AIS-G7-Science Lab Manual

74
MIDDLE SCHOOL SCIENCE Lab Manual Grade 7 Mr. Bretl 2013 2014

Transcript of AIS-G7-Science Lab Manual

Page 1: AIS-G7-Science Lab Manual

       

MIDDLE SCHOOL SCIENCE

Lab Manual Grade 7

Mr. Bretl

   

2013  -­‐  2014    

                         

Page 2: AIS-G7-Science Lab Manual

Middle School Science Lab Safety Rules and Procedures Rules and Procedures:

• Read the entire lab before you begin and follow all lab instructions exactly as explained by your teacher. • There is a zero tolerance policy for any form of horseplay during a lab. If you are unclear about a

certain portion of the lab, ask your teacher. • Any accident, regardless of the severity, must be reported to the teacher immediately. Always transport

scissors or other sharp objects with the sharp end down; always cut away from yourself during dissection or other lab procedures.

• Eating and drinking is strictly forbidden during labs; only eat, smell, or taste an item if told to do so by your teacher.

• Know the location and use of all safety equipment in the lab, which includes: goggles, aprons, eye wash, fire blanket, fire extinguisher, lab shower, safety charts, MSDS binder and sharps/broken glass container.

• Report any damaged or broken equipment to your instructor immediately. • Check cords and plugs for damage and keep the area dry when working with electrical equipment.

Clothing and Safety Equipment: • Baggy clothes and long hair must be neatly secured while performing any experiment. • Safety Goggles must be worn when:

o Working with any form of heat o Working with chemicals o Working with sharp objects o Determined by the teacher

Chemicals: • Only mix chemicals in the order described within the lab. Always add acid last. • When smelling any chemical or substance, do so by wafting. • All chemicals and/or any lab supplies must be accounted for at the completion of the lab. No chemical,

item, or specimen should ever leave the lab room. • Chemicals splashed on the skin or eyes should be flushed with water for a minimum of 20 minutes.

Lab Cleanliness: • Keep your lab area neat and clean. Always dispose of chemicals properly and never return unused

portions to the original container. • Solid trash should be placed in the trashcan; liquid wastes should be placed in the sink with lots of water

or other designated disposal area as determined by your instructor. (Broken glass goes in the sharps container)

• All equipment must be thoroughly cleaned at the conclusion of the lab and returned to the assigned area. Wash your hands at the end of each lab!

     Parent  Signature_________________________________________________   Date_______________      Student  Signature_______________________________________________     Date_______________

Page 3: AIS-G7-Science Lab Manual

LAB 1 – The Scientific Method and Metric System      

Part 1: The Scientific Method    The field of science is based on observation and measurement. If a scientist cannot observe and measure something that can be described and repeated by others, then it is not considered to be objective and scientific.  In general, the scientific method is a process composed of several steps:  

1. observation – a certain pattern or phenomenon of interest is observed which leads to a question such as “What could explain this observation?”

 

2. hypothesis – an educated guess is formulated to explain what might be happening  

3. experiment – an experiment or study is carefully designed to test the hypothesis, and the resulting data are presented in an appropriate form

 

4. conclusion – the data is concluded to “support” or “not support” the hypothesis      To illustrate the scientific method, let’s consider the following observation:  

A scientist observes that Compound X appears to increase plant growth, which leads to the question: “Does Compound X really increase plant growth?”

     

Hypotheses  The next step in applying the scientific method to a question such as the one above would be to formulate a hypothesis. For a hypothesis to be a good hypothesis it should be a statement of prediction that:  

a) uses objective, clearly defined terms

b) can be tested experimentally

Page 4: AIS-G7-Science Lab Manual

2  

A reasonable hypothesis regarding the observation on the previous page would be:  

Increasing amounts of compound X correlate with increased plant height.      In this case there is nothing vague or subjective in the terminology of the hypothesis, and it can easily be tested experimentally, so it’s a good hypothesis. Keep in mind that a good hypothesis is not necessarily correct. If a hypothesis is clear and testable and experimentation disproves it, valuable information has been gained nonetheless. For example, if testing the hypothesis “supplement Y is safe for human consumption”, it would be very valuable to know if experimental data does not support this hypothesis.

     Exercise 1A – Good vs bad hypotheses  Indicate whether or not you think each hypothesis listed on your worksheet is “good” or “bad”.        

Experimentation  Experiments are designed to test hypotheses. A simple test of the hypothesis on the previous page would be to plant the seeds of identical pea plants in pots containing the same type of soil, being sure that each pot is exposed to the same temperature, pH, amount of sunlight, water, etc, and measure their height after a 5 week period. The only difference between these plants will be amounts of Compound X given to the plants each day, which are as follows:

     

Pea Plant Compound X per Day (grams) 1 0 2 1 3 3 4 5 5 7 6 9

     In testing the effects of Compound X on pea plant growth, it is common sense that you should devise an experiment in which multiple pea plants are grown under identical conditions except for 1 difference or variable, the amount of Compound X given to each plant. In this way any differences in plant height should be due to the only condition that varies among the plants, the amount of Compound X.  When you design an experiment or a study such as this, it is important to consider all of its components. Even though we design the experiment to contain only 1 variable component, we need to consider all other components including the outcome of the experiment and any

Page 5: AIS-G7-Science Lab Manual

3  

control experiments that are done. Thus, when designing an experiment you need to account for the following:  

independent variable the treatment or condition that VARIES among the groups

 dependent variable

the MEASUREMENTS or outcomes recorded at the end of the experiment  

standardized variables all other factors or conditions in the experiment that must be kept the same (e.g., type of soil, amount of water, amount of sunlight) so their influence on the dependent variable remains constant (i.e., we want to measure the effect of the independent variable only)

 experimental groups/treatments

the subjects (e.g., plants) that receive the different treatments  

control group/treatment the subjects that receive NO treatment, i.e., the independent variable is eliminated (set to “zero”) or set to a background or default level

 (NOTE: control treatments for independent variables such as temperature and pH that cannot be eliminated are generally at a “background” level such as room temperature or pH = 7)

   Repetition is also important for an experimental result to be convincing. There needs to be a sufficient number of subjects and repetitions of the experiment. For example, to make this experiment more convincing multiple plants would be tested at each level of the independent variable and it would be repeated multiple times.    

Data Collection & Presentation  Upon completion of an experiment, the results need to be collected or measured, and presented in an appropriate format. For our sample experiment, after 5 weeks the height of the pea plants is measured and the following data are collected:  

Pea Plant Compound X per Day (grams) Height of Plant (centimeters) 1 0 4.0 2 1 9.9 3 3 13.2 4 5 15.1 5 7 16.8 6 9 17.0

Page 6: AIS-G7-Science Lab Manual

4  

plan

t hei

ght

plan

t hei

ght

Now that you have the raw data for the experiment, it is important to present it in a form that is easy to interpret. Frequently this will be in the form of a table, chart or graph. The data above are presented in a table, however the overall results will be easier to interpret if presented in a graph.  There are many ways to present data graphically, but the two most common types of graphs are line graphs and bar graphs. When graphing data in this way, it is customary to place the independent variable on the X-axis (horizontal) and the dependent variable on the Y-axis (vertical). The independent variable in this experiment is the “amount of Compound X added” and the dependent variable is the height of pea plants after 5 weeks. Below are the Compound X data presented in a line graph on the left and a bar graph on the right:        

18 18

 16 16

 14 14

 12 12

 10 10

 8 8

 6 6

 4 4

 2 2

 0

0 1 2 3 4

0

5 6 7 8 9 10 1 3  5 7 9

grams of Compound X added

grams of Compound X added

       Which type of graph is best for this data? It depends on the nature of the independent variable on the X-axis. If the independent variable is continuous (i.e., there are values for the independent variable that fall between those actually tested), then a line graph would be appropriate. This would be the case if the independent variable covered a range of values for time, temperature, distance, weight, or volume for example. In our example, the “grams of Compound X” is clearly a continuous variable for which there are values in between those tested, therefore a line graph is appropriate. By drawing a line or curve through the points, you can clearly estimate what the “in between” values are likely to be, something you cannot do as easily with a bar graph.  If the independent variable is discontinuous (i.e., there are no values between those tested), then a bar graph would be appropriate. If you wanted to graph the average height of students at each table in the lab (tables 1 through 6), the independent variable is the “specific table”. Even though we label each table with a number, there are no “in between” values, there are only tables 1, 2, 3, 4, 5 and 6, that’s it! So in this case a bar graph would be appropriate.

Page 7: AIS-G7-Science Lab Manual

5  

When you’re ready to create a graph, you need to determine the range of values for each axis and to scale and label each axis properly. Notice that the range of values on the axes of these graphs are just a little bit larger than the range of values for each variable. As a result there is little wasted space and the graph is well spread out and easy to interpret. It is also essential that the units (e.g., grams or centimeters) for each axis be clearly indicated, and that each interval on the scale represents the same quantity. By scaling each axis regularly and evenly, each value plotted on the graph will be accurately represented in relation to the other values.        

Conclusions  Once the data from an experiment are collected and presented, a conclusion is made with regard to the original hypothesis. Based on the graph on the previous page it is clear that all of the plants that received Compound X grew taller than the control plant which received no Compound X. In fact, there is a general trend that increasing amounts of Compound X cause the pea plant to grow taller (except for plants 5 and 6 which are very close).  These data clearly support the hypothesis, but they by no means prove it. In reality, you can never prove a hypothesis with absolute certainty, you can only accumulate experimental data that support it. However if you consistently produce experimental data that do not support a hypothesis, you should discard it and come up with a new hypothesis to test.          Exercise 1B – Effect of distance on making baskets  In this exercise, you will design an experiment to determine the effect of distance on the accuracy of shooting paper balls into a beaker (and also determine which person in your group is the best shot!). Each student will attempt to throw small paper balls into a large beaker at 3 different distances in addition to the control (which should be 0 cm, i.e., a slam dunk!). You will measure each distance using the metric system and determine how many attempts are made out of 10 total attempts at each distance.  

1. State your hypothesis and identify your independent and dependent variables.  

2. Place the large beaker on your lab table at each test distance and record how many attempts out of 10 you make.

 3. Graph the data for each member of your group on a single graph (use different curves

for each person) and answer the corresponding questions on your worksheet.  

4. Conclude whether or not the data support your hypothesis and answer any other associated questions on your worksheet.

Page 8: AIS-G7-Science Lab Manual

6  

Part 2: The Metric System of Measurement      The English system of measurement is what we are all most familiar with (e.g., pounds, inches, gallons), very few countries still use it to any significant degree (United States, Myanmar and Liberia). Not even England still uses it! The problem is converting units within the English system, which is rather awkward since there is no consistent pattern in the relationship of one unit to another (12 inches per foot, 16 ounces per pound, four quarts per gallon, etc…). Most countries in the world, including the entire scientific community, have adopted a much easier system to work with called the Metric System of Measurement.  The advantage of the metric system of measurement is twofold: 1) there is a single, basic unit for each type of measurement (meter, liter, gram, ºC) and 2) each basic unit can use prefixes that are based on powers of 10 making conversions much easier. Once you learn the basic units and the multiples of 10 associated with each prefix, you will have the entire system mastered.  Basic Units of the Metric System  

LENGTH - The basic unit of length in the metric system is the meter, abbreviated by the single letter m. A meter was originally calculated to be one ten-millionth of the distance from the north pole to the equator, and is ~3 inches longer than a yard.

