSeaStateBiasinICESat2SSHmeasurements.

    2.2.2 Waves and Sea State Bias

    Seastatebiasisacriticalissuethathasbeenfoundtorelatetotheamplitudeofwavesandtowindforcing.TheSSBproblemisfundamentalandhasreceivedconsiderableattentionwithrespecttoradaraltimetry[Elfouhailyetal.,2000;Gasparetal.,1994].ImprovedcorrectionsforSSBintheTOPEXaltimetershavebeendeveloped[Chambersetal.,2003]relatingSSBtowindspeed,U10,andsignificantwaveheight(SWH,thetrough-to-crestheightofthehighestthirdofoceanwaves)measuredwiththeradaraltimeter.Studiesusingbothlaserandradarinstrumentsfindafairdegreeofcommonality[Chapronetal.,2000;Vandemarketal.,2005].UrbanandSchutz[UrbanandSchutz,2005]compareICESat-derivedSSHwithTOPEX/PoseidonSSHandfindanegative10cmbiasinICESatrelativetotheradaraltimeters.Theyindicatethatthebiasisunknown,butthatitmaybe

    relatedinparttoseastate,andtheyrecognizethattheradaraltimeteriscorrectedforSSBusingarelationwithSWH.Unfortunately,aSWHparameterwasnotprovidedwiththeICESatGLASdata,ashortcomingwecannotrepeatwithICESat2.TheICESatATBDdocumentmadetheassumptionthatseasurfaceheightsareGaussiandistributed,sothatwithaGaussiantransmissionpulse,thereflectedpulsereceivedbyICESatcouldbeassumedtobeGaussianalso.Infact,theoceansurfaceisnotGaussianandthisaffectsthereflectionofeitherradarorlightfromthesurface.The

    Figure4.TypicalGram-Charlierdistributionseasurfaceheightinawaveenvironment.Thepositiveskewnessandexcesskurtosis(Gaussianskewnessandexcesskurtosis=0)isduetotruncationatlowheightsandalongtailathighheights.Fig.7.4-1ofKinsman[1965].

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    31Release Date 01 April 2020

    distributionofsurfaceheightinawave-coveredocean(Fig.4)istypicallygivenbytheGram-Charlierdistribution[Kinsman,1965].Forthisthethirdandfourthmomentsofthedistributionexpressedasskewnessandkurtosis(orexcesskurtosis=kurtosis-3)areimportantandindicatetruncationofthedistributionatlowheightswithalongtailathighheights.Thisreflectstheshapeofsurfacewaves.

    Ingeneral,surfacewaveshavetrochoidalshape,withnarrow,steepsidedpeaksandrelativelybroadflattroughs(Fig.5).Thisappliesparticularlytotheshort-wavelength

    wavesproximallyforcedbywind.PhotonsstrikingtheupperportionsofthesewavearelesslikelytobereturnedtoICESat2thanphotonsstrikingthelowerportionsofwavesurfaces;peaksareundersampledrelativetotroughsresultinginaseastatebias(SSB)inestimatesofSSHbasedonthemeanofanICESat2photonheightdistributionor,inthecaseofICESat,meanarrivaltimeofareturnpulse.

    However,commonlytheseasurfaceiscomposedofswellandwindwaves.Swellisthemanifestationoflargelong-wavelengthwavesthatarematureandforcedelsewhere.Thewavelengthsarelongenoughthatinspiteofsignificantamplitude,theslopesaresmallandthewavesarelinearandwellrepresentedbysinewaves.Thewindwaves,forcedbylocalwind,areshorter(downtocapillarywavelengths)andsteeperwithtrochoidalshape.Intheextreme,whentheyreachthelimitofsteepness(Figure5),theybreakandformwhitecaps.Assuch,thesewavescanbytheirshapeaffectseastatebiasinaltimetryreturns,buttheirdirectbiasissmallbecausetheiramplitudesaresmall.However,severalstudiesincludingonedoneforthedevelopmentofthisATBD,suggestthecharacteroftheshortwavesvarieswithpositiononthelargerlinearwavesandthuscancontributetolargeSSB.WehaveperformedastudyoftheeffectoflongwavesonshortwavesandtheirimplicationsforICESat-2seastatebias.WehavesoughtamodelseasurfacesuitablefordrivingtheNASAGSFCnumericalATLASsimulator.WiththiswewillbeabletotesttheperformanceATLASovertheopenoceanandevaluatesuchthingsastheseastatebiasinmeanseasurfaceheightmeasurements.Therearetwoelementstoourartificialseasurface.Thefirstisarealisticrepresentationoftheheightandsurfaceslopeduetowaveswithwavelengthsgreaterthanthe10-mfootprintofanATLASlaserpulse.Thiscapturesthebulkoftheenergyinthewavefield.Becausethewavesarelong,alinearmodelofthemcanbeused.Thesecondcomponentisameasureofthedistributionofsurfaceslopesdue

    Figure5.Trochoidalshapeofsurfacewavesatthelimitofsteepness,wavelengthequaltoseventimesheight.Thesharplypeakedtrochoidalshapeiscommontoallsurfacewaveslongerthancapillarywaves,whichhaveaninvertedtrochoidalshape.Atthesteepnesslimitthewavesbegintobreak.(Figurefromhttp://hyperphysics.phy-astr.gsu.edu/hbase/waves/watwav2.html)

    Trochoid wave models

    wavetanks thatsuggests that a ratio of1:7 for peak height towavelength is themaximum and that anangle of 120° is theminimum angle for apeak. Above this ratiothe peaks becameunstable. The bottomwave sketch is scaledto that 1:7 ratio ofpeak-to-troughdistance compared towavelength.

    As waves movetoward a beach, theshallower waterdecreases thewavespeed, so thewavelength becomesshorter and the peakheights increase. Thewavepeaks becomeunstable and, movingfaster than the waterbelow, they breakforward.

    Highest ocean waves Tsunami

    HyperPhysics***** Mechanics R Nave Go Back

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    32Release Date 01 April 2020

    tothewaveswithwavelengthslessthan10-mlaserpulsefootprintofATLAS.Thedistributionofsurfaceslopes,shiftedbytheinstantaneousslopeofthelongwavecomponentdeterminestheprobabilityofATLASfindingaspecularreturnresultingfromaphotonlaserpulse.Knowingthisasafunctionofsurfaceheightandslopeduetothelong-wavewillallowustopredictSSBintheICESat2measurements.Wehavetakenadvantageofacodesimulatinglong-wavesurfaceheightbasedonalong-wavespectrumdevelopedbyDonelanetal.(1985)tomodelthelongwavecomponentofourATLASoceansurfacemodel(AOSM).

