Algal Evolution Johanna Weston Keeling, 2004. 3.5 billion cyanobacteria 2.2 to 1.5 billion...

10
Algal Evolution Johanna Weston Keeling, 2004

Transcript of Algal Evolution Johanna Weston Keeling, 2004. 3.5 billion cyanobacteria 2.2 to 1.5 billion...

Page 1: Algal Evolution Johanna Weston Keeling, 2004. 3.5 billion cyanobacteria 2.2 to 1.5 billion mitochondial origin 1.5 – 1.2 Plastid “Little Green Slaves”

Algal EvolutionJohanna Weston

Keeling, 2004

Page 2: Algal Evolution Johanna Weston Keeling, 2004. 3.5 billion cyanobacteria 2.2 to 1.5 billion mitochondial origin 1.5 – 1.2 Plastid “Little Green Slaves”

• 3.5 billion cyanobacteria

• 2.2 to 1.5 billion mitochondial origin

• 1.5 – 1.2 Plastid• “Little Green

Slaves”

(Dyall et al., 2004)

Page 3: Algal Evolution Johanna Weston Keeling, 2004. 3.5 billion cyanobacteria 2.2 to 1.5 billion mitochondial origin 1.5 – 1.2 Plastid “Little Green Slaves”

ENDOSYMBIOSIS– Primary– Secondary– Tertiary– Serial Secondary

(Keeling, 2004)

Page 4: Algal Evolution Johanna Weston Keeling, 2004. 3.5 billion cyanobacteria 2.2 to 1.5 billion mitochondial origin 1.5 – 1.2 Plastid “Little Green Slaves”

How do endosymbionts become organelles?

• Organelle – discrete subcellular structure of specialized function usually bound by two or more membranes

• Metabolite antiporters and Biochemical pathways

• Genetic integration and reduction• Protein import apparatus

Page 5: Algal Evolution Johanna Weston Keeling, 2004. 3.5 billion cyanobacteria 2.2 to 1.5 billion mitochondial origin 1.5 – 1.2 Plastid “Little Green Slaves”

Phosphate Translocator Family

• Antiport dependent on counter-exchange

• Algae profit from cyanobacteria carbon fixation

• ER/Golgi metabolite translocator protein in host recruited to the plastid envelope

(Bhattacharya et al., 2007)

Page 6: Algal Evolution Johanna Weston Keeling, 2004. 3.5 billion cyanobacteria 2.2 to 1.5 billion mitochondial origin 1.5 – 1.2 Plastid “Little Green Slaves”

Transfer and Reduction

• Cyanobacteria – 2000 to 4000 kb

• Plastids– < 200 kb– < 200 genes

• “Muller’s ratchet”• Oxygen free radials

(Bhattacharya et al., 2007)

Page 7: Algal Evolution Johanna Weston Keeling, 2004. 3.5 billion cyanobacteria 2.2 to 1.5 billion mitochondial origin 1.5 – 1.2 Plastid “Little Green Slaves”

TIC - TOC

• Defining feature of organelle genesis

• Sophisticated outcome of the requirement for regulated protein import

• Evolutionary diverse origins– Cyanobacteria– Co-option of host genes– HGT from bacteria

Transit peptideNC

(Gould et al., 2008)

Page 8: Algal Evolution Johanna Weston Keeling, 2004. 3.5 billion cyanobacteria 2.2 to 1.5 billion mitochondial origin 1.5 – 1.2 Plastid “Little Green Slaves”

TIC-TOC Independent

• Existing endomembrane system of host cell

• Paulinella chromatophora

• α – carbonic anhydrase• **2o Endosymbiosis

combination of both

(Gould et al., 2008)(Bhattacharya et al., 2007)

Page 9: Algal Evolution Johanna Weston Keeling, 2004. 3.5 billion cyanobacteria 2.2 to 1.5 billion mitochondial origin 1.5 – 1.2 Plastid “Little Green Slaves”

Animal-Algal Endosymbiosis

• Elysia chlorotica and chloroplasts of Vaucheria litorea

• 9 months with only light and CO2

• Not inherited

(Mujer et al., 1996) (Green et al., 2000)

Page 10: Algal Evolution Johanna Weston Keeling, 2004. 3.5 billion cyanobacteria 2.2 to 1.5 billion mitochondial origin 1.5 – 1.2 Plastid “Little Green Slaves”

References• Bhattacharya, Debashish, et al. "How do endosymbionts become organelles? Understanding

early events in plastid evolution." BioEssay (2007): 1239-1246.• Gould, Sven, Ross Waller and Geoffrey Macfadden. "Plastid evolution." Annual Review of

Plant Biology (2008): 491-517.• Graham, Linda E., James M. Graham and Lee W. Wilcox. Algae. 2. San Francisco: Benjamin

Cummings, 2009.• Green, Brian, et al. "Mullusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein

maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus." Plant Physiology (2000): 331-342.

• Keeling, Patrick. "Diversity and evolutionary history of plastids and their hosts." Americal Journal of Botany (2004): 1418-1493.

• Mujer, Cesar, et al. "Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica." Cell Biology (1996): 12333-12338.

• Weber, Andreas, Marc Linka and Debashish Bhattacharya. "Single, ancient orgin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor." Eukaryotic Cell (2006): 609-612.

•