 VOLUME – The basic unit of volume in the metric system is the liter, abbreviated by the single letter l or L. A liter is defined as the volume of a box that is 1/10 of a meter on each side. A liter is just a little bit larger than a quart (1 liter = 1.057 quarts)

 MASS – The basic unit of mass in the metric system is the gram, abbreviated by the single letter g. A gram is defined as the mass of a volume of water that is 1/1000th of a liter. [Note: 1/1000th of a liter = 1 milliliter = 1 cubic centimeter = 1 cm3 = 1 cc).

 TEMPERATURE – The basic unit of temperature in the metric system is a degree Celsius (ºC). Water freezes at 0 ºC and boils at 100 ºC.

     Prefixes used in the Metric System  Unlike the English System, the metric system is based on the meter (m), liter (L or l) and gram (g), and several prefixes that denote various multiples of these units. Specifically, each basic unit can be modified with a prefix indicating a particular “multiple of 10” of that unit. Here are the more commonly used prefixes and what they mean:  

mega kilo BASIC deci centi milli micro nano (M) (k) UNIT (d) (c) (m) (µ) (n)    

106 105 104 103 102 101 100 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9

Page 9: AIS-G7-Science Lab Manual

7  

 

Mega (M) = 106 = 1,000,000 kilo (k) = 103 = 1,000 no prefix = 100 = 1 deci (d) = 10-1 = 1/10 (or 0.1) centi (c) = 10-2 = 1/100 (or 0.01) milli (m) = 10-3 = 1/1,000 (or 0.001) micro (µ) = 10-6 = 1/1,000,000 (or 0.000001) nano (n) = 10-9 = 1/1,000,000,000 (or 0.000000001)

 

Here is how simple the metric system is using the basic units and the prefixes:

What is one thousandth of a meter? a millimeter (mm) What is one one-millionth of a liter? a microliter (l) What is 1,000 grams? a kilogram (kg)

 Let us now examine these units more closely by using them to make actual measurements and converting from one metric unit to another.      Exercise 2A – Measuring distance  1. Obtain a wooden meter stick. If you look on the back of the meter stick, one meter is approximately 39 inches or about 3 inches longer than one yard (36 inches). Using the meter stick, estimate the size of the laboratory by measuring its width and length to the nearest meter.  2. Observe that the meter is divided into 100 equal units called centimeters. A centimeter is about the width of a small finger. Using the meter stick, estimate the dimensions of a regular piece of notebook paper to the nearest centimeter.  3. How tall are you? Go over to the medical weight and height scale to measure how tall you are to the nearest centimeter.  4. Next, obtain a small plastic metric rule. Observe that each centimeter is divided into 10 small units called millimeters. A millimeter is about the thickness of a fingernail. Using the small plastic ruler, estimate the diameter of a hole on a regular piece of notebook paper to the nearest millimeter.

     What are some other real-world examples of metric units of length?  One micrometer (µm) is 1/1,000th the size of a millimeter or 1/1,000,000th of a meter. When you observe a cheek cell under the microscope in a future lab, it is about 40 µm in diameter. Typical bacteria are about 5-10 µm in diameter.  One nanometer (nm) is 1/1,000th the size of a micrometer or 1/1,000,000,000th of a meter. Objects this small are far too tiny to observe even in a light microscope. If you line up five water molecules side-by-side, the length would be about 1 nanometer.

Page 10: AIS-G7-Science Lab Manual

8  

Exercise 2B – Measuring volume  1. Obtain a one liter (L or l) beaker. One liter is equal to 1,000 cubic centimeters (cc = cm3 = milliliter = ml). Fill the beaker with one liter of water. To do this, add water until the meniscus (top level of the water) reaches the 1 liter marker on the beaker. Pour the water into a 2 liter soda bottle.  Once again, fill the beaker with one liter of water by adding water until the meniscus reaches the 1 liter mark. Pour the water into the 2 liter soda bottle.  Once again, fill the beaker with one liter of water by adding water until the meniscus reaches the 1 liter mark. Over the sink, add the 1 liter of water to the 1 quart container provided. Notice that 1 liter is just a little bit more than 1 quart. In fact, 1 liter = 1.057 quarts.    2. One way to measure the volume of a fluid in a laboratory is to use a graduated cylinder. Whereas beakers are generally used to hold fluids, graduated cylinders are used to accurately measure volumes.  Obtain a 50 milliliter (ml) graduated cylinder. Fill the graduated cylinder with water until the meniscus reaches the 50 ml mark. Add the water to a 1 liter (1,000 ml) beaker. Notice that 50 ml is equal to 1/20th of a liter. Next, measure the fluid in the flask labeled “A” to the nearest 0.1 ml.

 

                                             3. Pipettes are used to measure smaller liquid volumes whereas graduated cylinders are used to measure larger volumes. Obtain a 10 ml glass pipette and attach it snugly to a pipette pump.  Notice whether or not the pipette is a delivery or blowout pipette. Blowout pipettes are designed for measuring fluids all the way to the end of the pipette so that the liquid measured can be completely “blown out” of the pipette. Delivery pipettes have a gap at the end of the pipette and are designed to “deliver” the liquid down to the desired marking only. The remainder is discarded or returned to the original container. (NOTE: blowing out a delivery pipette will give a wrong volume)  Using the roller on the pipette pump, gradually suck up some water until the meniscus reaches the 0 ml mark. Measure 10 ml of the water into the sink by rolling the roller in the opposite direction. Next, measure the amount of fluid in the test tube labeled B to the nearest 0.1 ml using the 10 ml pipette.

Page 11: AIS-G7-Science Lab Manual

9  

Exercise 2C – Measuring mass  A balance scale is used to measure the mass of a sample in grams (g).

                                                     1. Place an empty 50 ml graduated cylinder on the balance and determine its mass in grams.  2. Next, fill the graduated cylinder with 50 ml of water and measure the mass of both the cylinder

and the water. From this value subtract the mass of the cylinder to get the mass of the water.  By definition, one gram is the mass of exactly 1.0 ml of water, thus 50 ml of water has a mass of 50.0 grams. How far off was your measured mass from the true mass of 50 ml of water?  3. Next, take a large paper clip and place it on the balance and determine its mass in grams.        Exercise 2D – Measuring temperature  The metric unit for temperature is ºCelsius (ºC). Water freezes at 0 ºC and boils at 100 ºC. Note that this is much easier to remember than the corresponding values of 32 ºF and 212 ºF.  1. Use a thermometer to measure the following in degrees Celsius:

 

A) the ambient temperature of the lab B) a bucket of ice water C) a beaker of boiling water  2. Convert the temperatures on your worksheet from ºC to ºF or ºF to ºC with the following formulas:  

ºC = 5/9 x (ºF - 32)  

ºF = (9/5 x ºC) + 32

Page 12: AIS-G7-Science Lab Manual

10  

Converting Units within the Metric System    Once you are familiar with the units and prefixes in the metric system, converting from one unit to another requires two simple steps:  

1) divide the value associated with the prefix of the original unit by the prefix of the unit you are converting to

 

2) multiply this value by the number in front of the original unit    To illustrate this let’s look at an example:  

2.4 kg = mg    In this case you’re converting from kilograms to milligrams. Since the prefix kilo- refers to 1000 and the prefix milli- refers to 1/1000 or 0.001 (see page 7), divide 1000 by 0.001. This gives a value of 1,000,000 which is multiplied by 2.4 to get the mass in milligrams:  

2.4 kg = 2.4 x 1,000,000 mg = 2,400,000 mg    You may find it simpler to associate each metric prefix with an exponential number. With this approach kilo- refers to 103 and milli- refers to 10-3, so 103/10-3 equals 106 (when dividing exponential numbers simply subtract the first exponent minus the second), and thus:  

2.4 kg = 2.4 x 106 mg = 2,400,000 mg    Whether or not you represent your answer as an exponential number is up to you, either way the values are the same. To ensure that you’ve done the problem correctly, remember that any given distance, mass or volume should contain more of a smaller unit and less of a larger unit. This is simply common sense if you think about it. As you can see in the example above, there are a lot more of the smaller milligrams than there are the larger kilograms, even though both represent the exact same mass. So each time you do a metric conversion look at your answer to be sure that you have more of the smaller unit and less of the larger unit.  One more thing to remember is that a basic unit without a prefix (m, g or l) is one or 100 of that unit. Here are a couple more examples just to be sure everything is clear:  

643 m = km 1 divided by 1000 (kilo-) = 0.001 x 643 =  

50 ml = l 10-3 (milli-) divided by 100 = 10-3 x 50 =

0.643 km  5.0 x 10-2 l

 Exercise 2E – Metric Conversions

 Complete the metric conversions on your worksheet.

Page 13: AIS-G7-Science Lab Manual

 

LABORATORY 1 WORKSHEET Name    

 Exercise 1A – Good vs bad hypotheses

Section

 Circle good or bad for each hypothesis, and underline any terms that make a hypothesis bad:  

1. Students who own laptops have higher GPAs. Good or Bad  

2. Murders occur more often during a full moon. Good or Bad  

3. Cats are happier when you pet them. Good or Bad  

4. Orangutans are smarter than gorillas. Good or Bad  

5. Sea level will be higher in 100 years than it is today. Good or Bad      Exercise 1B – Paper basketball experiment  State your hypothesis:    In the table below, record the number of shots made at each distance (out of 10) for each person:

 

Name 0 cm cm cm cm  

         

         

         

           Graph the data for each member of your group below (use a different curve for each person):  

Page 14: AIS-G7-Science Lab Manual

 

What is your control in this experiment?

What is the independent variable?