    Ourmainchallengehasbeendeterminingthemeansquareslope(MSS)representingshort-waveroughnessanditsdependenceonlong-waveheightandslope.Wehadthoughtthatwavewireorsomeothertypeoffieldobservationwouldhavebeenanalyzedoratleastreadilyavailabletodeterminethisrelationship,butsurprisinglywefoundnosuchanalysisintheliterature.Insteadwehaveanalyzedoriginaldatafromafour-wirewave-gaugearrayontheUniversityofMiami’sASISbuoy[WillDrennan,personalcommunication].TheworkisdescribedindetailbyW.Plant.[Plant,2015a;b]butweprovideabriefsynopsishere.TheASISBuoydatawerecollectedintheDeepOceanGasExchangeExperimentintheAtlanticOceanonJuly3,2007atawindspeedbetween10and11m/s.Thewave-gaugesmeasuresurfaceheightsatorthogonalpositions20cmapart,soinprincipleanytwogaugesmeasureslopedirectlydownto~2Hzorwavelength~0.8minthiscase.Asinglegaugeyieldsatimeseriesofheight,andwiththedispersionrelation,thespectrumofheightcanbeconvertedtoaspectrumofsurfaceslope.Thesinglegaugeapproachiscomplicatedbytheneedforthedispersionrelationfortheshortwavestobemodifiedtoaccountfortheorbitalvelocitiesofthelongwaves.Wehavecomparedthetwoapproachesandfoundthetwo-gaugeapproachyieldsresultsinconsistentwiththeknowngaugespacing.However,wecanaccountforthecomplicationstothedispersionrelationandproduceconsistentestimatesoftheshort-waveslopespectra.Spectraforhigher

    Figure6.Left–ShortwaveMSSasafunctionoflong-waveheightandslope.Right–thestandarddeviationofshortwaveMMSasafunctionofthesamevariables.

    Long-Wave Height (m)

    Long

    -Wav

    e Sl

    ope

    (deg

    )

    High Pass MSS1

    MSS1: Max = 0.046, Mean = 0.021, Tot = 0.029

    03-Jul-2007 07:57:00, U = 10.52 m/s, Small Array, fmax = 2.5 Hz, d = 0.2 m, k is mean wavenumber, fmax = 2.5 Hz

    -2 -1 0 1 2-20

    -10

    0

    10

    20

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    0.04

    0.045

    Long-Wave Height (m)

    Long

    -Wav

    e Sl

    ope

    (deg

    )

    Std of High Pass MSS1

    -2 -1 0 1 2-20

    -10

    0

    10

    20

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    33Release Date 01 April 2020

    frequencies(wavenumbers)than2Hzareextrapolatedusingtheobservedfrequency-1spectralslopeat2Hz.TheMSSisobtainedbyintegratingthespectrumouttoamaximumfrequency(100Hz),abovewhichincreasesinMSSarenegligible.

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    34Release Date 01 April 2020

    Thepreliminaryresultofthisanalysishasbeenthedependenceofobservedshort-waveMSSontheslopeandheightofthelong-waves(Fig.6).MSSisgreatestforhighheightsand

    negativeslopes,i.e.,ontheupperpartofthedownwindfaceofthelong-waves.ThecorrelationmapsofFigure6havebeenusedasatabletospecifyMSSina10-mspotcorrespondingtothe2Dmodeloflong-waveslopeanddisplacementderivedfromtheDonelanspectrum.Arealizationoflongwaveheightandslopeandthecorresponding10-mspotMSSisshowninFigure7[Plant,2015a&b].A1-Dsliceinthedownwinddirection(Figure8)throughthecombineddatafromFigure7illustrateshowMSSslopetendstoincreaseontheupperpartsofthedownwindfaceof

    Figure8.Heightduetolong-wavesversusdistancedownstream(fromupperrightcornertolowerleftinFigureA-left)withcolor-codedcorrespondingMSSfromFigureA-right.

    Figure7.FromPlant[2015b].Left–Simulated2Dsurfacedisplacement,Right–2Dvariationofshort-wavemeanMSSvaluesthatwerecalculatedupto2Hz.Downwinddirectionisfromupperrighttolowerleft.

    Distance East, m

    Dis

    tanc

    e N

    orth

    , m

    Surface Displacement in m (White shows breaking regions)

    200 400 600 800 1000 1200200

    300

    400

    500

    600

    700

    800

    900

    1000

    1100

    1200

    -3

    -2

    -1

    0

    1

    2

    3

    Distance East, m

    Dis

    tanc

    e N

    orth

    , m

    Mean-Square-Slope (White shows breaking regions)

    200 400 600 800 1000 1200200

    300

    400

    500

    600

    700

    800

    900

    1000

    1100

    1200

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    0.04

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    35Release Date 01 April 2020

    waves.Italsoillustratesinamuch-simplifiedwayhowtheinterplayoftheshort-waveMSSandlong-waveamplitudeandslopecanaffecttheprobabilityofspecularreflectionandconsequentseastatebias.Foreachpointalongtheslice,weassumethesurfaceisnormallydistributedwithameanequaltothelocallong-waveslopeandavarianceequaltotheMSScorresponding(Fig.6)tothelong-waveheightandslope.Theprobabilityofanyonephotonstrikingthespotfindingaspecularpointisestimatedastheintegraloftheidealizedslopedistributionbetweenplusandminus10-5radians(Fig.9).

    Theprobabilityoffindingaspecularpointishighestinthetoughsandatthepeaks,likelybecausethemeanslopeiszero.However,theincreasedMSSintheupperpartsofthewavestendstodecreasetheprobabilityofspecularpointsforhigherheights.Weknowthetruemeanheightalongthesliceis1.8cm.Weightingthesamplesofheightbytheprobabilityofaspecularpointyieldsaphotonsampledmeanheightof-2.6cm,a-4.4cmbias.Interestinglythisisabouttwicethetypicalseastatebiasforradaraltimetersforthe10-mwindspeedatthetimeoftheseASISBuoyobservations.Thebiasisnotduetononlinearities

    onthelong-waves.Thesimulationusesalinearspectrum-basedrepresentationofthelongwaves;therearenotrochoidallongwaves.WhenwerepeattheprobabilityweightedmeancalculationassumingtheMSSisuniformlyequaltothecut-wisemeanMSS,themeanheightisonlybiased-0.7cm.Thereareimprovementstobemadetothiswaveanalysis,includingdrawingtheMSSvaluesasrandomvaluesfromdistributionsconditionedonlong-waveslopeandheightanddoingtheanalysisfordataatotherwindspeeds.However,thislimitedsamplesuggeststhatthatthesystematicdistributionofsmall-scalesurfaceroughnesstowardstheupperpartsofthewavesproducesanegativeseastatebiasbecausethewavetroughsprovidemorespecularreturnsthanthewavecrests.Thistypeofbiasislikelycompoundedbyshape-inducedbiasesduetoanynonlinearityinthelong-waves.AsaresultisthattheSSHobservationsbyICESat-2willbenon-Gaussianandexhibitseastatebias.

    Figure9.Heightduetolong-wavesversusdistancedownstream(fromupperrightcornertolowerleftinFigure6-left)withcolor-codedprobabilityofspecularreflection.

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    36Release Date 01 April 2020

    However,furtheranalysisofthewavegaugedatatakingintoaccountboththeDopplershiftingofthesmallscalewavebylongwaveorbitalvelocityofthelongwavesandtheeffectsofconvergencebylong-waveorbitalvelocityonshortwaveamplituderesultsinalmosttheoppositedependenceofshortwaveslopeonlongwaveheightandslopeandsuggestsapositiveseastatebias.{SEEBILL’SLATESTWRITEUP],Consequently,lackingfurtherdataaboutthedependenceofshortwavecharacteristicsonlongwaveposition,weseekamethodwherebytheSSBcanbedeterminedtomICESat-2datathemselves.

