aircraft control Lecture 8

download aircraft control Lecture 8

of 13

Transcript of aircraft control Lecture 8

  • 7/29/2019 aircraft control Lecture 8

    1/13

    16.333Lecture# 8

    AircraftLateralDynamicsSpiral,Roll,andDutchRollModes

  • 7/29/2019 aircraft control Lecture 8

    2/13

    Fall2004 16.33371AircraftLateralDynamics

    Using a procedure similar to the longitudinal case, we can developtheequationsofmotionforthelateraldynamics

    v a,u= rx =Ax+Bu,x=pr

    and =rsec0

    A=

    Yv Yp YrmU0 gcos0m m

    (IL

    v +I Nv) (Lp +I Np) (Lr +I Nr) 0zx zx I zxIxx xx xx

    (I Lv +Nv) (I Lp+Np) (I Lr +Nr) 0zx I zx zxI Izz zz zz

    0 1 tan0 0where

    I = (IxxIzzI2xx zx)/IzzI = (IxxIzzI2zz zx)/IxxI = Izx/(IxxIzzI2zx zx)

    and

    (m)1 0 0

    0 (Ixx

    )1 Izx

    Ya Yr

    B= La Lrzz)

    1 zx (I0 I Na Nr0 0 0

  • 7/29/2019 aircraft control Lecture 8

    3/13

    Fall2004 16.33372LateralStabilityDerivatives

    Akeytounderstandingthelateraldynamicsisroll-yawcoupling. Lp rollingmomentduetorollrate:

    Rollratepcausesrighttomovewingdown,leftwingtomoveupVerticalvelocitydistributionoverthewingW = py

    LeadstoaspanwisechangeintheAOA:r(y) = py/U0Createsliftdistribution(chordwisestrips)

    1

    Lw(y) = U02Clr(y)cydy2Netresultishigherliftonright,loweronleftRollingmoment:

    b/2 b/2L= Lw(y)(y)dy=

    2

    1U

    0

    2b/2Cl

    py2cydyLp

    0

    6 4Keypoint: positiveyaw rate positive rollmoment.

  • 7/29/2019 aircraft control Lecture 8

    4/13

    Fall2004 16.33373 Np yawingmomentduetorollrate:

    Rolling wing induces a change in spanwise AOA, which changesthespanwiseliftanddrag.

    Distributeddragchangecreatesayawingmoment. Expecthigherdragonright(loweronleft)positiveyawmoment

    There isbothachange inthe lift(largerondownwardwingbe-causeoftheincreasein)andarotation(leansforwardondown-wardwingbecauseofthelarger). negativeyawmoment

    In general hard to know which effect is larger. Nelson suggeststhatforarectangularwing,crudeestimateisthat

    1Np U02Sb(CL)

  • 7/29/2019 aircraft control Lecture 8

    5/13

    Fall2004 16.33374NumericalResults

    Thecodegivesthenumericalvaluesforallofthestabilityderivatives.Cansolve fortheeigenvaluesofthematrixAtofind themodesofthesystem.

    0.03310.9470i0.56330.0073

    Stable,butthereisoneveryslowpole.

    Thereare3modes,buttheyarealotmorecomplicatedthanthelongitudinalcase.

    Slowmode -0.0073 SpiralModeFastreal -0.5633 RollDampingOscillatory 0.03310.9470i DutchRoll

    Canlookatnormalizedeigenvectors:Spiral Roll DutchRoll

    =w/U0 0.0067 -0.0197 0.3269 -28p=p/(2U0/b) -0.0009 -0.0712 0.1198 92r=r/(2U0/b) 0.0052 0.0040 0.0368 -112

    1.0000 1.0000 1.0000 0

    Notasenlighteningasthe longitudinalcase.

  • 7/29/2019 aircraft control Lecture 8

    6/13

    Fall2004 16.33375LateralModes

    RollDamping- welldamped.Astheplanerolls,thewinggoingdownhasanincreased

    (windiseffectivelycomingupmoreatthewing)Oppositeeffectforotherwing.Thereisadifferenceintheliftgeneratedbybothwings

    moreonsidegoingdownThedifferentialliftcreatesamomentthattendstorestorethe

    equilibrium. RecallthatLp

  • 7/29/2019 aircraft control Lecture 8

    7/13

    Fall2004 16.33376SpiralMode- slow,oftenunstable.From levelflight,consideradisturbancethatcreatesasmallroll

    angle>0 This results ina smallside-slipv (vehicle slidesdownhill)

    Nowthetailfinhitsontheoncomingairatanincidenceangleextratailliftpositiveyawingmoment

    Moment creates positive yaw rate that creates positive roll mo-ment(Lr >0)thatincreasestherollangleandtendstoincreasetheside-slipmakesthingsworse.

    If unstable and left unchecked, the aircraft would fly a slowlydivergingpathinroll,yaw,andaltitudeitwouldtendtospiralintotheground!!

    Cangetarestoringtorquefromthewingdihedral Wantasmalltailtoreducetheimpactofthespiralmode.

  • 7/29/2019 aircraft control Lecture 8

    8/13

    Fall2004 16.33377DutchRoll- dampedoscillationinyaw,thatcouplesintoroll.

    Frequency similar to longitudinal short period mode, not as welldamped(finlesseffectivethanhorizontaltail).