What is the dependent variable?      State your conclusion addressing whether or not the data support your original hypothesis:              Exercise 2A – Measurement of distance  Laboratory width: m Laboratory length: m  Calculate approximate area: width m x length m = m2

   Paper width: cm Paper length: cm  Calculate approximate area: width cm x length cm = cm2

 Paper hole diameter: mm    Your height: cm, which is equal to m      Indicate which metric unit of length you would use to measure the following:

 

length of a fork  

width of a plant cell  size of a small pea length of your car  height of a refrigerator distance to the beach  diameter of an apple size of a dust particle

     Exercise 2B – Measurement of volume  Volume of fluid in Beaker A = ml  Volume of fluid in Test Tube B = ml

Page 15: AIS-G7-Science Lab Manual

 

Exercise 2C – Measurement of mass      

Mass of Graduated Cylinder = g  

Mass of Graduated Cylinder with 50 ml of water = g  

Mass of 50 ml of water: g  

Difference between calculated and actual mass of 50 ml of water:  

Mass of 1 ml of water based on your measurements: g/50 ml = g/ml  

Mass of Large Paper Clip = g  

         

Exercise 2D – Measurement of temperature      

Ambient temperature in lab ºC ice water ºC boiling water _ ºC    

Convert the following temperatures using the formulas on page 10 of the lab exercises:  

Mild temperature: 72 ºF = ºC Body temperature 98.6 ºF = ºC  

Cold day  

10 ºC = ºF  

Very hot day  

34 ºC = ºF          Exercise 2E – Metric conversions  

Convert the following measurements to the indicated unit:  

335.9 g = kg  

0.00939 µl = ml  

456.82 ng = µg  

20 megabytes = kilobytes

m = 0.0886 km  

kg = 89 mg  

dl = 900.5 cl  

µm = 0.37 mm  

8 megabase pairs (mbp) = kbp mm = 11.5 nm 95 ºC = ºF

ºC = 100 ºF  

Page 16: AIS-G7-Science Lab Manual

 

 Speed Challenge

 Materials: stopwatch

meter stick tape or masking tape marker

 Procedures:    Step  1:  Gather  your  materials    Step  2:  Find  a  spot  in  the  hallway  and  measure  off  a  10  meter  race  track.  Use  3  pieces  of  tape  to  mark  the  beginning,  middle  and  end  of  your  track.    Step  3:  Have  each  person  from  your  team  take  turns  WALKING  the  race  track  (from  0m  to  10m)  while  the  other  team  members  use  the  stopwatch  to  accurately  time  the  trip.    Step  4:  Record  the  data  for  your  own  walk  in  your  own  data  table.    Step  5.   Repeat  steps  3  and  4  with  HOPPING,  WALKING  BACKWARDS,  and  SPEED-­‐  WALKING*.   Record  all  data  for  your  own  walks  in  your  data  table.    Step  6:    Clean  up:  All  tape  must  be  cleared  off  the  floor  in  the  hall  way.  Your  teacher  will  ask  to  see  the  tape  is  taken  up.  Return  the  timer,  meter  stick  and  markers  to  your  teacher.        Safety:  Be  careful.  Your  shoes  should  be  appropriate  for  lab.  Clear  the  hallways  of  obstructions  or  objects  before  doing  the  lab.    Courtesy:  Other  students  are  in  class  learning.  We  do  not  want  to  interfere  with  their  learning.  Be  considerate  and  as  quiet  as  possible  while  taking  data  so  we  may  do  future  assignments  out  of  the  classroom.    *Definition  of  Speed  Walking:  SPEED  WALKING  IS  GOING  AS  FAST  AS  YOU  CAN  WITHOUT  JOGGING  OR  RUNNING.  THERE  SHOULD  NOT  BE  ANY  RUNNING  IN  THE  HALL  WAY.*  

Page 17: AIS-G7-Science Lab Manual

 

Data  Table    

Task   Distance  (y)   Time  (seconds)  (x)    

Walking    

10m    

 Hopping  

 10m  

 

 Walking  Backwards  

 10m  

 

 

Speed-­‐Walking    

10m    

   

Use  your  data  table  to  complete  the  following  line-­‐graph.  Remember  to  title  your  graph,  label  your  x  and  y  axes,  and  provide  an  accurate  scale.  Use  a  different  color  for  each  task  (your  graph  should  have  4  separate  lines)  and  provide  a  key.  

Page 18: AIS-G7-Science Lab Manual

 

Analysis:    Look  at  your  graph.   Which  task  produced  the  steepest  line?  

Which  task  produced  the  least  steep  line?  

What  conclusions,  if  any,  can  you  make  about  the  steepness  of  a  line  on  a  distance/time  graph?                  Calculations    Use  your  graph  to  calculate  the  speed  of  each  task.    (Hint:  the  speed  is  the  same  as  the  SLOPE  of  the  line)    Label  your  answers  with  m/s.    Walking:   Hopping:  

           Walking  Backwards:   Speed-­‐Walking:                  Questions:    Which  task  had  the  fastest  speed?  

How  do  you  know?  

   Which  task  had  the  slowest  speed?  

How  do  you  know?  

   Conclusion:  In  at  least  3  complete  sentences,  tell  how  your  speed  is  related  to  the  line  on  the  graph  you  drew.   Use  your  data  to  support  your  response  (there  should  be  numbers  in  your  response).

Page 19: AIS-G7-Science Lab Manual

 

Page 20: AIS-G7-Science Lab Manual

 

Calculating  Speed  from  a  Graph    Directions:  Use  the  story  to  draw  a  graph.   Then  use  the  graph  to  calculate  the  speed.   Don’t  forget  to  label  your  axes  and  correctly  scale  your  graphs.                  1)       A  car  is  traveling  down  the  road.    It  drove  

for  50  seconds  and  in  that  time  it  traveled  100  meters.   What  is  the  speed  of  the  car?  

                           2)       If  an  ant  crawls  1  meter  in  25  seconds,  

what  is  the  ant’s  speed?                        3)       a)  Three  elephants  are  standing  on  a  very  

very  strong  bridge.   The  bridge  happens  to  have  marks  at  every  meter  along  the  way  (almost  like  it  was  meant  for  setting  up  a  physics  problem).    Elephant  #1  is  standing  at  4m  and  starts  walking.   He  walks  for  30  seconds  and  after  30  seconds,  the  elephant  is  at  the  place  on  the  bridge  marked  64  meters.   What  is  Elephant  #1’s  speed?  

Page 21: AIS-G7-Science Lab Manual

 

               b)If  Elephant  #2  started  at  3m  and  it  took  him  90  seconds  to  walk  to  meter  mark  93m,  what  was  Elephant  #2’s  speed?  

                             c)  Elephant  #3  was  a  track  star  in  his  day,  so  he  has  been  standing  on  the  5m  mark.   He  starts  running,  and  10  seconds  later,  he  is  at  the  25m  mark.   What  was  Elephant  #3’s  speed?                              4)       A  beetle  has  been  walking  down  a  

sidewalk.   He  started  at  3:15  in  the  afternoon,  and  by  3:20  he  had  made  it  4  meters.   What  is  the  beetles  speed  in  m/s?  (Hint:  there  are  60  seconds  in  one  minute)  

Page 22: AIS-G7-Science Lab Manual

 

Distance  vs.  Time  Graphs    Directions:   Draw  the  graph  of  distance  over  time.    Be  careful,  do  not  confuse  the  distance/time  graph  with  a  graph  of  the  terrain.      

1   2  1)   I  was  walking  to  the  bus  stop  when  I  suddenly  saw  the  bus  

coming.   I  ran  as  fast  as  I  could  towards  the  stop,  but  the  bus  moved  off  before  I  got  there.   I  walked  slowly  the  rest  of  the  way   to  the  stop  and  sat,  waiting  for  the  next  bus.  

   

2)        Mr.  Rose  went  down  the  street  on  his  skateboard.   At  the  end  of  the  street  he  ran  into  the  curb  and  came  to  a  sudden  stop.  

   

3)        Mrs.  Brevetti  set  off  for  Cheyenne  one  morning.   When  she  was  half  way  there,  she  remembered  she  had  left  some  important  teacher  things  at  home,  so  she  went  back  to  get  them.   Then,  she  realized  she  was  going  to  be  late,  so  she  hurried  all  the  way  back  to  school.   3   4  

   

4)        Billy  went  swimming  after  school.   He  swam  slowly  up  and  down  the  pool  for  4  laps,  and  then  he  did  two  laps  at  top  speed  (one  pool  length=one  lap).  

   

5)        Mrs.  Antkowiak  is  learning  to  ski.   She  waited  in  the  tow-­‐rope  line  at  the  bottom  of  the  hill  for  5  minutes;  rode  up  the  lift  for  3  minutes,  and  then  set  off  downhill.   She  skied  extra  slowly  down  the  hill,  so  she  wouldn’t  lose  control  and  it  took  her  5   5   6  minutes  to  get  down  the  hill.   Once  at  the  bottom,  she  waited  for  her  husband  (who  skis  even  more  slowly)  to  join  her.  

   

6)        Anne  and  Barbara  raced  one  another  to  the  opposite  side  of  the  parking  lot  and  back.   Barbara  got  a  good  start  and  kept  up  a  steady  pace  all  the  way.   Ann  was  late  getting  off  the  curb,  but  she  ran  faster  than  Barbara,  and  passed  her  before  they  reached  the  far  side.   About  halfway  back  to  the  starting  point,  Ann  stumbled  and  fell.   She  got  up  again  quickly,  but   7  she  had  hurt  her  ankle  and,  as  she  limped  on,  Barbara  passed  her  and  won  the  race.  

   

7)        Cragen  and  Huckerby  went  on  the  Ferris  Wheel  at  the  fair.  The  wheel  started  up  slowly,  and  once  it  got  to  the  top  it  came  down  a  little  bit  faster.   It  started  up  again,  and  when  the  puppies  were  at  the  top,  it  stopped  to  let  people  on.  

Page 23: AIS-G7-Science Lab Manual

 

Directions:       Look   at   the   distance   vs.   time   graph   and   come   up   with   a   plausible   story   to   explain   its  movement.    1.        

                           2.        

                               3.        

                               4.        

Page 24: AIS-G7-Science Lab Manual

 

Calculating  Speed  in  m/s    1)       A  car  is  traveling  down  the  road.   It  drove  for  50  seconds  and  in  that  time  it  traveled  100  meters.  

What  is  the  speed  of  the  car?            2)       If  an  ant  crawls  1  meter  in  25  seconds,  what  is  the  ant’s  speed?  

         3)       a)  Three  elephants  are  standing  on  a  very  very  strong  bridge.    The  bridge  happens  to  have  marks  at  

every  meter  along  the  way  (almost  like  it  was  meant  for  setting  up  a  physics  problem).   Elephant  #1  is  standing  at  4m  and  starts  walking.   He  walks  for  30  seconds  and  after  30  seconds,  the  elephant  is  at  the  place  on  the  bridge  marked  64  meters.   What  is  Elephant  #1’s  speed?  

         

b)  If  Elephant  #2  started  at  3m  and  it  took  him  90  seconds  to  walk  to  meter  mark  93m,  what  was  Elephant  #2’s  speed?  

           

c)  Elephant  #3  was  a  track  star  in  his  day,  so  he  has  been  standing  on  the  5m  mark.    He  starts  running,  and  10  seconds  later,  he  is  at  the  25m  mark.   What  was  Elephant  #3’s  speed?  

     

d)  Out  of  Elephants  1,  2,  and  3;  which  elephant  was  the  FASTEST?   Which  elephant  was  the  SLOWEST?   Explain  how  you  know.  

           4)       a)  A  beetle  has  been  walking  down  a  sidewalk.    He  started  at  3:15  in  the  afternoon,  and  by  3:20  he  

had  made  it  4  meters.   What  is  the  beetles  speed  in  m/s?   (Hint:  there  are  60  seconds  in  one  minute)      

b)  A  boy  has  also  been  walking  down  a  sidewalk.   He,  too,  started  at  3:15  in  the  afternoon.  However,  by  3:20  the  boy  had  made  it  200  meters.   What  was  the  boy’s  speed  in  m/s?  

     

c)  Who  was  walking  FASTER?   The  boy  or  the  beetle?   How  do  you  know?  

Page 25: AIS-G7-Science Lab Manual

 

The graph to the left is a graph of distance traveled over time. Use the graph to answer the following questions.

 1) Calculate the speed from A to B.

     

2) Calculate the speed from B to C.      

3) Calculate the speed from C to D.        

The graph to the right is a graph of distance traveled over time. Use the graph to answer the following questions.

     

4) Calculate the speed from A to B.      

5) Calculate the speed from B to C.  

         

6) Calculate the speed from C to D.      

7) Between which letters is the FASTEST speed?

               

8)   What  is  wrong  with  the  distance/time  graph  to  the  left?  