    2.2.3 ICESat2 Height Statistics and Sea State Bias

    SeaStateBias(SSB)istheerrorinaverageseasurfaceheightmeasuredbyanaltimeterduetothedependenceofaltimeterreturnsoverdifferentpartsofwaves.TheSSBforradaraltimetersisnegativebecausethetroughsofwavesreflectmoreradarenergythanthecrestsofwaves.Thiseffectisaveragedovermanysurfacewavesencompassedbythetypicalradarfootprint(e.g.17kmforCryoSat2).ImprovedcorrectionsforSSBintheTOPEXaltimetershavebeendeveloped[Chambersetal.,2003]relatingSSBtowindspeed,U10,andsignificantwaveheight(SWH,thetrough-to-crestheightofthehighestthirdofoceanwaves)measuredwiththeradaraltimeter.AllthesestudieshavemeasuredtheSSBempiricallybycomparingSSHmeasuredbyvariousmeansorcomparingrepeatmeasurementsatthesamelocationbyagivensatellitefordifferseastatesandwindspeeds[HausmanandZlotnicki,2010].Studiesusingbothlaserandradarinstrumentsfindafairdegreeofcommonality[Chapronetal.,2000;Vandemarketal.,2005].UrbanandSchutz[UrbanandSchutz,2005]compareICESat-derivedSSHwithTOPEX/PoseidonSSHandfindanegative10cmbiasinICESatrelativetotheradaraltimeters.Theyindicatethatthebiasisunknown,butthatitmayberelatedinparttoseastate,andtheyrecognizethattheradaraltimeteriscorrectedforSSBusingarelationwithSWH.Unfortunately,aSWHparameterwasnotprovidedwiththeICESatGLASdata,ashortcomingwecannotrepeatwithICESat2.

    APrioriEstimationofSSBUsingOnlyAltimeterData

    ThesmallfootprintofICESat2(17mfor4sdiameterGaussianintensity),shortdistancebetweenpulse/footprintcenters(0.7m)andtheessentialpointsamplingatrandompositionswithinthefootprintofthephotoncountinglidar,maypresentanopportunitytocapturetheshapeofthelongwavelength,energycontainingsurfacewaves.IfthisistrueitwillbepossibletoestimateICESat2seastatebiassolelyonthebasisofcontemporaneousICESat2returnswithoutresortingtooutsidedataorevencomparisonwithpastICESat2returns.Thekeyisevaluatingtherateofsurfacephotonreturnsasafunctionofsurfaceheight.Asimpleexampleofthisconsidersanoceansurfacewithseasurfaceheight,Hss,disturbedbyalongsinusoidalsurfacewavewithamplitudeA,plusrandomnormallydistributedperturbations,N:

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    37Release Date 01 April 2020

    2

    IfICESat-2samplesthissurfaceataconstantrate, surfacereturnspermeter,thesurfacewillbeuniformlysampled,andtherewillbenoseastatebias.Ifthereisavariationinsamplerate,r,thatiscorrelatedwithvariationsinseasurfaceheightsuchthat:

    , (3)

    whereaisthecovariancebetweenrandynormalizedbythevarianceiny:

    . (4)

    Thesurfaceheightestimate,ye,overalargedistance,X,istheaverageofthetrueheightweightedbythesamplerate:

    (5)

    (6)

    ForXequaltoanintegralnumberofwavelengthsorverylongcomparedtomanywavelengths:

    (7)

    Soseastatebias,SSB=ye-HSS,is:

    (8)

    Similarly,Arnoldetal.[Arnoldetal.,1995]inevaluatingKu-bandSSBmeasuredwithacombinationofradaraltimetersandcapacitivewavewiresmountedonanoilplatformin

    Y = SSH +Asin

    2πLx+N(0,σ )

    r

    r = r +αAsin 2π

    Lx

    α =

    cov(ry)y2

    σ

    ey =

    1Xr

    Yrdx =0

    X

    ∫ 1Xr

    ( SSH +Asin2πLx+N)rdx

    0

    X

    =1Xr

    ( SSH +Asin2πLx+N)(r +αAsin 2π

    Lx)dx

    0

    X

    =1Xr SSH

    (r +αAsin 2πLx)dx→

    0

    X

    ∫ 1Xr SSH

    r dx0

    X

    +1Xr

    (Asin 2πLx)(r +αAsin 2π

    Lx)dx

    0

    X

    ∫ → 1Xr

    (Asin 2πLx)(αAsin 2π

    Lx)dx

    0

    X

    +1Xr

    N(r +αAsin 2πLx)dx

    0

    X

    ∫ →0

    ey =

    1Xr

    HSSXr +

    X2α

    2A

    ⎣⎢

    ⎦⎥=HSS +

    α2A2r

    eSSB = y −HSS =

    α2A2r

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    38Release Date 01 April 2020

    theGulfofMexico,calculateelectromagneticbias,e,duetothevariationofbackscattercoefficientwithsurfacewavesas

    (9)

    wherehiisthemeasuredsurfaceddisplacementcorrespondingAsin(2px/L)inouridealizedexampleand isthemeasuredbackscattercoefficientproportionaltotherate

    ofphotonreturns,r.OuraexpressedinthetermsofArnoldetal.[1995]is:

    , (10)

    sotheirexpressionforelectromagneticbiasisthesameastheSSBforthesinewaveexample:

    (11)

    AppendixBgivesamoredetailedderivationof(9)intermsofrateofphotonreturnforaphotoncountinglidarinplaceofcross-section.ItalsodescribesthecorrespondingEMorseastatebiasinthehighermomentsofthesurfacedistribution(EquationB20inAppendixB).ExampleofSSBDeterminationfortheUnevenDataDistributionofaPhotonDetectingPulsedLidarAltimeterApplicationof8isstraightforward,andisaccurateincasessuchasthatofArnoldetal.[1995],inwhichthespacingofthedataisuniformandtheenergyofthereturnismeasuredandisthemetricweightingthesampledsurfaceheight.Inthatapplication,eachradarpulsewaspowerfulandtherangeandfootprintsizeweresmallsothateverypulsereturnedasurfaceheight.TheenergyreturnedwitheachpulseanditscorrelationwithheightcouldbeexpectedtoaggregateintotheSSBoverthemuchlargerfootprintofsatelliteradaraltimeter.