    Consideradisturbancefromstraight-levelflightOscillationinyaw(finprovidestheaerodynamicstiffness)Wingsmovingbackand forthduetoyawmotion result inoscil-

    latorydifferential lift/drag(wingmovingforwardgeneratesmorelift)Lr >0

    Oscillationinrollthatlagsbyapproximately90 ForwardgoingwingislowOscillatingrollsideslipindirectionoflowwing.

  • 7/29/2019 aircraft control Lecture 8

    9/13

    Fall2004 16.33378

    Doyouknowtheoriginsonthenameofthemode? DamptheDutchrollmodewithalargetailfin.

  • 7/29/2019 aircraft control Lecture 8

    10/13

    Fall2004 16.33379AircraftActuator Influence

    102

    10

    1

    10

    0

    102

    10

    1

    10

    0

    10

    1

    10

    2

    |Gda

    |

    Freq

    (rad/sec)

    102

    10

    1

    10

    0

    102

    10

    1

    10

    0

    10

    1

    10

    2

    |G

    pda|

    Freq(rad/sec)

    Transferfunctionfroma

    ilerontoflightva

    riables

    102

    10

    1

    10

    0

    102

    10

    1

    10

    0

    10

    1

    10

    2

    |Grda

    |

    Freq

    (rad/sec)

    102

    10

    1

    10

    0

    200

    150

    100

    500

    50

    100

    150

    200

    argGda

    Freq

    (rad/sec)

    102

    10

    1

    10

    0

    350

    300

    250

    200

    150

    100

    500

    argGpda

    Freq

    (rad/sec)

    102

    10

    1

    10

    0

    200

    150

    100

    500

    50

    100

    150

    200

    argGrda

    Freq

    (rad/sec)

    Figure1:Aileron impulsetoflightvariables.Responseprimarily in. Transferfunctionsdominatedby lightlydampedDutch-rollmode. Notetherudder isphysicallyquitehigh,so italso influencestheA/Croll. Ailerons influencetheYawbecauseofthedifferentialdrag

  • 7/29/2019 aircraft control Lecture 8

    11/13

    Fall2004 16.333710

    102

    10

    1

    10

    0

    10

    0

    10

    1

    10

    2

    10

    3

    10

    4

    |Gda

    |

    Freq

    (rad/sec)

    102

    10

    1

    10

    0

    102

    10

    1

    10

    0

    10

    1

    10

    2

    |Gpda

    |

    Freq(rad/sec)

    Transferfunctionfromr

    uddertoflightvariables

    10

    2

    10

    1

    10

    0

    102

    10

    1

    10

    0

    10

    1

    10

    2

    |Grda

    |

    Freq

    (rad/sec)

    102

    10

    1

    10

    0

    200

    150

    100

    500

    50

    100

    150

    200

    argGda

    Freq

    (rad/sec)

    102

    10

    1

    10

    0

    500

    400

    300

    200

    1000

    argGpda

    Freq

    (rad/sec)

    10

    2

    10

    1

    10

    0

    300

    200

    1000

    100

    200

    argGrda

    Freq

    (rad/sec)

    Figure2:Aileron impulsetoflightvariables.Responseprimarily in.

  • 7/29/2019 aircraft control Lecture 8

    12/13

    Fall2004 16.333711

    0 5 10 15 20 25 304

    2

    0

    2x 10

    4

    rad

    Aileron 1 deg Impulse 2sec on then off

    0 5 10 15 20 25 304

    2

    0

    2x 10

    3

    p

    rad/sec

    a

    > 0 ==> right wing up

    0 5 10 15 20 25 305

    0

    5x 10

    4

    rrad/sec

    Initial adverse yaw ==> RY coupling

    0 5 10 15 20 25 300.01

    0.005

    0

    rad

    time sec

    Figure3:Aileron impulsetoflightvariables Ailerona=1deg impulsefor2sec.

    Since a >0 then right ailerongoesdown, and rightwinggoesup Reidsnotation,and it is notconsistentwiththepictureon64(fromNelson).

    Influenceof the rollmode seen in the responseofp toapplicationand releaseoftheaileron input.

    Seeeffectofadverseyawintheyawrateresponsecausedbythedifferentialdragduetoailerondeflection.

    Spiralmodehardertosee.Dutchmoderesponse inothervariablesclear(1rad/sec6secperiod).

  • 7/29/2019 aircraft control Lecture 8

    13/13

    Fall2004 16.333712

    0 5 10 15 20 25 300.01

    0

    0.01

    0.02

    rad

    Rudder 1 deg step

    0 5 10 15 20 25 300.1

    0

    0.1

    pr

    ad/sec

    0 5 10 15 20 25 300.1

    0

    0.1

    rrad/sec

    0 5 10 15 20 25 302

    1

    0

    1

    rad

    time sec

    Figure4:Ruddersteptoflightvariables Rudderstep input1degstep.

    Dutchrollresponseveryclear.Other2modesaremuch lesspronounced. showsavery lightlydampeddecay.pclearlyexcitedaswell.Doesntshow it,butoftenseeevidenceofadverserollinp responsewhere initialp isopposite sign to steady state value. Reason isthat the forces act on the finwhich iswell above the cg and the aircraftrespondsrapidly(initially) inroll.

    ultimatelyoscillatesaround2.5