Page 26: AIS-G7-Science Lab Manual

37    

What  happens  when  velocity  changes?      

Books  to  make  ramp    

Materials:   2  meter  sticks,  marble,  books  (4  science  books),  masking  tape,  2  stop  watches,  3  calculators    

Diagram    

Finish  Line  

     Book  to  stop  marble  

1.5  meters  from  the  edge  of  the  meter  sticks  Distance  from  the  bottom  of  the  meter  stick  is  1.5  meters  

 

Predict:  What  will  happen  to  the  marble  as  it  leaves  the  ramp  

and  rolls  toward  the  backstop?  

 Marble  

   Tape  joins  these  two  meter  sticks  together  from  the  

underside  

     

Procedure    

1.      Make  a  ramp  by  laying  two  meter  sticks  side  by  side.  Leave  a  small  gap  between  the  meter  sticks.  

2.      Use  masking  tape  (as  shown  by  your  teacher)  to  join  the  meter  sticks.  The  marble  should  be  able  to  roll  freely  along  the  groove.  

3.      Set  up  your  ramp  along  the  ground,  preferably  on  carpet.  Raise  one  end  of  the  ramp  on  top  of  the  books,  the  other  end  of  the  ramp  should  remain  on  the  ground.  

4.      Make  a  line  by  putting  a  piece  of  tape  1.5m  from  the  bottom  of  the  ramp.  Place  a  backstop  at  the  1.5m  mark.  Test  you  ramp  by  releasing  the  marble  from  the  top  of  the  ramp.  Make  sure  that  the  marble  rolls  freely.  Do  not  push  the  marble.  

5.      Release  the  marble  and  measure  the  time  it  takes  for  it  to  roll  from  the  release  point  to  the  end  of  the  ramp.  (  You  will  do  this  3  times  and  get  an  average)Make  sure  and  record  your  observations  in  the  table  given.  

6.      Release  the  marble  again  from  the  same  point,  and  record  the  time  it  takes  the  marble  to  roll  from  the  end  of  the  ramp  to  the  finish  line.  (You  will  do  this  3  times  and  get  an  average)  Record  this  time.  

 Draw  the  set  up  of  your  experiment  below  and  label  everything  !  

Page 27: AIS-G7-Science Lab Manual

38    

 Top  of  Ramp  to  Bottom  of  Ramp  

Distance=1  m    

 Trial  

Time  #1  (s)  (top  to  bottom  of    

 

1    

 

2    

 

3    

 

Total    

 

Average    

Velocity  #1  (m/s)  

 

 

 

 Bottom  of  Ramp  to  Backstop  

Distance=1.5m    

 Trial  

Time  #2  (s)  (bottom  of  ramp  

   

1    

 

2    

 

3    

 

Total    

 

Average    

 

Velocity  #2  (m/s)  

(direction  needed)  

 

 

Data:                                                    

(Use  Distance  over  average  time  to  calculate  velocity)  

       

Analysis  (use  complete  sentences)    

1.    Are  Velocity  #1  and  Velocity  #2  the  same?    

2.   Why  do  you  think  this  might  be?        

3.    Compare  Velocity  #1  to  Velocity  #2.   What  are  some  possible  reasons  that  the  numbers  are  related  to  each  other  this  way?  

           

4.    Do  your  calculated  velocities  match  your  prediction  from  the  beginning  of  the  lab?  Explain.  

     

5.    At  what  point  during  your  investigation  did  you  notice  the  marble’s  velocity  changing?  

Page 28: AIS-G7-Science Lab Manual

39    

Synthesis  (use  complete  sentences)    1.   When  Velocity  changes  (even  just  a  little  bit),  it  is  called    acceleration.   In  what  ways  did  your  velocity  change?              2.    Did  your  marble  “speed  up”  or  “slow  down”  based  on  your  observations?    Explain.        3.    Did  your  marble  “speed  up”  or  “slow  down”  based  on  your    Velocity  Calculations?    Explain  how  you  know.        4.    Predict  what  you  think  would  happen  if  the  marble  was  moving  over  tile  instead  of  carpet.  How  would  that  affect  the  marble’s  acceleration?  Explain.              Conclusion    Write  a  paragraph,  using  numbers  from  your  data,  that  describes  what  we  did  in  this  lab,  what  you  observed  happen,  and  how  this  relates  to  the  numbers  you  calculated  and  the  change  in  Velocity.  

Page 29: AIS-G7-Science Lab Manual

40    

 

Page 30: AIS-G7-Science Lab Manual

41    

What  happens  when  velocity  changes?  (follow  up  Questions)  

 Using  your  lab  results  from  yesterday,  complete  the  following  questions.        1.    Acceleration  is  when  velocity  changes.    Yesterday,  you  observed  the  velocity  of  your  marble  changing  as  it  rolled  off  the  ramp  and  onto  the  carpet.   You  used  the  distance  the  marble  traveled  over  the  time  it  took  to  travel  that  distance  to  calculate  two  different  velocities.    What  was  your  velocity  #1?   What  was  your  velocity  #2?        

What  was  your  time  #2?        2.    Acceleration  can  actually  be  calculated  as  a  numerical  value.   Put  your  velocities  into  the  following  equation  to  calculate  the  acceleration  of  your  marble.    

The  unit  for  acceleration  is  m/s2.    

Calculate:   Velocity  #2  –  Velocity  #1   Work:    

Average  Time  #2          It  is  VERY  important  that  you  do  not  mix  up  the  order  of  the  velocities.   It  is  OKAY  if  your  acceleration  is  a  small  decimal  or  even  a  negative  number!    3.    What  would  it  mean  if  your  acceleration  turned  out  to  be  a  positive  number?              4.    What  would  it  mean  if  your  acceleration  turned  out  to  be  a  negative  number?              5.    What  would  it  mean  if  your  acceleration  turned  out  to  be  zero?  

Page 31: AIS-G7-Science Lab Manual

42    

   Conclusion  Paragraph    6.    Which  of  the  above  three  scenarios  best  matches  what  you  calculated?    Does  it  match  what  you  observed  happening  to  your  marble  yesterday?    If  yes,  describe  what  this  means.   If  no,  please  give  several  reasons  why  this  contradiction  could  have  occurred.  

Page 32: AIS-G7-Science Lab Manual

43    

Acceleration  Practice  Problems    

 1.      A  roller  coaster  car  rapidly  picks  up  speed  as  it  

rolls  down  a  hlope.   As  it  starts  down  the  slope,  its  speed  is  4  m/s.   But  3  seconds  later,  at  the  bottom  of  the  slope,  its  speed  is  22  m/s.   What  is  the  car’s  acceleration?  

                 2.      A  cyclist  accelerates  from  0  m/s  to  8  m/s  in  3  

seconds.   What  is  his  acceleration?                    b)    A  car  accelerates  from  0  m/s  to  30  m/s  in  8  

seconds.   What  was  its  acceleration?                  c)    Who  had  the  higher  rate  of  acceleration?  

           3.    A  car  advertisement  states  that  a  certain  car  can  

accelerate  from  rest  to  70km/h  in  7  seconds.  Find  the  car’s  acceleration  in  m/s.  

   4.      A  lizard  accelerates  from  2  m/s  to  10m/s  in  4  

seconds.   What  is  the  lizard’s  acceleration?                    5.      A  bicyclist  is  riding  in  a  hilly  area.   She  approaches  

a  hill  and  when  she  arrives  at  the  bottom  of  the  hill  she  is  traveloing  at  a  speed  of  15  m/s.   After  1  minute,  she  arrives  at  the  top  of  the  hill  and  her  speed  is  now  7  m/s.   What  was  her  acceleration  up  the  hill?  

                 6.      Who  has  the  greater  acceleration  rate?    A  runner  

who  can  go  from  0  m/s  to  12  m/s  in  10  seconds,  or  a  runner  who  can  go  from  5  m/s  to  10  m/s  in  5  seconds?  

             ****CHALLENGE  QUESTION****    7.      If  a  Ferrari,  with  an  initial  velocity  of  10  m/s,  

accelerates  at  a  rate  of  50  m/s2,  for  3  seconds,  what  was  his  ending  velocity?  

             

Formula:  

Page 33: AIS-G7-Science Lab Manual

44    

Crash  Test  Dummies  Lab  8th  Grade  Science  

 There  are  5  different  parts  to  the  following  lab.   Do  them  each  ONE  AT  A  TIME.  Make  sure  you  copy  the  QUESTION,  

your  PREDICTION,  and  YOUR  DRAWING  for  each  part.  You  should  end  up  with  FIVE  fully-­‐labeled  diagrams.    Part  I:  Question:   What  will  happen  to  a  lump  of  clay  on  top  of  a  car  if  the  car  crashes  into  a  textbook?  

Prediction:  

Procedures:    

1.       Shape  a  ball  out  of  clay  about  the  size  of  a  marble.  2.       Place  a  textbook  100  cm  away  from  your  car.  3.       Put  your  ball  of  clay  on  top  of  your  car.  4.       Give  your  car  with  the  clay  a  soft  push  so  that  it  will  drive  to  the  textbook  and  CRASH.  5.       Draw  (in  your  notebook)  what  happened  to  your  clay  “dummy”.  

a.   Title  your  picture  “SOFT  PUSH”  b.        Label  the  following  in  your  picture  

i.       Car  ii.       CRASH  wall  iii.       Direction  of  car  iv.       Direction/motion  of  clay  BEFORE  crash  v.       Direction/motion  of  clay  AFTER  crash  

 Part  II:  Question:  What  will  happen  to  the  lump  of  clay  on  top  of  the  car  if  the  car  is  given  a  medium  push?  

Prediction:  

Procedures:    1.    Re-­‐shape  clay  ball  and  re-­‐attach  it  to  the  top  of  the  car.  2.    Give  your  car  with  the  clay  a  medium  push  so  that  it  will  drive  into  the  textbook  and  CRASH.  3.    Draw  (in  your  notebook)  what  happened  to  your  clay  “dummy”.                      Part  III:  

a.   Title  your  picture  “MEDIUM  PUSH”  b.        Label  the  following  in  your  picture  

i.       Car  ii.       CRASH  wall  iii.       Direction  of  car  iv.       Direction/motion  of  clay  BEFORE  crash  v.       Direction/motion  of  clay  AFTER  crash  

Question:  What  will  happen  to  the  lump  of  clay  on  top  of  the  car  if  the  car  is  given  a  hard  push?  

Prediction:  

Page 34: AIS-G7-Science Lab Manual

45    

Procedures:    1.    Re-­‐shape  clay  ball  and  re-­‐attach  it  to  the  top  of  the  car.  2.    Give  your  car  with  the  clay  a  hard  push  so  that  it  will  drive  into  the  textbook  and  CRASH.  3.    Draw  (in  your  notebook)  what  happened  to  your  clay  “dummy”.                      Part  IV:  

a.   Title  your  picture  “HARD  PUSH”  b.        Label  the  following  in  your  picture  

vi.       Car  vii.       CRASH  wall  viii.       Direction  of  car  ix.       Direction/motion  of  clay  BEFORE  crash  x.       Direction/motion  of  clay  AFTER  crash  

Question:  What  will  happen  to  the  lump  of  clay  on  top  of  the  car  if  the  car  receives  a  rear-­‐end  collision  by  another  car?  