    Thisisnottotallytrueinthecaseofthepulsedphoton-countingaltimetersuchasMABELorICESat2;thereturnrateoftheheightsamplesisnotuniformandtheaverageseasurfaceheightisderivedfromthehistogramofphotonheights.Thecorrelationbetween

    ε =bi0η

    ii=1

    N

    bi0

    i=1

    N

    σ i0

    α =

    1N

    bi0η

    ii=1

    N

    1N

    ηi2

    i=1`

    N

    ε =bi0η

    ii=1

    N

    bi0

    i=1

    N

    ∑=

    αN

    ηi2

    i=1`

    N

    1N

    bi0

    i=1

    N

    ∑=αA2

    2r = SSB

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    39Release Date 01 April 2020

    therateofsurfacereturnsandsurfaceheightisonlyoneofseveralcomponentsinthehistogramskewness.Othercontributorstoskewnessincludethetruedistributiontosurfaceheightandsubsurfacereturns.However,thedominantsurfacewavestypicallyhavelongwavelengthsandarenearlylinearsotheycanbeapproximatedassinewaves.Withthisinmind,weexperimentedwithfittingmultiplesinewavestotherawhistoryofunevenlyspacedphotonsurfaceheightsandcalculatingthecorrelationofobservedrateofsurfacereturnswiththesinewavefittoyieldanestimateofSSBusingequation7.However,intestingthemethodonGreenlandSeaMABELdataandAirborneTopographicMapper(ATM)overthePacific,wefoundthemethodwassensitivetofindingthecorrectwavenumbersforthespectraldecompositionoftheoceansurface.Amorerobustmethodistoaverageboththerawphotonheightsfromthesurfacefindingstepandtherateofphotonreturnsinevenlyspacebinsofalongtrackdistance.Thecovarianceofthesebeenaveragesisthenusedtoevaluateequation7fortheseastatebias.Thismethodiseasierto

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    40Release Date 01 April 2020

    automateandaccountsformoreoftheenergyinthewavefieldthandoestheharmonicmethod.

    MABELdatafromtheGreenlandSeainApril19,2012illustratestheapplicationofequation7.Inthisexample,a9-kmlengthofMABELtrackisbrokeninto3-kmsegments.Each3-kmsegmentisdividedinto30010-malongtrackbins.Oncesurfacefindingselectsthesurfacephotonheights,theseareeditedwithtwopassesofa3-standarddeviationeditor,anddetrendedwithalongtrackdistance.

    Therateofphotonreturnsiscomputedfromthealong-trackrecordofsampleintervals.Therecordofsampleintervalsisgivenbythedifferencebetweensuccessivesurfacephotonalong-tracklocations.FortheMABELdatashownhere,thesamplespacingsvarysignificantlybutaveragealittleoveronemeter.Toalignthedata,thesurfaceheightandsamplepositionareinterpolatedtothecenterofthesampleintervalbycomputingthe

    Figure10.SurfacereturnheightsingreenfromMABELtransitovertheGreenlandSeaversusdistancealongtrack.Three-sigmaeditedanddetrendedheightsareplottedingreenanda10-mbinaveragesareplottedinblack.ThebinaveragesandaprioriSSBestimateswerecomputedinthree3000-msegmentsandaggregatedtoyieldSSB=-0.00029m.

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    41Release Date 01 April 2020

    averageofpairsofsuccessivesampleheightsandposition.Theresultingrecordsofsampleratearethenaccumulatedin10-malongtrackbinsandaveraged.Thebinaveragedsampleintervalsaretheninvertedtoyieldthebinaveragedsamplerate.Interpolatingheighttothecenterofthesampleintervalandbin-averagingsampleintervalbeforeinvertingavoidsanapparentincreaseinaveragesamplerateinadjacentsampleintervals.

    ThebinaveragedsampleratesandheightsarethenusedtocomputetheheightratecovarianceandtheaveragesampleratesusedinX8todetermineSSB.

    ThemethodisillustratedinFigure10withMABELdatagatheredApril25,2012overtheGreenlandSea.Aggregatedoverthree3000-mintervals,thecorrelationofphotonreturnrateandheightisverylowonaverage,andresultsinaseastatebiasof0.3mm,aresultthatisnotsurprisinggiventhelowenergyofthesurfacewaveswithasignificantwaveheight(4xStdofheight)oflessthanameterfortherawphotonreturnsandthebin-averagedheights.

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    43Release Date 01 April 2020

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    44Release Date 01 April 2020

    3.0 OPEN OCEAN PRODUCTS

    3.1 Open Ocean Surface Height (ATL12/L3A)

    TheATL12productcontainsseasurfaceheightsovertheice-freeoceansforeachof3ATLASstrongbeams.ItprovidesthemostbasicdatafromICESat-2:theseasurfaceheightatagivenpointontheopenoceansurfaceatagiventimeplusparametersneededtoassessthequalityofthesurfaceheightestimatesandtointerpretandaggregatetheestimatesovergreaterdistances.TheseheightscanbeusedincomparisonsofICESat-2datawithothergeodeticdataandasinputstohigher-levelICESat-2products,particularlyATL19.

    Heightsovertheseasurfacearedefinedforoceansegmentswithvariablelengthatvariableintervalsalongthegroundtrack;thisisnecessarytoadapttothereducedphotoncountsfromthelowbutvariablereflectanceoftheopenoceansurfaces.Italsoisconsistentwithsurfacefindingroutineusedforseaicecoveredocean(ATL07/L3A).BasedoninitialdataATLASgetsontheorderofonesurfacereflectedphotonperlaserpulseor0.7moftrack,so100photonretrievalsintheadaptivesurfacedetectionalgorithmwouldresultinsegmentlengthsofabout70m.Giventhe17-mfootprintoftheICESat2beams,thisisequivalentto4independent(non-overlapping)spatialsamplesoftheseasurface.

    Infuturedevelopments,heightsinmarginalicezonesorcoastalzonesmaybedefinedforshortervariablelengthsegmentssampledatvariableintervalsalongthegroundtracktoadapttothepatchesofwaterbetweenseaiceinthefirstinstanceornearlandinthesecondinstance.Theseoverlapregionsarethosethatareclassifiedasbothseaiceandocean(marginalicezone)orlandandocean(coastalzone).ThemethodsofdistinguishingopenoceanfromseaiceandlandandsettingtheoceansegmentlengthsinthesemixedregionsareTBD..

    Inpurelyoceanregions,onlystrongbeamswillbeactive,butinthemarginalicezoneandcoastalzoneoverlapregions,thethreeweakbeamswillalsobeactiveandshouldbeprocessedidenticallytothestrongbeamsandoutputinadditiontothestrongbeamresultsaspartoftheATL12oceanproduct.Thisistofacilitatearationalmergingoftheopenoceanproducts(ATL12)andseaiceproducts(ATL07)andcoastalproducts(ATL??)relatedtoseasurfaceheight.

