Air Loads - Clarkson University

download Air Loads - Clarkson University

of 15

Transcript of Air Loads - Clarkson University

  • 7/29/2019 Air Loads - Clarkson University

    1/15

    AirLoads Airfoil

    Geometry

    Camberline

    linejoiningthemidpointsbetweenupperandlowersurfaces.

    Chordline

    straightlinejoiningendpointsofcamberline(length=c)

    Camber

    max.

    distance

    of

    camber

    line

    from

    chord

    line

    (expressed

    as

    %c;

    usuallylessthan5%c)

    Zu

    =(Zc

    +Zt

    ) Zl

    =(Zc

    Zt

    )

    z thickness

    camber

    Lowersurface

    Chordline

    TE

    TE

    thickness

    Zt

    ZcZl

    ZuLEcircle(radius)

    AE212 Jha Loads-1

    Uppersurface

  • 7/29/2019 Air Loads - Clarkson University

    2/15

    ForcesandMoments

    Angleof attack

    V

    Arbitraryref.pt.

    (generallyc/4orcg)

    SVRMfF N2

    ).,,(

    Forairfoil,

    Liftco

    efficient

    Dragcoefficient

    Pitchingmomentcoefficient

    1( )S c unitspan

    cossin

    l lift Fd drag F

    m pitching moment

    l

    d

    F

    12

    l

    l lC qcV c

    d

    dC

    qc

    2mmC

    qc

    AE212 Jha Loads-2

    m

  • 7/29/2019 Air Loads - Clarkson University

    3/15

    WingPlanform

    Aerodynamic characteristics

    generally

    basedon

    gross

    wing

    area

    (assumed

    extendeduptofuselagecenterline)

    Exposedwing(onlyoutsidefuselage)

    areausedforskinfrictiondrag

    LE

    C(y)Ct

    TE

    s=b/2

    b

    chordline

    Cr

    y

    LE

    / 4c

    0

    2

    / 2

    ( ) 2 ( ) (1 )

    2 2

    ,

    , /

    r t r

    wing

    t r

    b

    wing

    b bS c c c y dy c

    bWingaspectratio A

    S

    Wingtaper ratio c c

    AE212 Jha Loads-3

  • 7/29/2019 Air Loads - Clarkson University

    4/15

    MeanAerodynamicChord(MAC),

    Wingtwistalongspan

    +

    y/s=1.0Washin

    tip Washout

    tip Root

    MeanAerodynamicChord

    /22

    / 22

    0

    /20

    0

    21

    1

    ( ) 2 2

    ( ) 3( )

    b

    b

    b r

    c y dy

    c c y dy cSc y dy

    /2

    0

    2 1 2( ) ( )

    6 1

    ( (1/ 4) )

    b

    mac

    by c y ydy

    S

    Aerodynamic center at c for subsonic M

    Root

    AE212 Jha Loads-4

  • 7/29/2019 Air Loads - Clarkson University

    5/15

    TheVnDiagram(FlightEnvelope)

    10.0

    7.5

    5.0

    2.5

    2.5

    5.0

    A150 300 450Vs,

    1g V4

    V* V5

    +7.5

    3.0

    BC

    DE

    Max.speed

    boundary.

    M=0.85

    approx.

    Ve

    (knots)

    Stall

    area

    CLmaxboundary

    Negativelimitloadfactor

    CLmaxboundary

    Positivelimitloadfactor

    Maxq

    Vn(velocity-load factor) diagramforatypicalJet

    Trainer (1knot=1.15mph)

    Vcruise

    3

    2

    1

    AE212 Jha Loads-5

    Stall

    area

  • 7/29/2019 Air Loads - Clarkson University

    6/15

    VnDiagram

    Limitloadisthesafelimituptowhichthereisnopermanentdeformation

    Ultimateloadfactor

    Structuralfailureoccurswhenn>nultimate

    V

    n(velocity

    load

    factor)

    diagram

    includes

    both

    aerodynamic

    and

    structurallimitationsandestablishesmaneuverboundaries.