Prediction:  

Procedures:    

1.    Re-­‐shape  clay  ball  and  re-­‐attach  it  to  the  top  of  the  car.  2.    Working  with  the  lab  table  next  to  you,  one  car  will  cause  the  rear-­‐end  collision  (NO  CLAY  BALL)  and  the  other  car  will  receive  the  collision  (WITH  CLAY  BALL).  3.    Draw  (in  your  notebook)  what  happened  to  your  clay  “dummy”.  

                     Part  V:  

a.   Title  your  picture  “REAR-­‐END  COLLISION”  b.        Label  the  following  in  your  picture  

xi.       Car  xii.       CRASH  CAR  xiii.       Direction  of  car  xiv.       Direction  of  CRASH  CAR  xv.       Direction/motion  of  clay  BEFORE  crash  xvi.       Direction/motion  of  clay  AFTER  crash  

Question:  What  will  happen  to  the  lump  of  clay  on  top  of  the  car  if  the  car  receives  a  side-­‐impact  collision  by  another  car?  

Prediction:  

Procedures:  1.    Re-­‐shape  clay  ball  and  re-­‐attach  it  to  the  top  of  the  car.  2.    Working  with  the  lab  table  next  to  you,  one  car  will  cause  the  rear-­‐end  collision  (NO  CLAY  BALL)  and  the  other  car  will  receive  the  collision  (WITH  CLAY  BALL).  3.    Draw  (in  your  notebook)  what  happened  to  your  clay  “dummy”.    

a.   Title  your  picture  “SIDE-­‐IMPACT  COLLISION”  b.        Label  the  following  in  your  picture  

xvii.       Car  xviii.       CRASH  CAR  xix.       Direction  of  car  xx.       Direction  of  CRASH  CAR  xxi.       Direction/motion  of  clay  BEFORE  crash  xxii.       Direction/motion  of  clay  AFTER  crash  

Page 35: AIS-G7-Science Lab Manual

46    

Application  Questions:  Answer  these  questions  in  complete  sentences.   You  may  discuss  the  answers  with  your  group.    

1.       How  does  the  force  of  your  push  compare  with  the  speed  you  observed  the  car  travel?            

2.       Discuss  what  happens  to  the  dummy  in  FRONT-­‐  end  collisions.                    

3.       Did  the  distance  the  car  was  pushed  have  anything  to  do  with  the  distance  the  clay  traveled?   What  about  the  strength  of  the  push?   Explain.  

                 

4.       Discuss  what  happens  when  the  car  is  hit  from  behind.  Why  does  this  happen?                    

5.       What  injury  would  be  common  in  REAR-­‐END  collisions?            

6.       What  is  the  clay  resisting  in  each  of  the  scenarios?            

7.       How  does  this  lab  apply  to  Newton’s  first  law  of  motion?            

8.       Why  is  it  important  to  wear  seatbelts?  Use  specific  examples  from  your  drawings  to  support  your  answer.  

Page 36: AIS-G7-Science Lab Manual

47    

9.       What  are  some  ways  that  car  companies  are  preventing  injuries  from  head-­‐on,  rear-­‐end  and  side  collisions?                    

10.  What  happens  to  the  force  of  the  moving  car  once  it  hits  the  books?                

11.  Which  would  be  WORSE:  being  struck  by  a  SEMI-­‐TRUCK  or  a  TOYOTA  PRIUS?   Explain  your  answer  in  two  complete  sentences.  

                 

12.  What  are  the  VARIABLES  in  this  lab  ?      Independent       _Dependent        

           13.  Restate  Newton’s  First  Law                  14.  Inertia  

Page 37: AIS-G7-Science Lab Manual

48    

 

Page 38: AIS-G7-Science Lab Manual

49    

 

Page 39: AIS-G7-Science Lab Manual

 

 

50  

Page 40: AIS-G7-Science Lab Manual

51    

 

Page 41: AIS-G7-Science Lab Manual

52    

 

Page 42: AIS-G7-Science Lab Manual

53    

Net  Force  Practice  Pages  

Page 43: AIS-G7-Science Lab Manual

54  

Page 44: AIS-G7-Science Lab Manual

55  

Trial  #   Distance  (m)   Time  (s)   Velocity  (m/s)  

 1  

 2m  

   

2    

2m      

3    

2m      

 

 Balloon  Rockets  8th  Grade  Science  

 Question:  How  does  mass  affect  the  velocity  of  a  balloon?  

Prediction:  I  think  that  the  mass  will  ….  

     

Materials:    

balloon,  straw,  tape,  string,  index  card,  paper  clips  

   

Procedure:    

1.   Attach  a  straw  to  the  very  top  of  an  index  card.  2.   Thread  the  string  through  the  straw.  3.   Blow  up  the  balloon  and  attach  it  to  the  card.    DO  NOT  TIE  THE  BALLOON  OFF!   Pinch  the  end  off  with  your  fingers!  4.   Move  the  rocket  assembly  to  the  edge  of  the  tape.  5.   Have  2  group  members  each  hold  one  end  of  the  string.  6.   Simultaneously  (together)  released  end  of  the  balloon  while  starting  the  timer.  7.   Stop  the  timer  when  the  rocket  assembly  reaches  the  end  of  the  strong.  8.   Record  your  time  and  calculate  the  speed  of  the  balloon.  9.   Attach  large  paperclips  and  complete  the  above  steps  again  for  4  and  7  paperclips.  

 Name  your  CONTROLLED  VARIABLES  in  this  activity  

     

What  was  the  independent  variable?          

What  was  the  dependent  variable?          

Data:  Zero  Paper  Clips            

Remember:    

V=  Distance  time  

         

Average  Velocity       m/s  

Page 45: AIS-G7-Science Lab Manual

56  

Trial     Distance  (m)   Time  (s)   Velocity  (m/s)  

 

1   2m      

 

2   2m      

 

3   2m      

 

Trial  #   Distance  (m)   Time  (s)   Velocity  (m/s)  

 

1   2m      

 

2   2m      

 

3   2m      

 

Question:    What  will  happen  to  the  rocket  assembly  when  MASS/PAPER  CLIPS  are  added?    

Prediction:   I  think  that  added  mass  will…..    

Data:  4  paper  clips  added            

Remember:    

V=  Distance  time  

       Average  Velocity       m/s  

 Data:  7  paper  clips  added  

       

Remember:    

V=  Distance  time  

 

         

Average  Velocity       m/s    

Analysis  Questions:    

1.       As  mass  was  added,  did  the  velocity  INCREASE  OR  DECREASE?  Use  your  data  to  support  your  answer.  

     

2.       Newton’s  second  law  states  that  F=  mass  *  acceleration.  In  this  experiment,  what  part  of  your  rocket  represents  the  FORCE?  

     

3.       Did  you  keep  the  force  constant?  4.       As  mass  was  added  to  the  assembly,  how  did  it  affect  the  acceleration?  

   

5.       Name  two  possible  sources  of  error  in  this  activity.      

6.       If you were to vary the size of the balloon what part of the equation (F= ma) will you be changing? Explain

Page 46: AIS-G7-Science Lab Manual

57  

Spring  Scale  Lab    

   Newton’s  2nd  Law  8th  Grade  Science  

     

Objective:  Use  Newton’s  2nd  Law  of  Motion  to  calculate  acceleration  of  several  masses.    

Materials:    

Spring  Scale  (blue  or  yellow)  1000g  mass  (yellow  scale  ONLY)  500g  mass  (yellow  scale  ONLY)  200g  mass  100g  mass  50g  mass  20g  mass  10g  mass  

   

Procedure:    

1.    In  this  lab,  you  will  be  using  a  spring  scale  to  measure  the  FORCE  of  several  different  masses.   Make  sure  to  familiarize  yourself  with  the  value  of  the  increments  on  the  spring  scale.    You  are  expected  to  record  your  results  with  the  correct  decimal  units.  

2.       Copy  the  following  data  table  into  your  Science  Notebook.  3.       In  your  data  table,  copy  down  the  mass  of  the  mass  at  your  table  in  front  of  you  (each  table  should  have  a  

different  mass)  4.       Have  a  partner  hold  the  spring  scale  still  about  .5  meters  above  the  table  surface.   The  two  of  you  will  need  to  

read  the  scale  carefully.  5.       Carefully,  while  still  holding  the  bottom  of  the  mass,  hang  the  hook  from  the  spring  scale.   Slowly  lower  your  

hand  so  that  the  mass  is  hanging  on  its  own.  6.       Record  the  CORRECT  number  of  NEWTONS  for  the  mass  in  your  data  table.  7.       Repeat  steps  2-­‐5  until  you  have  found  the  force  for  every  mass  in  the  data  table.  

Data:    

Mass  (g)   Force  (N)  1000g    500g    100g    50g    20g    10g    

Page 47: AIS-G7-Science Lab Manual

58  

Newton’s  2nd  Law    

8th  Grade  Science    

Calculations  part  1:    

1.    In  order  to  use  Newton’s  2nd  Law,  you  will  need  to  convert  all  of  your  masses  to  kilograms.    Use  the  following  table  to  do  so:  

Mass  (g)   Mass  (kg)  1000g    500g    100g    50g    20g    10g    

   

2.   Re-­‐copy  your  new  data  into  the  table  below:  Force  (N)   Mass  (kg)  

   

   

   

   

   

       

3.   Newton’s  2nd  Law  states  that  Force  is  equal  to  mass  times  acceleration.   This  means  that  Force  divided  by  mass  is  equal  to  acceleration.    Use  this  information  to  calculate  the  acceleration  of  each  mass.  

Force  (N)   Mass  (kg)   ACCELERATION  (m/s2)  Force/Mass  

     

     

     

     

     

     

Page 48: AIS-G7-Science Lab Manual

59  

     Reflection  Questions:    

1.   Define  Acceleration:                

2.   Based  on  the  definition  of  acceleration,  did  you  notice  the  masses  accelerating?      

3.       Define  Force:            

4.   Where  did  the  “push”  or  “pull”  come  from  that  caused  there  to  be  FORCE  on  the  masses?                

5.   Discuss  what  acceleration  you  are  calculating.        

6.   In  your  data,  you  calculated  several  accelerations.   What  did  you  notice  about  the  values  you  calculated?                

7.       Predict  what  the  FORCE  would  be  for  a  mass  of  2000g.   EXPLAIN  how  you  got  your  answer.            

8.    Predict  what  the  MASS  would  be  of  something  exerting  a  force  of  45N  on  a  spring  scale.   EXPLAIN  how  you  got  your  answer.  

             

9.    Why  might  it  be  useful  to  know  this  constant  value  of  acceleration?   Think  of  a  real-­‐life  scenario  where  this  information  could  be  useful.  

Page 49: AIS-G7-Science Lab Manual

60  

 New  to  n  ’s   2  nd  Law  Practice  Problems    

F=MA  WORKSHEET    

2  1.  How  much  force  is  required  to  accelerate  a  2  kg  mass  at  3  m/s   ?  

 2  

2.  Given  a  force  of  100  N  and  an  acceleration  of  10  m/s   ,  what  is  the  mass?    

3.  What  is  the  acceleration  of  a  10  kg  mass  pushed  by  a  5  N  force?    

2  4.  Given  a  force  of  88  N  and  an  acceleration  of  4  m/s   ,  what  is  the  mass?  