    However,thepresenceofoceansurfacewavesintheopenoceanfarfrommarginalicezoneandcoastalregions,presentchallengesandanopportunity.Thenon-GaussiancharacterofoceansurfacewavesandthescatteringandeffectivereflectanceoftheICESat2photonslikelycauseanegativeseastatebias(SSB).WeanticipatethatthehigherordermomentsofthephotonheightstatisticswillallowustobetterestimateSSB.WewillestimateforeachATL12variablesegmentatminimumthemean,standarddeviation,skewnessandkurtosisoftheheightdistribution.Thesefourmomentscanbedeterminedfromthemeansandstandarddeviationsofa2-componentGaussianmixture,whichwillalsoprovideamixingratioforthetwocomponents.Thesehighermomentsmakeitpossibletocharacterizenotonlythemeanseasurfaceheight,butalsotheseastateand

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    45Release Date 01 April 2020

    likelyseastatebiasoftheheightestimate.However,itisnecessarytoaccumulatelargenumberofsurfacereflectedphotonsto

    makemeaningfulestimatesofthehighermomentsoftheheightdistribution.Giventhelownumberofreturnsfromopenwater(e.g.,O[1photon/pulse]),andconsideringthatoceanwavescanhavewavelengthsofhundredsofmeters,togetmeaningfulstatisticsoveropenwaterwithsignificantwaveactivityrequiresaccumulatingdataoverseveralkilometers.Theatmosphericcloudflag(layer_flaginATL03)isusedinpartinsettingtheoceansegmentlengthrequiredtoachieveaminimumnumberofphotons.ItandothergeophysicaldatasuchasthebackgroundphotonratefromATL09andthegeoidarereportedevery400pulses(25Hz)or14geo-bins.Consequently,overtheopenocean,wewillseekaminimumphotoncountof8,000photonsequivalenttoabout5.6kmor28020-mgeo-binsformeaningfulhigherorderstatistics.

    3.1.1 Height Segment Parameters

    3.1.1.1 Geolocation/Time

    Thelocationisthemeanlocationofdesignatedsignalphotonsusedasinputtothesurfacefindingprocedure.Thetimeisthemeantimeofdesignatedsignalphotonsusedasinputtothesurfacefindingprocedure.

    3.1.1.2 Height

    Thisisthemeanheightestimatefromthesurfacedetectionalgorithm.Qualitymetricsinclude: Confidencelevelinthesurfaceheightestimatebasedonthenumberofphotons,thebackgroundnoiserate,andtheanalysisfromthedetectionalgorithm.

    3.1.1.3 Subsurface-scattering corrections

    Subsurface-scatteringcorrectionsareyettobedetermined.Theyareexpectedtobeminimalforthedeepopenoceanwherethewaterisclear,butmaybesignificantinnearcoastalregionswheremorescatteringelementsaretobeexpectedinthewater.Theseconditionswillbemostlikelytobeapparentaspositiveskewnessinthereturnheightdistributionsespeciallyascorrelatedwithoutsidemeasuresofsurfacecolororscattering.GuidedbythetreatmentofsubsurfacescatteringfortheInlandWaterATBDandasweareabletodeveloprelationsbetweenphotonheightdistributionskewnessandotherevidenceofscattering,wewillderiveanappropriatecorrectionforsubsurfacescatteringwhereapplicableandprovideitasanoutputofATL12.

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    46Release Date 01 April 2020

    3.1.1.4 First-photon-bias corrections

    Pendingfurtheranalysis,giventhelowapparentreflectanceoftheoceansurfacefirst-photon-biascorrectionswilllikelynotbeneededfortheoceanproducts.

    3.1.1.5 Height Statistics

    Thephotonstatisticsdescribethedistributionofthepopulationusedinthesurface-trackingalgorithm.Theseparametersincludethe:numberofphotons,histogramofthepopulation,and,atminimumthemean,variance,andskewness,andkurtosis.

    3.1.1.6 Initial Sea State Bias Correction and Surface Wave Properties

    Asdiscussedin2.2.3,ICESat-2givesusauniqueopportunitytomakeanaprioriestimateofseastatebiasusingonlytheheightsfromthesurfacefindingsystem.Theapproachistousethesurfacephotonheightstoestimatethesurfaceheightandtherateofphotonreturnsin10-malong-tracksegments.ThecorrelationofheightandreturnratenormalizedbytheaveragephotonreturnrateistheEMorseastatebias.Thiswillbeestimatedfromthesurfacephotonheightrecordbeforeseparationoftheimpulseresponseintheheighthistogramandmadeavailableasoutput.ThestandarddeviationofphotonheightsoverthewholesegmentwillbeprovidedasameasureofSWH(=4xStd.)thatcanbecomparedwithreanalysisproducts.Thestandarddeviationaboutthe10-mbinaverageswillalsobeprovidedasanestimateoftheenergyofshortwavesthatarguablyhasanimportanteffectonreflectanceandseastatebias.

    3.1.1.7 Solar Background Thesolarbackgroundphotonrate,backgr_r_200,isestimatedasanaverageover50laserpulsesinATL03.Itisbasedonthephotonsincludedinthealtimetrichistogramlessthephotonsdeemedsignal(surfaceorcloudreflected)photonsbyATL03.Thisisconvertedtoarateinphotonspersecondbydividingbythetotaltimewindowreducedbythedurationofthewindowcontainingsignalphotons.

    ForATL12wewillusetheaverageoftheestimatedsolarbackground.Wewillnotusethepredictedsolarbackgroundratebasedonthesolarzenithangle,thesolarfluxinthereceiveretalon’spassband,andtheeffectiveapertureofthedetectors.

    3.1.1.8 Apparent Reflectance

    ThisisbasedonthecomparisonofexpectedphotoncountsoveraseasurfacewithSWHestimatedfromphotonstatisticsandphotoncountsfromtheactualsurface(see2.2.1.4andFig.2).

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    47Release Date 01 April 2020

    3.1.2 Input from IS-2 Products

    3.1.2.1 Classified photons (Level 2)

    Photonsclassifiedastowhethertheheightissignal,noise,orextendedsignal.Thesehaveaconfidenceastotype.

    3.1.2.2 Atmosphere (Level 3)

    Relative/calibratedbackscatter,backgroundrates,cloudstatisticsat25Hz.

    3.1.3 Corrections to height (based on external inputs)

    Inanticipationofhigherlevelprocessing,thestandardheightproductswillincludeanumberofcorrectionsappliedtotherawheightestimates.Forexampletoreducealiasingproblems,correctionsforhigh-frequencyandfinespatialscalevariationsinSSH(e.g.,tidesandotherhighfrequencyoceancirculationchanges)thatmaybeinadequatelysampledbyICESat2shouldbeappliedbeforeaveraging.Estimatesofthesecorrectionswillbegivenhere.Allcorrectionswillbegivenintermsofheightsothattoapplyacorrection,userswilladdittotheheightestimate,andtoremoveittheywillsubtractit.Additionalcorrectionsthatsomeusersmaydecidetoapplywillbeprovidedwiththeproduct.

    3.1.3.1 Geoid adjustment (Static)

    HeightsareadjustedforlocalgeoidheightusingmeantideEGM2008modelbeingreportedbyATL03astakenfromthemean-tideEGM2008model.

    3.1.3.2 Atmospheric delay corrections

    Heightswillbecorrectedbasedonanatmosphericmodel,givingcorrectionsfortotaldelaycorrectionthataccountsforwetanddrywettroposphere.Correctionswillbeavailablefortheforward-scatteringbias,basedonavailableatmospheric-scatteringdataandanestimateoftheattenuationcalculatedfromtheapparentsurfacereflectance.