    CurveAB:aerodynamiclimitonloadfactor,imposedby(CL

    )max

    2 max

    max

    max max

    max max

    max 4

    ( )1

    2 /

    1 ,

    2 ,3

    , ( )

    L

    L L

    L L

    Cn V

    W S

    Pt C C n n

    Pt C C n nPt Outside flight envelope

    AsV increases n possiblealsoincreases V

    AE212 Jha Loads-6

  • 7/29/2019 Air Loads - Clarkson University

    7/15

    VnDiagram

    HorizontallineBC:Positivelimitloadfactorofthestructure

    LineCD:highspeedlimitsetbymaximumdynamicpressure(designdive

    speed,VCD

    )

    Athigher

    speeds,

    undesirable

    instabilities

    (like

    flutter,

    aileron

    reversal,

    divergence,buffetingetc.)mayoccur.

    VCD

    =1.5xVmax,cruise

    (max.cruisevelocity)(FARpart25airplanes)

    Forsupersonicaircraft,(Vmax

    /asL

    )=Max.Machno.inlevelflight+0.2

    (a=speedofsound)

    1/2

    max

    max

    max

    2*, * ,

    L L

    L

    n WAtV V whereV C C

    C S

    AE212 Jha Loads-7

  • 7/29/2019 Air Loads - Clarkson University

    8/15

    VnDiagram

    Maneuverpt.B: CL andnaresimultaneouslyattheirhighestpossible

    values.HighestInstantaneousTurnRate(V*=cornervelocity)

    CurveAE:NegativeCLmax

    limit(flowseparationfrombottomsurface)

    LineED:Negativelimitloadfactor(Whydifferentfromthepositivenmax

    ?

    skinthickness)

    22

    2

    1

    2

    1VVeSL

    ; ( )

    ; ( )

    SL eSealevel density V Equivalentair speed EAS

    densityat flightaltitude V Trueair speed TAS

    AE212 Jha Loads-8

  • 7/29/2019 Air Loads - Clarkson University

    9/15

    AirLoadDistributiononLiftingSurfaces

    Use

    high

    (CL

    max)

    limit

    and

    max

    q

    limit

    points

    for

    load

    calculationsonwings.

    Spanwise

    liftdistributionisproportionaltothecirculationateachspan

    station.Foranellipticalplanform,liftdistributioniselliptical.Fornon

    ellipticalwings,useSchrenks approximation

    (semi

    empirical)

    to

    estimate

    liftdistribution(Loaddistributiononawingistheaverageofactual

    planform

    shapeandanellipticshapeofthesamespanandarea.)

    Schrenks

    methodisnotapplicabletohighlysweptwings(suchasdelta

    wings)due

    to

    vortex

    flow

    elliptic

    Rectangularplanform

    average2

    2: ( ) 1 (1 )

    4 2: ( ) 1

    ryTrapezoidal c y C

    b

    S yElliptical c y

    b b

    Wingplanform

    AE212 Jha Loads-9

  • 7/29/2019 Air Loads - Clarkson University

    10/15

    ShearForcesandBendingMoments

    Supportshear

    reaction

    shear

    Support

    moment

    reaction

    Tension

    Compression

    moment

    Ultimate Load on each wing, )2/5.1**( nWLw

    Beam (wing) with distributed load

    AE212 Jha Loads-10

  • 7/29/2019 Air Loads - Clarkson University

    11/15

    0 0.15c 1.0c

    actual

    Approx.

    Foranyspanstation,theshearforceissimplythesumoftheverticalloadsoutboardofthatstation(or,theintegralofdistributedload)

    Bendingmomentatanystationequalsthesumofproductofloadateach

    outboardstationanditsdistancefromthestation

    For

    apositive

    Bending

    Moment

    (as

    shown

    in

    the

    figure)

    ,the

    internal

    forcesproducecompressiononupperpartandtensiononlowerpart

    Wingweightisproportionalto .Halving(t/c)increaseswingweight

    by41%.