 2  

5.  How  much  force  is  required  to  accelerate  a  12  kg  mass  at  5  m/s   ?    

2  6.  Given  a  force  of  10  N  and  an  acceleration  of  5  m/s   ,  what  is  the  mass?  

 2  

7.  How  much  force  is  required  to  accelerate  a  5  kg  mass  at  20  m/s  ?    

8.  What  is  the  acceleration  of  a  5  kg  mass  pushed  by  a  10  N  force?    

2  9.  Given  a  force  of  56  N  and  an  acceleration  of  7  m/s   ,  what  is  the  mass?  

 2  

10.  How  much  force  is  required  to  accelerate  an  8  kg  mass  at  5  m/s   ?    

11.  What  is  the  acceleration  of  a  24  kg  mass  pushed  by  a  6  N  force?    

12.  What  is  the  acceleration  of  a  25  kg  mass  pushed  by  a  10  N  force?    

2  13.  Given  a  force  of  100  N  and  an  acceleration  of  5  m/s   ,  what  is  the  mass?  

 2  

14.  How  much  force  is  required  to  accelerate  a  50  kg  mass  at  2  m/s   ?    

15.  What  is  the  acceleration  of  an  18  kg  mass  pushed  by  a  9  N  force?  

Page 50: AIS-G7-Science Lab Manual

61  

Performance  Assessment  Newton’s  Laws          

Physics  Phun    Objective:   To  demonstrate  one  of  Newton's  laws  of  motion  

To  speak  effectively  using  appropriate  vocabulary  to  explain  a  science  concept    Context:   Small  cooperative  groups    Materials:   Varies  with  each  group.   Students  may  bring  items  from  home  with  prior  approval  from  parents  and  teacher.    Procedure:    1.   Plan  a  group  presentation  on  one  of  Newton's  three  laws  of  motion.   You  may  act  it  out  or  show  it  using  props  or  other  materials.   Each  person  in  the  group  must  participate  in  your  presentation.    2.   Follow  the  following  format:    

o State  the  law  of  motion.  o Demonstrate  this  law  or  act  it  out.  o Explain  how  your  presentation  shows  that  particular  law.  o Use  science  vocabulary  words  whenever  appropriate.  

 3.   Remember  to  work  cooperatively  in  your  group.   Plan  and  practice  together  so  that  each  person  knows  what  to  do  in  advance.    4.   Speak  loudly  and  clearly  so  that  you  can  be  easily  understood.    5.   Have  Phun!  

Page 51: AIS-G7-Science Lab Manual

62  

 

Page 52: AIS-G7-Science Lab Manual

63  

 

Page 53: AIS-G7-Science Lab Manual

64  

     Investigate  Momentum  (p.  66  in  Textbook)    Purpose:   To  observe  what  happens  when  objects  collide    Materials:  2  rulers  

8  marbles    Procedure:  1.    Set  up  two  parallel  rulers  separated  by  one  centimeter.   Place  a  line  of  five  marbles,  each  touching  the  next,  in  the  groove  between  the  rulers.    2.    Roll  a  marble  down  the  groove  so  that  it  collides  with  the  line  of  marbles  and  observe  the  results.    3.    Repeat  your  experiment  by  rolling  two  and  then  three  marbles  at  the  line  of  marbles.    Observe  the  results.    Apparatus:  Draw  and  label  your  lab  setup.   Draw  a  before  and  after  picture,  after  completing  your  lab,  also.                                                                Questions:    1.    What  did  you  observe  when  you  rolled  the  marbles?                  2.    Why  do  you  think  the  marbles  moved  the  way  they  did?  

Page 54: AIS-G7-Science Lab Manual

65  

       

Fabulous  Friction              

At  the  main  station  or  table  your  teacher  has  provided  you  various  materials  to  design/create,  perform  and  report  your  results  on  FRICTION.  It  is  your  task  as  a  lab  group  to  decide  what  materials  you  are  planning  to  use,  how  you  are  going  to  use  the  materials  and  the  best  way  to  set  up  your  experiment  to  answer  your  question.   After  you  have  completed  the  experiment  you  will  each  write  a  lab  report  on  your  experiment  and  share  your  results  with  the  class.  Consider  what  you  have  learned  in  science  (experimental  design)  and  use  your  best  science  practices.  Check  out  your  experimental  design  planning  sheet,  district  lab  report  format,  and  the  student  check  list  that  follow  this  assignment.  Before  beginning  your  inquiry  into  friction,  discuss  what  you  already  know  about  friction  as  a  group  and  fill  out  the  following  “T”  chart.  Then  research  friction  by  using  your  text  and  answer  these  questions.  These  will  help  you  ask  your  testable  question.  

 What  we  know  about  friction   Questions  about  friction  

                                       

What  is  friction?        

Why  does  it  happen?        

What  is  affected  when  friction  occurs  on  surfaces?  

How  do  you  increase  or  decrease  friction?  

Where  does  friction  occur?  Can  it  happen  in  liquids,  air,  with  solids?        

What  are  examples  of  friction  in  daily  life?  

Page 55: AIS-G7-Science Lab Manual

66  

What  materials  are  you  using  for  your  experiment?                  Testable  question  (include  independent  and  dependent  variable-­‐underline  each  and  label)        Hypothesis        What  factors  are  you  going  to  control  to  prevent  error/mistakes?              Procedure-­‐write  the  procedures  for  your  experiment  in  1.,  2.,  3.,  format  using  complete  sentences  with  specific  detail.  Other  students  should  be  able  to  take  your  procedures  and  perform  this  lab  using  the  procedures  and  materials  available  on  the  lab  station.  

Page 56: AIS-G7-Science Lab Manual

67  

Record  your  Data-­‐  make  your  own  data  table  to  record  your  findings.  Be  sure  to  use  units.  (Include  tables,  drawings,  labeled  sketches  etc)  You  may  use  the  graph  paper  that  follows  or  you  may  copy  and  paste  your  own  graph  paper  into  this  lab  notebook.  

Page 57: AIS-G7-Science Lab Manual

68  

 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           

Page 58: AIS-G7-Science Lab Manual

69  

Analyze  Your  Data:  Discuss  your  findings.  What  did  you  see  happen?  Why  did  it  happen?  Explain  in  complete  sentences                                                Did  your  data  support  your  hypothesis?  Why  or  why  not?  Explain  in  complete  sentences.                                      Did  anything  unexpected  happen?  What  were  some  problems  that  you  had  in  your  experiment?  (Explain  in  at  least  5  complete  sentences)  

Page 59: AIS-G7-Science Lab Manual

70  

Conclusion:  What  happened?  Why  did  it  happen?  (Explain  in  at  least  5  complete  sentences)  

Page 60: AIS-G7-Science Lab Manual

71  

PICK  ONE  TO  DO:    

Extension  1:  In  daily  life,  sports  and  recreational  activities  you  may  want  to  decrease  or  increase  the  amount  of  friction  present.  Using  what  you  have  learned  about  surface  type  and  force  on  the  surface  list  at  least  5  activities  where  INCREASING  the  amount  of  friction  is  helpful  and  5  activities  in  which  it  is  advantageous  to  reduce  the  amount  of  friction.  (Ex:  gymnasts  use  chalk  on  their  hands  to  reduce  friction  between  their  hands  and  uneven  bars;  cleats  help  football  players  have  better  traction  when  running….)  Include  this  in  your  lab  report  at  the  end  of  the  lab  report.    

Extension  2:  Create  a  mini  news  article  on  a  piece  of  white  paper  (by  computer  or  by  hand)  for  a  recreation  or  sports  magazine  about  how  friction  plays  a  role  in  a  sport  of  your  choice.  Include  a  colorful,  creative  picture  of  the  sport  in  action  and  describe  in  a  PARAGRAPH  of  4-­‐6  complete  sentences  on  HOW  friction  affects  a  player’s  performance  in  that  sport.  Talk  to  your  PE  teacher  or  coach  for  ideas.  Be  ready  to  share  with  the  class.  Include  this  in  your  lab  report  at  the  end  of  the  lab  report.    Requirements:  Format  of  Lab  Report    

1.       Must  be  typed  at  home  or  at  school  on  your  own  time  2.       Double  spaced  (Arial,  New  Times  Roman,  Calibri  Font)  3.       Complete  Sentences  with  correct  grammar  and  spelling  (spell  check  and  read)  4.       Follow  District  Lab  Report  Format  5.       Length:  2  pages  in  length  6.       Paragraph  size:  4-­‐7  complete  sentences  7.       You  may  design  the  experiment  TOGETHER  but  you  must  write  your  own  lab  report.  Each  student  must  do  

his/her  own  work.  You  may  not  do  one  lab  report  and  copy  for  all  of  your  members.  Must  be  your  own  work,  in  your  own  words.  Failure  to  follow  this  requirement  will  result  in  redoing  the  entire  assignment  or  a  zero.  

8.       Include  data  tables,  graphs,  or  pictures  when  appropriate.  These  must  have  correct  labels,  titles  and  units.  Pictures  may  be  used    only    if  they  show  your  experimental  design  and  outcomes.  

 How  to  turn  in  the  lab  report    

1.       Title  page:  Name,  hour,  testable  question,  group  members  2.       Lab  Report:  following  district  guidelines  3.       Extension  1  or  2  4.       Staple  together  

 ATTENTION:  Use  the  student  check  list  (and  all  the  resources)  during  the  development  of  your  experiment  to  help  you  make  sure  that  you  are  including  specific  components.  Each  student  should  be  filling  out  this  information  in  his/her  lab  notebook  during  class  so  that  when  you  are  writing  your  lab  report  you  will  have  the  necessary  information  to  complete  your  lab  report.  You  may  work  together  to  design  your  lab  but  you  must  do  your  own  lab  report.  

Page 61: AIS-G7-Science Lab Manual

72  

 

Student Checklist Basic  Process   Team  Names:   Rate Score  0-­‐4  

 Adapted from Mark Goddard 2003

Describe specifically  how your experiment allows you to use each skill in the spaces below

   

         

Observation  

Uses  five  senses  to  observe;  observes  using  tools  (lens,  etc.);  identifies  properties  of  an  object;  uses  numbers  to  describe  observations;  notes  changes  in  objects;  realizes  that  observation  enhances  understanding.  

 1  

 2  

 3  

 4  

 

 

 

       

Classification  

Identifies  similarities  and  differences  in  properties;  identifies  properties  for  sorting;  classifies  objects  or  attributes  into  groups;  forms  subgroups;  has  logical  rationale  for  sorting;  understands  characteristics  define  sorting  systems  

1    

2    

3    

4  

 

 

         Communication  

Describes  accurately  using  appropriate  vocabulary;  asks  relevant  questions;  verbalizes  thinking;  shares  views  with  others;  constructs  other  means  to  communicate  (reports,  media,  graphs,  etc.)  