    3.1.3.3 Dynamic Atmospheric Correction and the Inverse Barometer Effect (IBE, time-varying)

    Heightsarecorrectedfortheinversebarometereffectduetothedirectapplicationofatmosphericpressuretotheseasurfaceandthedynamicchangesforcedbywind.ICESat-2hasadoptedtheutilizationofglobal,empirical,6-h,AVISOMOG2D,1/4°×1/4°gridstobeusedasanear-realtimeInvertedBarometer(IB)andDynamicAtmosphericCorrection(DAC)[CarrèreandLyard,2003].ThesegridsareforcedbytheEuropeanCenterforMedium-RangeWeatherForecasting(ECMWF)modelforthesurfacepressureand10-m

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    48Release Date 01 April 2020

    windfields.Thiscombinedcorrectiontypicallyhasamplitudeontheorderof±50cm[Markusetal.,2016].

    3.1.3.4 Tidal corrections (time-varying)

    Heightsarecorrectedfor:Solidearthtides(tide_earth):SolidearthtidesarederivedusingIERS(2010)conventionsare±30cmmax(detailsinATL03ATBDsection6.3.3)Oceanloadtides(tide_load):Thelocaldisplacementduetooceanloading(-6to0cm)derivedfromoceantidemodelGOT4.8.DetailsinATL03ATBD,section6.3.1

    Poletide(tide_pole):Poletidesincludebothsolidearthandoceanpoletides.TheseeacharecomputedviaIERS(2010)conventions.DetailsarefoundinATL03ATBDsections6.3.5and6.3.6,respectively.

    Oceanpoletide(tide_oc_pole):OceanPoleTide-Loadingduetocentrifugaleffectofpolarmotionontheoceans(2mm,max),subsumedinPoletide(tide_pole)Oceantides(tide_ocean):OceanTidesincludingdiurnalandsemi-diurnal(harmonicanalysis),andlongerperiodtides(dynamicandself-consistentequilibrium)(±4m)arefromtheGOT4.8.DetailsinATL03ATBD,section6.3.1.

    Equilibriumtides(tide_equilibrium):Equilibriumlong-periodtidecomputedusingasubroutineattachedtoGOT4.8calledLPEQMT.FbyRichardRay.ItisaFortranroutineinwhichfifteentidalspectrallinesfromtheCartwright-Tayler-Eddentablesaresummed.(Seesection6.3.1oftheATL03ATBD.)

    3.1.3.5 Wind and SWH Estimates

    Surfacewindsandsignificantwaveheightforforecast/reanalysisproductswillbetakenfromanappropriatesourcesuchastheECMWFandwiththeATL12productforcomparisonforcomparisonwithICESat-2derivationsofSWHaspartoftheseastatebiascalculation.

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    49Release Date 01 April 2020

    3.2 Gridded Sea Surface Height - Open Ocean (ATL19/ L3B)

    Thisproduct,basedentirelyonProductATL12/L3Awithnoexternaldependence,containsgriddedmonthlyestimatesofseasurfacefromallIS-2tracksfromthebeginningtotheendofeachmonth.Below60°Nandabove60°S,thedataaremappedonthecurvilineargridoftheTOPEX/Poseidonwithspacingequivalentto0.25°oflongitude.Above60°Nandbelow60°Sthegriddata are mapped onto a planimetric grid using the SSM/I Polar Stereographic Projection equations at a grid spacing of about 24 km. The exact spacing of the Polar Stereographic grid should be adjusted to match the longitudinal spacing of the TOPEX/Poseidon grid at 60°S and 60°N, and the latitudinal spacing adjust to have an integer number of grid cells between 60°N (S) and the North (South) Pole.

    3.2.1 Grid Parameters

    3.2.1.1 Sea surface height estimate

    WithonlyATL12neededasinput,thisderivedproductcontainsthestatisticaldescriptionoftheseasurface(mean;standarddeviation,skewness,kurtosis)withingridcell.Thesewillbecomputedintwoways,usingaggregationofsegmenthistogramsdiscussedinthissection,andaggregationofsegmentmomentsdiscussedinSection3.2.1.2.ThegriddingschemewilltakeasinputfromATL12,thehistogramsofDOTaccumulatedinsegmentslyingwithineachgridcellthesewillbecombinedbyaddingthephotoncountsfromeachsegmentineachheightbinofeachsegmentinthegridcell.

    Theaveragegeoidheightfromeachsegmentwillalsobeaveraged,weightedbythenumberofsignalphotonsineachsegment.Similarly,theweightedaverageaprioriseastatebiaswillbecomputed.

    Thefourmomentsoftheaggregatehistogramwillbecomputedusingthe2-GaussianExpectationmaximizationapproach.TheseastatebiaswillbesubtractedfromthefirstmomenttoyieldthemeangridcellDOT.ThemeanSSHcanbecalculatedasthemeanDOTplustheweightedaveragegeoidheight.

    3.2.1.2 Sea surface statistics histogram within grid

    Wewillperformaweightedaverageofthefirstthroughfourthmomentsofheightsinthelengthsegmentsthatgointothegridcellinagivenmonth.Beingmindfulthateachsegmentgoingintoagridaveragemayhaveadifferentunderlyingdistribution,wewillessentiallycomputethemomentsofthesegmentmoments.Thus,themomentsfortheindividualsegmentswillbeweightedbythenumberofsurfacephotonsintheirsegmentsrelativetothetotalnumberofphotonsgoingintothegridcellandthenaddedtoyieldestimatesoftheaveragemomentsinthegridcell.Whereenoughsegmentsareincludedinagridcell(e.g.,morethan20),histogramsofthemomentsgoingintothegridcellcanbeincludedasoutput.

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    50Release Date 01 April 2020

    3.2.1.3 Wave statistics within grid

    EstimatesofSWH,shortwaveenergyandSSBfromtheaprioriestimationofseastatebiaswillalsobegrid-averagedwithappropriatenormalizationforthenumberofsurfacephotonsineachsegment.

    3.2.1.4 Sea surface segments (Input)

    Seasurfaceheightinsurfaceheightsegmentsasdescribedabovewiththetime/location/qualityoftheseasurfaceheightinthesegment.

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    52Release Date 01 April 2020

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    53Release Date 01 April 2020

    4.0 ALGORITHM THEORY

    Inthissection,wediscussthefollowingtopics:1. Finding the collection of photon heights representing reflection from the sea surface. 2. Separating the surface wave generated variation in photon heights from other sources of

    variance. 3. Determining SWH and higher order measures of sea state 4. Formulating the best sea state bias correction