    Wing

    weight

    is

    typically

    15%

    of

    total

    empty

    weight

    of

    aircraft

    Addfuelweighttoemptywingweighttoobtaingrosswingweight

    Chordwise

    liftdistributionmaybeapproximatedasshownbelow

    ShearForcesandBendingMoments

    AE212 Jha Loads-11

    1

    /t c

  • 7/29/2019 Air Loads - Clarkson University

    12/15

    (1)Pick

    load

    cases

    from

    V

    ndiagram

    (max

    AoA,

    max

    dynamic

    pressure,max.negativeAoA

    ,etc.)

    (2)Calculatetotalliftforce(approx.normalforce);Loadoneachwing,

    (3)Approx.wingasstrips

    fromcenterlinetotip(e.g.,10stripsof

    of 10%

    semi

    span

    each)

    (4)DistributeliftforceoneachstripusingSchrenks

    approximation

    (6)Estimateshearforceandbendingmoment(7)Usewingcenterofpressureat25%chord(subsonicspeeds)

    (8)Usingsamestripsasin(3),calculatetorqueaboutfrontspar

    location(say,

    15%

    chord).

    Then

    sum

    torque

    values

    from

    tip

    to

    root

    SF, BM, Torsion Calculation

    )2/5.1**( nWLw

    AE212 Jha Loads-12

  • 7/29/2019 Air Loads - Clarkson University

    13/15

    Rectangularwing:

    chord

    =0.5

    m,

    span

    =4m,

    TOGW

    =5,000

    N,

    nmax

    =4

    Wingarea=2sqm,AR=b/c

    =8

    Calculatetotalliftforce(approx.normalforce)oneachwing:

    =15,000N(Ultimateloadoneachwing)

    DistributeLw

    alongwingspanusingstripsofequalwidth

    Use3stripsforthisexampleproblem

    Chordforellipticalwing

    Example - SF, BM, Torsion Calculation

    )2/5.1**( nWLw

    AE212 Jha Loads-13

    y-station Wing chord, c Elliptical c(y) Average chord0 0.5 0.637 0.569

    0.66 0.5 0.601 0.5501.33 0.5 0.475 0.4882 0.5 0 0.250

    2 2 24 2 4(2) 2

    ( ) 1 1 0.637 1(4) 4 2

    S y y yc y

    b b

  • 7/29/2019 Air Loads - Clarkson University

    14/15

    Distributelift

    force

    on

    each

    strip

    using

    Schrenks

    approximation

    Calculatestriparea=(Averageofgeometricandellipticalchord)*width=Averagechord*0.667

    Calculatefactor

    forliftdistribution:Lw

    =(factor)*(sumofstripareas)

    15,000N=(factor)*(0.965sqm)

    factor=15,544N/sqm

    AE212 Jha Loads-14

    Example - SF, BM, Torsion Calculation

    Strip Strip area Lift on each strip

    1 0.373 5798 N2 0.346 5378 N

    3 0.246 3824 N

  • 7/29/2019 Air Loads - Clarkson University

    15/15

    Estimateshear

    force

    and

    bending

    moment

    SFatanyystation=sumofliftforceoutboardofystation

    BMatanyystation=sumof(liftforce*distance)outboardofystation

    Forcalculatingdistance,assumeliftactingthroughthecenterofstripwidth

    Calculatetorqueabout15%cusingwingcenterofpressureat25%c(good

    approximationatsubsonicspeeds);sumtorquevaluesfromtipto

    root

    AE212 Jha Loads 15

    Example - SF, BM, Torsion Calculation

    y-station Shear Force, N Bending Moment, N-m

    0 15000 13676 (6361+5381+1934)

    0.667 9202 5620 (3826+1794)

    1.33 3824 1275

    2 0 0

    Strip Torque, N-m

    1 750 (460.1+289)

    2 460.1 (191.2+268.9)

    3 191.2