 1  

 2  

 3  

 4  

 

 

 

       Measurement  

Uses  non-­‐standard  ways  as  well  as  traditional  ways  to  measure;  selects  appropriate  measuring  tools;  uses  tools  with  precision  (i.e.,  to  10ths  in  metric);  compares  and  orders  objects  by  weight,  length,  volume  and/or  time  

1    

2    

3    

4  

 

 

         

Prediction  

Performs  simple  predictions  based  on  inferences;  recognizes  and  extends  patterns;  shows  reasoning  in  defending  predictions;  able  to  blend  events,  patterns,  and  data  to  form  ideas  of  what  may  happen  in  the  future  

 1  

 2  

 3  

 4  

 

 

Page 62: AIS-G7-Science Lab Manual

73  

 

Adapted from Mark Goddard 2003

 Integrated  Process  

Rate   Score  0-­‐4  

 

           

Interpreting  Data  

Performs  simple  predictions  based  on  inferences;  recognizes  and  extends  patterns;  shows  reasoning  in  defending  predictions;  able  to  blend  events,  patterns,  and  data  to  form  ideas  of  what  may  happen  in  the  future  

 

   

1    

2    

3    

4  

 

 

 

       

Controlling  Variables  

Able  to  identify  variables  within  an  experiment  that  are  to  be  held  constant  and  those  that  are  to  be  manipulated;  understand  the  difference  between  single  and  multiple  variable  manipulation  

 1  

 2  

 3  

 4  

 

 

 

       

Designing  Experiments  

Able  to  visualize  the  procedures  that  may  be  necessary  to  answer  question  and  plan  the  appropriate  data  collection  operation;  includes  a  plan  to  organize  data;  uses  organized,  sequential  plans  to  test  a  hypothesis  

 1  

 2  

 3  

 4  

 

 

           

Inferring  

Uses  all  appropriate  information  to  form  inferences  and  is  able  to  distinguish  non-­‐essential  information;  develops  inferences  (ideas)  based  on  observations;  able  to  defend  inferences  reasonably  and  logically  

   

1    

2    

3    

4  

 

 

       

Defining  Operational  

Able  to  explain  relationships  between  observed  actions  to  explain  phenomena;  uses  events  to  describe  how  something  works  or  doesn't  work;  is  able  to  find  alternative  actions  from  evaluating  what  doesn't  work  

 1  

 2  

 3  

 4  

 

 

Page 63: AIS-G7-Science Lab Manual

74  

Student  Name       _hr     date  received_        

    Teacher Rubric- Description Score  0-­‐4  

Basic   Process  Adapted from Mark Goddard 2003

     Observation  

Uses  five  senses  to  observe;  observes  using  tools  (lens,  etc.);  identifies  properties  of  an  object;  uses  numbers  to  describe  observations;  notes  changes  in  objects;  realizes  that  observation  enhances  understanding.  

 

 Classification  

Identifies  similarities  and  differences  in  properties;  identifies  properties  for  sorting;  classifies  objects  or  attributes  into  groups;  forms  subgroups;  has  logical  rationale  for  sorting;  understands  characteristics  define  sorting  systems  

 

 

Communication  Describes  accurately  using  appropriate  vocabulary;  asks  relevant  questions;  verbalizes  thinking;  shares  views  with  others;  constructs  other  means  to  communicate  (reports,  media,  graphs,  etc.)  

 

 Measuring  

Uses  non-­‐standard  ways  as  well  as  traditional  ways  to  measure;  selects  appropriate  measuring  tools;  uses  tools  with  precision  (i.e.,  to  10ths  in  metric);  compares  and  orders  objects  by  weight,  length,  volume  and/or  time  

 

 Prediction  

Performs  simple  predictions  based  on  inferences;  recognizes  and  extends  patterns;  shows  reasoning  in  defending  predictions;  able  to  blend  events,  patterns,  and  data  to  form  ideas  of  what  may  happen  in  the  future  

 

  Integrated  Processes      Interpreting  Data  

Able  to  find  meaning  or  patterns  with  accuracy  between  sets  of  information  and  use  that  meaning  to  construct  inferences,  predictions,  and  hypothesis;  able  to  identify  a  single  pattern  among  objects  within  an  experiment  

 

Controlling  Variables  

Able  to  identify  variables  within  an  experiment  that  are  to  be  held  constant  and  those  that  are  to  be  manipulated;  understand  the  difference  between  single  and  multiple  variable  manipulation  

   

Designing  Experiments  

Able  to  visualize  the  procedures  that  may  be  necessary  to  answer  question  and  plan  the  appropriate  data  collection  operation;  includes  a  plan  to  organize  data;  uses  organized,  sequential  plans  to  test  a  hypothesis  

 

 Inferring  

Uses  all  appropriate  information  to  form  inferences  and  is  able  to  distinguish  non-­‐essential  information;  develops  inferences  (ideas)  based  on  observations;  able  to  defend  inferences  reasonably  and  logically  

 

       

Research  and  Writing  

  Missing-­‐0  Research  not  done  for  experiment.  Shows  no  understanding  of  concepts  and  does  not  use  prior  knowledge.  

2-­‐1  Below  Proficient  Incomplete  information  on  topic,  poor  organization,  many  misspellings,  poor  punctuation  and  lack  of  complete  sentences.  Does  not  show  a  solid  expression  of  concepts  and  does  not  incorporate  prior  knowledge.  

3-­‐  Proficient  –  solid  expression  of  concepts,  a  broad  range  of  information  written  very  well.  Incorporates  prior  knowledge.  Complete  sentences  used  with  1-­‐2  spelling   and/or  grammar  mistakes  

4  Exemplary  -­‐  thorough  understanding  and  expression  of  concepts,  information  comple  incorporates  prior  knowledge,  and  written  creatively  and  technically.  0  spelling  or  grammar  mistakes.  Complete  sentences  use  

 te,  

d.  

 

     

General  

  0-­‐Experiment  not  completed,  did  not  complete  the  assignment,  or  did  not  show  comprehension  

1-­‐Experiment  does  not  accomplish  what  was  asked;  contains  errors  and  is  of  poor  quality  

2  Fair-­‐The  experiment  meets  most  of  the  criteria  and  does  not  contain  gross  errors  or  significant  omissions  

3-­‐  Good-­‐The  experiment  completely  meets  the  expectations  described  by  the  criteria  

4-­‐Outstanding-­‐  th  experiment  meet  criteria,  exceeds  expectations   and  shows   additional  effort  

e  s  all  

 

   

Format  

4-­‐  Student  did  an  outstanding  job.  Meets  all  criteria  and  exceeds  expectations  in  length,  neatness  and  shows  additional  effort.  3-­‐  Student  met  the  expectation  for  the  format  of  the  lab  report  described  by  the  criteria.  2-­‐  Student  attempted  to  meet  the  expectations  but  had  minor  omissions  or  errors  in  the  format  of  the  lab  report.  1-­‐Student  did  not  accomplish  what  was  asked;  format  not  followed;  major  omissions  or  errors  in  the  format  of  the  lab  report.  0-­‐Student  did  not  attempt  to  follow  format,  none  of  the  criteria  was  followed  in  lab  report.  

 

   

EXTENSION  

4-­‐  Student  did  an  outstanding  job  on  extension.  Meets  all  criteria  and  exceeds  expectations  for  assignment.  Shows  additional  effort.  3-­‐  Student  met  the  expectation  for  extension  described  by  the  criteria.  2-­‐  Student  attempted  the  extension  but  there  were  missing  pieces  of  information  and  or  incorrect  reasoning  1-­‐Student  did  not  accomplish  what  was  asked;  contains  major  errors  and  is  of  poor  quality.  0-­‐Student  did  not  attempt  extension;  extension  was  not  included  in  lab  report.  

 

Page 64: AIS-G7-Science Lab Manual

75  

Exploring  the  Stars            Today  you  are  going  to  be  traveling  the  solar  system!  In  fact  you  will  be  visiting  different  planets!  Each  lab  station  is  now  a  planet.  You  will  find  that  there  are  objects  on  the  table  and  your  job  is  to  mass  each  object  and  report  its  weight  in  the  data  table  below.  In  a  previous  lab,  you  discovered  that  the  acceleration  on  Earth  due  to  gravity  was  9.8  m/s2.  Knowing  this  information,  you  must  find  the  “weight”  of  each  object  on  each  of  the  different  planets.  It  is  also  important  to  find  relationships  between  weight,  gravity  and  mass.  Be  sure  to  check  your  triple  beam  balance  and  start  the  pointer  on  zero.  The  balance  must  be  calibrated  to  give  you  the  correct  value.  Use  units  on  all  calculations.  Show  your  work  and  show  units.  Then  answer  the  discovery  questions  when  you  are  done.    

You  will  need  to  convert  (g)  to  (kg)-­‐  You  may  use  a  calculator  if  needed.    Gravity  Lab/Worksheet    

Station  1    

Planet   Object  

 Description  of  Planet  (2  things  learned)  

Mass  from  TBB  

(g)  

 Mass  (kg)  

Planet’s  Gravity  (m/s2)  

Planet’s  Mass  (kg)  

Planet’s  Density  (kg/cm3)  

Planet’s  Diameter  (km)  

 Earth   1  

 

 Earth   2  

 Station  2  

 Jupiter   3  

 

 Jupiter   4  

 Station  3  

 Mercury   5  

 

 Mercury   6  

 Station  4  

 Moon   7  

 

 Moon   8  

 Station  5  

 Neptune   9  

 

 Neptune   10  

 Station  6  

 Mars   11  

 

 Mars   12  

Page 65: AIS-G7-Science Lab Manual

76  

 

Station  7    

Saturn    

13                

 Saturn  

 14                

Station  8    

Sun    

15                

 Sun  

 16                

Station  9    

Venus    

17                

 Venus  

 18                

Station  10    

Uranus    

19                

 Uranus  

 20                

Step  2-­‐  Now  that  you  have  visited  all  of  the  planets  in  your  solar  system  sit  down  with  your  fellow  explorers  and  find  the  weight  of  each  object  based  on  its  acceleration  due  to  gravity.  

 To  find  weight:  Mass  (kg)  x  Acceleration  due  to  gravity  m/s2  =  Weight  kg(m/s2)   or  (N)  

     OBJECT  

 MASS  (KG)  

ACCELERATIO  N  DUE  TO  GRAVITY  (m/s2)  

 

WEIGHT  OF  OBJECT  

2  (kg  x  m/s   )  

FORCE  EXERTED  

ON  PLANET  (N)  

   OBJECT  

 MASS  (KG)  

ACCELERATIO  N  DUE  TO  GRAVITY  (m/s2)  

 

WEIGHT  OF  OBJECT  

2  (kg  x  m/s   )  

FORCE  EXERTED  ON  PLANET  (N)  

 

1            

11          

 

2            

12          

 

3            

13          

 

4            

14          

 

5            

15          

 

6            

16          

 

7            

17          

 

8            

18          

 

9            

19          

 

10            

20          

Page 66: AIS-G7-Science Lab Manual

77  

                           

7.       PREDICT:    How  much  force  would  an  object  of  50g  have  on  Earth?   Draw  and  label  a  force  diagram.  

Gravity  Lab  Follow-­‐Up  Questions    

1.       A  student  says  to  his/her  teacher,  “I  am  going  to  find  the  weight  of  this  object  by  using  the  triple  beam  balance.”  Explain  how  this  comment  could  be  incorrect.  Is  mass  and  weight  the  same  concept?    Explain  by  using  the  proper  vocabulary,  underline  the  vocabulary,  and  use  complete  sentences.  

               

2.       If  you  were  to  take  a  backpack  from  Earth  to  Mars  would  its  mass  change  or  stay  the  same?  Explain.              