    4.1 Introduction

    ThemainpurposeofthealgorithmsdevelopedhereisthedeterminationofSeaSurfaceHeight(SSH).Therearetwomainstepstodeterminingseasurfaceheight(SSH)fromICESat-2photonheights(ATL-03)overtheocean.Theseareidentifyingphotonheightsthatlikelyrepresentreflectionfromtheseasurface,looselytermedsurfacefinding(Sec.4.2),anddeterminingthecorrectstatisticsoftheseasurfaceheightdistribution(Sec4.3).MostimportantlyweseektheSSHequaltothemeanoftheheightdistribution.Becauseofthemotionoftheseasurface,surfacefindingoveropenwaterisinherentlyasearchforadistributionofheightsrepresentativeoftheseasurface.Ourmainproductwillbethemeanofthisdistributionovertime,lengthandspacescalestobedeterminedaspartoftestingandanalysis.InadditionotherpropertiesofthedistributionareusefulforassessingthesurfacewaveenvironmentandbiasesintheSSHdetermination.Thoughwefocushereonobtainingmeaningfulstatisticaldistributionsofseasurfaceheights,wehavefounditpossibleintestswithMABELdatatocreatemeaningfulmoving21-photonmeansoftheheightsfromthephotonsdesignatedsignalphotonsbythesurfacefindingroutines.Thisgivesarelativelyhigh-resolutiontime-(orspace-)seriestraceoftheseasurfaceinfairagreementwiththeanalysisusingthehigh-resolutionseaiceanalysis.Thismaybeusedinexperimentalanalysesforsurfacewaves.Figure11showstheblockdiagramfortheATL12processingtogofromATL03photondatatoalong-trackhistogramsandstatisticsofdynamicoceantopography.Figure13illustratesthegriddingproceduretogofromATL12productstoATL19griddedDOTandSSH.

    4.2 ATL12: Finding the surface-reflected photon heights in the photon cloud

    SurfacefindingovertheopenoceanrestsonourlimitedexperiencewithMABELdataoveropenwater.Withfewsurfacereturnsperpulseandsignificantwaveheightsmuchlessthantherangeofsamples,themajorityoftheofthebinswillcontainonlynoisephotonssothatthemedianwillequalthenumberofnoisephotonsperbin.Thusthefundamentalideaforsurfacefindingistoidentifyassurfaceheightbins,thosebinswithcountsexceedingthemediannumberofcounts.InextremecaseswhereICESat-2encounterssignificantwaveheightsapproachingthe30-mdownlinkrangeofbins,wemayhavetoadoptaslightlydifferentthresholdsuchasthecountvalueequaltoorexceeding20%ofthebinpopulation.

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    54Release Date 01 April 2020

    Figure11.ATL12processingblockdiagramasdiscussedinSection3and4.µ,s,S,andKdenotemean,standarddeviation,skewness,andkurtosisrespectively.

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    55Release Date 01 April 2020

    Weanticipatealargenumberofsurfacereflectedphotonsmaybeneededtoadequatelyresolvethehighermomentsoftheseasurfaceheightdistribution.Also,finespatialresolutionisprobablynotrequiredinmostopenoceansettings.Therefore,wewilluseasemi-adaptiveschemetoaccumulatesegmentslongenoughtocaptureupto10,000candidatesurfacephotons.Thiswillinvolveacoarsemedian-basedselectionandsegment-lengthsettingprocess(4.2.1.2).Thiswillbefollowedbyafinerscalehistogramconstructionthatincludesmedian-basedselectionofsurfacephotons,adetrendingprocess,andrepeatselection(4.2.1.3)

    4.2.1 Selection of Signal Photon Heights

    4.2.1.1 Input to Selection of Photons: ATL12willrequireATL03photonheightsforeachpulseintheocean±15-mdownlinkbandandassociatedtimegeolocation,geophysicalcorrections(geoid,tides,dynamicatmosphericcorrection),andconfidencelevelinformation,plusthecloudflag,layer_flag,every400pulsesfromATL09.Basedonearlydiscussions,thisATBDandthedevelopmentalsoftwaredevelopedfromitassumedthatICESat-2overtheoceanwoulddownlinkphotonheightswithin±15moftheEGM2008geoid.Alsoasidefromthe±15-mbandaboutthegeoid,noclassificationastosurface/non-surfacephotonsismadefortheATL03oceanresults.AsconfiguredinDecember2018,theFlightScienceReceiverAlgorithms(FSRA)downlinksphotonheightsin±15-mbandaboutheightschosenbysignalfindingproceduredescribedintextin“ATLASFlightScienceReceiverAlgorithmsVersion3.7c”.Thisidentifiescenterheightsover200-shotmajorframesasthosewherethemostphotonheightsrelativetonoisearefoundinadjacentbinsofacoarsealtimetryband.Whenoperatinginlocaldaylightandinthepresenceofeventhinclouds,andperhapsoverpartsoftheoceanwithreducedreflectance,forexamplewaveslopes,themostpopularheightbincanshifttochanceconcentrationsofnoisephotonsupto200to300maboveorbelowthegeoid.

    Theresulting30-merroneousdownlinkbandsofphotonheightsappearin200-pulsemajorframesandoneortwoheightbandssupposedlybracketedbyheightstoppingat(usingtheexampleofgroundtrack2right)gt2r/bckgrd_atlas/tlm_top_band1andgt2r/bckgrd_atlas/tlm_top_band2,withheightsgivenasgt2r/bckgrd_atlas/tlm_height_band1andgt2r/bckgrd_atlas/tlm_height_band2.

    Themostconcerningproblemisthatwhenthedownlinkbandispulledawayfromthetruesurfacewecanarguablylosetruesurfacereflectedphotons,biasingseasurfaceheightsinsomeunknowndirectionandviolatingtheassumptionsoftheATL12seastatebiasdetermination.UnlesstheFSRAischangedtosimplydownlinkallphotonheightswithin±15mofthegeoidwhenovertheocean,thephotonsfrommajorframesforwhich

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    56Release Date 01 April 2020

    thecenterofthedownlinkbandismorethan2or3-mfromthetrueseasurfaceshouldbeeliminatedfromATL03.

    WewilluseheightsreferencedtotheEGM2008geoidandcorrectedforoceantides,anddynamicatmosphericcorrectionprovidedinATL03.

    WewillusethesignalconfidenceproductinATL03toeditouttheerroneousdownlinkbands.Thisgradeseachphotonheightreturnastolikelihoodthatitisasurfacereturnbyexaminingheightbinsat50-pulserateforsignaltonoiseratiointhecontextofnoiselevel.EarlyICESat-2oceandatasuggeststhatphotonheightswithhigh,medium,andlow(4,3,2)confidencelevelsveryseldomappearintheerroneousdownlinkbands.Further,theconfidencelevelsoftwareassignsafill-inconfidencelevelof1towhatwouldbezeroconfidenceheightsinordertofilla±10-m(tobechangedto±15-m)binaboutthehighconfidenceheights.Therefore,inpracticeconfidencelevel1oressentiallycoversthegeoid±15-mbandandcanbeusedtoeditouttheerroneousdownlinkbands.

    Becauseweareusingthisground-basedediting,inthefuturewewillhavetoinvestigatetheeffectontheseasurfaceheightandSSBcalculationofmissingtruesurfacephotonsnotdownlinkedinthepresenceoferroneousdownlinkbands,probablybycomparingdaytimeandnighttimedataoverthesameregion.

    4.2.1.2 Coarse Selection and Setting of Segment Length

    Theprocessisbasicallytofirstestablishavariablelength(e.g.,upto7km)oceansegmentwithenough(e.g.)photonheightstoyieldahistogramwithreasonablemomentsupto4thorder.