3.       Analyze:  Based  on  what  you  have  seen,  how  does  the  mass  of  a  planet  impact  the  gravity  it  has?  Explain  the  relationship  between  mass  and  gravity.  Use  complete  sentences.  

           

4.       Analyze:  Which  of  the  planets  has  a  greater  gravity  than  Earth?  Do  these  planets  also  have  greater  mass?    

     

5.       How  are  weight  and  force  related?  Explain  using  complete  sentences.              

6.       Draw  a  FORCE  DIAGRAM  showing  one  of  the  objects  from  the  lab.  Be  sure  to  :      

    picture  of  object,  name  of  object       ground  of  planet,  name  of  planet  

    _size  of  force  and  direction  of  force  

Page 67: AIS-G7-Science Lab Manual

78  

8.       PREDICT:  How  much  force  would  an  object  of  150  g  have  on  a  planet  that  had  3x  the  gravity  of  earth?  Explain  your  answer  in  complete  sentences.  

           

9.       PREDICT:  How  much  force  would  an  object  of  20  g  have  on  a  planet  that  was  ½  the  size  of  Earth?  Explain  your  answer  in  complete  sentences.  

     

10.  PREDICT:  How  do  you  think  increasing  a  planet’s  size  would  impact  its  ability  to  pull  objects  towards    

     

11.  What  did  you  learn  about  the  relationship  between  weight,  force,  gravity,  mass  and  acceleration?  Explain  what  you  “learned”  from  this  lab.  

                 Vocabulary:    Mass  Weight  

Acceleration  

Force  

Page 68: AIS-G7-Science Lab Manual

79  

     

LAB  AND  READING  ASSIGNMENT/NOTE  TAKING  GUIDE    

Investigate  Momentum-­‐  What  happens  when  objects  collide?  

 Read  pages  64-­‐69  in  your  book.  Answer  the  following  questions.  

 1.       Any  moving  object  has  what  kind  of  property?  

 

     

2.       What  is  momentum    defined  as?            

3.       Which  object  will  have  more  momentum,  a  tennis  ball  or  a  wrecking  ball?  Explain  your  answer  

               

4.       How  is  momentum  similar  to  inertia?   Explain.                  

5.       What  is  the    formula  for  momentum?    

 6.       What    two  things  must  you  know  to  find  the  

momentum  of  an  object?  

7.       How  is  momentum    different    than  inertia?        8.       Which  object  will  have    MORE  momentum,  a  fast  

moving  wrecking  ball  or  a  slow  moving  wrecking  ball?  Explain.  

             9.       If  you  had  two  wrecking  balls,  one  moving  faster  

than  the  other,  which  would  be  able  to  do  the  MOST  damage?  How  do  you  know?  

           10.   In  the  formula  for  momentum,    “p  ”    stands  for…?      11.  What  are  the  units  for  momentum?  Why  are  

these  the  units  for  momentum?            12.   Is  momentum  a  vector?  What  is  a  vector?  

     

SHOW  THE  FORMULA,  WORK,  ANSWER  AND  UNITS    

13.  What  is  the  momentum  of  a  1.5  kg  ball  moving  at  2  m/s?    

FORMULA   WORK   ANSWER   UNITS          

Page 69: AIS-G7-Science Lab Manual

80    

14.  What  is  the  momentum  of  a  2.5  g  ball  moving  at  5  m/s?    FORMULA   WORK   ANSWER   UNITS          

   

15.   Define:    Collision    

     

16.  What  is  one  way  in  which  objects  transfer  momentum?  Explain.  

         

17.  What  is  a    “  sy  stem  ”    as  defined  and  explain  in  your  book  on  page  67?  

     

18.  When  you  have  a  collision  between  two  objects  what  two  things  CHANGE?  

     

19.   Define:  Conservation  of  Momentum.              

20.   How  much  an  object’s  momentum  changes  when  a  force  is  applied  depends  on  what  two  things?  Explain.  

           

21.   To  find  the  total  momentum  of  objects  moving  in  the  same  direction,  what  should  you  do  with  the  momenta  of  the  objects?  

22.   For  two  objects  that  are  traveling  in  opposite  directions,  what  should  you  do  to  find  the  momenta  of  the  objects?  

           23.  What  measurements  are  needed  to  calculate  

force?              24.   Is  there  any  difference  between    force  and  

momentum?  Explain  your  answer.            25.   In  collisions,  forces  are       and  

    .  26.   Is  momentum  conserved  in  collisions?  Explain.            27.    Momentum  is  a  property  of  a        

object.      28.   Are  collisions  the  ONLY  events  in  which  

momentum  is  conserved?  Explain.  

Page 70: AIS-G7-Science Lab Manual

81    

29.  What  is  the  momentum  of  a  100  k  g  ball  moving  at  15  m/s?    FORMULA   WORK   ANSWER   UNITS          

   

30.  What  is  the  momentum  of  a  12.5  g  ball  moving  at  15  m/s?    FORMULA   WORK   ANSWER   UNITS          

   

CLASS  DISCUSSION/  NOTES-­‐  WRITE  THE  NOTES  FROM  THE  SMART  BOARD  DOWN.    

• Found  in       objects.  Is  a  measure  of       in  motion.    Formula  is:          

• Symbol  for  momentum   is       Symbol  for  mass  is       _.    Symbol  for  velocity  is       _.    

• Units  for   momentum  is       _.       More  mass=  more       Momentum  depends  on       _.    

• Momentum  takes  into  account       Momentum  Is  a       it  has  size  and  direction)    

• Collision  -­‐Two  objects  in  close  contact  exchange       and       The  total  momentum  of  a  system  of  objects       change,  as  long  as  no  outside  forces  are  acting  on  that  system.  

 • To  find  total  momentum  of  objects  moving  in  the  SAME  direction,       _the  momenta  of  the  objects.  

 • Objects  traveling  in  opposite  directions,       _the  momentum  from  one  another  

Page 71: AIS-G7-Science Lab Manual

82    

Using  your  text  book  (p.  77-­‐  83  and  page  122  –  124)    

1.       Define:  Kinetic  Energy    

     

2.       Define:  Potential  Energy      

3.       Moving  objects  have  what  type  of  energy?      

4.       The  faster  an  object  moves,  the  more       energy  it  has.      

5.       How  are  kinetic  energy  and  potential  energy  DIFFERENT?  Explain.                  

6.        Draw  a  picture  of  a  roller  coaster  and  explain  which  locations  the  roller  coaster  would  have  the  greatest  potential  energy  and  the  greatest  kinetic  energy.  

             7.  Define:  Gravity        8.  Do  all  planets  have  the  same  gravity?  Explain.  

           9.  Gravity  is  called  the       _force  because  it  acts  on  any  two  masses  anywhere  in  the  universe.    10.  On  earth,  the  gravity  is       _.    11.  In  the  spring  scale  lab  you  calculated  acceleration  due  to  gravity  as       _.    12.  The  more  mass  two  objects  have,  the  more       of  gravity  the  masses  will  exert  on  each  other.    13.  What  is  the  relationship  between  the  mass  of  an  object  and  the  force  of  gravity?  

Page 72: AIS-G7-Science Lab Manual

83    

14.  Knowing  that  planets  are  different  in  masses/size,  explain  the  difference  of  the  force  of  gravity  on  an  object  (like  an  astronaut)  if  he/she  is  near  a  large/massive  planet  vs.  a  small,  less  massive  planet.  Explain.                      15.    As  the  distance  between  the  objects  increases,  the  force  of  gravity       .    16.  In  a  vacuum,  where  there  is  no  air,  all  falling  objects  have  the       acceleration  due  to  gravity.    17.  If  you  were  to  go  to  another  planet,  would  your  weight  be  the  same?  Explain.  

           18.  Compare  the  term  “  w  eig  ht”   t  o   t  he   term   “mass  ”.    How  are  they  DIFFERENT?        19.  Define:  Mass        20.  Define:  Weight        21.  An  object’s  weight  is  dependent  on  the  force  of       acting  on  it.    22.  When  you  are  using  a  triple  beam  balance,  are  you  measuring  weight  or  mass?  Explain.  

           Gravity  and  Weight  Problems   Formula  to  find  the  weight  of  an  object          units  for  weight_            Show  work    Planet  A   Gravity  15.6  m/s2,    astronaut  85.6  kg  =  weight_        Planet  B   Gravity  6.2  m/s2,  astronaut  60.2  kg=      weight          Planet  C   Gravity  21.6  m/s2,  astronaut  26.9  kg  =  weight          Why  are  the  units  for  weight  the  same  as  the  units  for  force?  

Page 73: AIS-G7-Science Lab Manual

84    

       Chap  2  Power  Point  Notes  and  Discussion:    Gravity    is  the       of  attraction  between  two       _.    The  force  of  gravity  depends  on  the       of  the  objects.    Friction  is  the  force  that       motion  between  two       that  are  pressed  together.  

Draw   a  picture  of  an  object  moving  to  the  right  and  show  how  friction  “opposes”  its  motion.  

   Potential  Vs.  Kinetic  Energy    

1.       Define:  Potential  Energy    

     

2.       Define:  Kinetic  Energy    

     

3.       Draw  a  picture  of  a  roller  coaster  and  explain  where  the  roller  coaster  has  the  most  kinetic  energy  and  the  most  potential  energy.    

Page 74: AIS-G7-Science Lab Manual

85    

   

Motion  and  Forces  TEST  Study  Guide          

L1)  Know  the  following  terms/definitions/equations.    

Position  Location  Relative  location  Motion  Relative  Motion  

Speed  Velocity  Acceleration  Vector  Force  Net  Force  

Balanced/Unbalanced  Forces  Newton’s  1st  Law  of  Motion  Newton’s  2nd  Law  of  Motion  Newton’s  3rd  Law  of  Motion  Inertia  

 L2)  You  should  be  able  to  solve  the  following  problems  (and  answer  with  CORRECT  UNITS).  

 Velocity:  A  man  was  running  across  a  bridge  for  5  minutes.   He  started  at  the  2000m  mark  on  the  bridge,  and  ended  at  the  1000m  mark  on  the  bridge.    What  was  his  velocity?  

 Pedro  O’Shea  is  a  famous  soccer  player.    He  plays  for  Team  Brevetti  F.C.  in  Edmond.   The  other  day,  he  was  clocked  running  100m  across  the  soccer  field  in  5  seconds.   What  was  his  velocity?  

 Acceleration:  A  car  is  driving  20m/s  down  the  county  road  and  sees  a  stop  sign  up  ahead.   He  slows  down  his  car  until  he  is  at  a  complete  stop  10  seconds  later.   What  was  his  acceleration?  

 After  looking  both  ways,  the  driver  of  the  car  begins  driving  again,  and  in  6  seconds  he  is  driving  25m/s.  What  was  his  acceleration?  

 Force:  What  is  the  Force  needed  to  accelerate  a  .02kg  mass  50m/s2?  

 What  is  the  acceleration  of  a  50kg  object  that  has  been  given  a  20N  push?  

What  is  the  mass  of  a  car  that  was  accelerated  25m/s2  by  a  force  of  150N?  

You  should  be  able  to  find  the  NET  Force  of  force  diagrams,  tell  if  there  will  be  motion,  and  in  what  direction  the  motion  will  be.