    1. Examineoceandepthandcloudparametersagainstcontrolparameterstotestforsuitabilityforoceanprocessing.-Ignore data collected over land or too close to land. If ocean depth, depth_ocn, is less than a depth, depth_shore, specifying the effective shoreline of water for which ocean processing is appropriate,thenproceedtonext14geo-bin(400-pulse)segment. The default value for control parameter depth_shore will be 10 m.-Similarly,ifcontrolparameterlayer_swtchisequalto1andlayer_flagis equal to 1,thenproceedtonext14geo-bin(400-pulse)segment. When layer_swtch equals the default value, 0, the software will ignore the cloud cover in accepting data during coarse surface finding.

    2. Correctforphotonheightsforshortperiodandlongperiodoceantides(gtxx/geophys_corr/tide_oceanandtide_equilibrium),theinversebarometereffectandthemodeleddynamicresponsetotheatmosphere(dynamicatmosphericcorrection,gtxx/geophys_corr/dac),

    3. Selectonlyphotonheightsforwhichthesignalconfidence(gtxx/signal_conf_ph)isgreaterthanorequalto1.Thiswillselectphotonsinthelikelysurface±15-mbufferwindow.Alsodeleteanyphotonheightsoutsidethebanddefinedbygeoidplusorminushalftheheightoftheoceandownlinkwindow(presentlygeoid±15-m,to

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    57Release Date 01 April 2020

    becomegeoid±20-m).(IstheheightofthedownlinkbandreportedinATL03perhapsatthegeosegrateandifso,whatisthevariablename?Theheightislistedatthemajorframerate.Butitwouldbehandierifitwasatthegeosegrate)

    4. SubtracttheEGM2008geoidfromphotonheightstoreferenceallheightstothegeoid.NotethatEGM2008includesacorrectionforthepermanentormeantide.

    5. Establishaninitialcoarsehistogramarray,Hc,spanning±15mwithbinsizeB1(TBD,e.g.,0.01m)andadataarray,Acoarse,forupto10,000photonheightsandassociatedinformation(index,geolocation,time)plusnoisephotoncounts.Thiswillbepopulatedwithdataforthecoarseselectionofsignalphotons.

    6. Aggregate photon heights over 14 geo-bins (400-pulses) and construct a temporary 14 geo-bin (400-pulse) height histogram spanning ± 15 m with bin size B1 (e.g., 0.01 m). This is used to estimate a running total number of signal and noise photons. We suggest a bin size of 0.01 for consistency with later steps in the processing. The 14 geo-bin (400-pulse) segment should be aligned so that the once per 14 geo-bin (400-pulse, approximately 280 m along track distance) cloudiness flag, layer_flag in ATL09, represents the aggregate effect of cloudiness and background radiation derived from solar zenith, cloud_flag_ASR ,cloud_flag_atm, and bsnow_con, during the 280-m segment.

    7. Photonsinthe14geo-bin(400-pulse)histogrambinswithgreaterthantheTh_Nc_ctimesthemediannumberofphotons,Nmedian,arecandidatesignalphotonsandphotonsinthebinswiththemediannumberofsamplesorlessareconsiderednoisephotons.WehavebeenusingTh_Nc_c=1inourtestswithearlyICESat-2data.Notethatwithfewsurfacereturnsperpulseandsignificantwaveheightsmuchlessthan30m,themajorityoftheofthebinswillcontainonlynoisephotonssothatthemedianwillequalthenumberofnoisephotonsperbin.InextremecaseswhereICESat-2encounterssignificantwaveheightsapproaching30m,wemayhavetoadoptaslightlydifferentthresholdsuchasthecountvalueequaltoorexceeding20%ofthebinpopulation.

    8. Addthesignalandnoisephotonsfromthis14geo-bin(400-pulse)segmenttotherunningtotalofcandidatesignalphotonsandnoisephotons,andaddallthephotonstothecoarsehistogram,Hc.

    9. Ifthetotalnumberofcandidatesignalphotonsisgreaterthanorequaltoaminimumnumber,Th_Ps(e.g.,8,000),ofphotonsorSegmax(e.g.,25)14geo-bin(400-pulse)segmentshavebeencollectedthisdefinesanoceansegment,andwegoontoFineSelection(Sec4.2.1.3)withthepopulatedcoarsehistogram,Hc,±15mwithbinsizeB1(TBD,e.g.,0.01m),andthedataarray,Acoarse.IfthetotalnumberofsignalphotonsislessthanTh_Ps,repeatsteps4.2.1.2-2to4.2.1.2-5aboveandintakeanother14geo-bin(400-pulse)segmentuntiltheoceansegmentreachesalengthof7kmmaximum.Ifthe7-kmlengthisreachedandtherearelessthanathresholdnumberofphotons(e.g.photon_min=4000),ignorethatoceansegmentandrepeat4.2.1.2-2to4.2.1.2-6.Forphotoncountsabovethisinthe7-kmsegment,proceedto4.2.1.3andfinehistogrambasedsignalfinding.

  • ICESat-2 Algorithm Theoretical Basis Document for Ocean Surface Height (ATL12)

    Release003

    58Release Date 01 April 2020

    4.2.1.3 Fine Histogram Selection

    1. Consideringthecoarsehistogramarray,Hc,performaNbmv=20-cm/B1bin(e.g.,21binsover20-cm)movingbinarithmeticaverageincrementedby1bin.PadtheendsofthesmoothedhistogramwithNbmv/2bins(equalthesmoothedfirstandlastvalues)tomatchthelengthoftheoriginalhistogram.

    2. The ASAS 5.1 finds the bin limits of the fine histogram as all the coarse histogram bins on either side of the maximum in the 20-cm smoothed histogram, from the Jlow bin position to the Jhigh bin, where the smoothed histogram bin photon count is greater than the median of the smoothed histogram photon count. In practice with preliminary ATLAS data the median has usually been zero. Essentially, we have moved out from the middle of the histogram until the histogram levels fall to zero.

    As of 6/4/2019, the developmental code finds preliminary the bin limits of the fine histogram as all the coarse histogram bins on either side of the maximum in the 20-cm smoothed histogram, from the preliminary Jlow bin position to the preliminary Jhigh bin, where the coarse bin photon count is greater than the coarse histogram median. Then the average counts in the bins above the preliminary Jhigh are calculated and set equal to tailnoisehigh and the average counts in the bins below the preliminary Jlow are calculated and set equal to tailnoiselow. Then we find the bin limits of the fine histogram as all the coarse histogram bins on either side of the maximum in the 20-cm smoothed histogram, from the final Jlow bin position to the final Jhigh bin, where the final Jlow bin position is that below which the smoothed histogram bin photon count is less than Th_Nc_f times tailnoiselow, and the final Jhigh bin position is that above which the smoothed histogram bin photon count is less than Th_Nc_f times tailnoisehigh. This procedure is better able to differentially remove subsurface noise returns and above surface returns. Th_Nc_f is TBD, but we have used Th_Nc_f = 1.5 in practice with Release 001 ATLAS data and this has resulted in greatly improved rejection of subsurface returns.

    3. ConsiderthetimeseriesofalltheheightsstoredinAcoarsethat