AICHE 15 - IMPELLER EFFICIENCY

16
A New Definition of Impeller Efficiency John A. Thomas, PhD & Richard K. Grenville, PhD AIChE Annual Meeting Salt Lake City, UT. 12 November 2015

Transcript of AICHE 15 - IMPELLER EFFICIENCY

Page 1: AICHE 15 - IMPELLER EFFICIENCY

A New Definition of Impeller Efficiency

John A. Thomas, PhD

&

Richard K. Grenville, PhD

AIChE Annual Meeting

Salt Lake City, UT.

12 November 2015

Page 2: AICHE 15 - IMPELLER EFFICIENCY

Efficiency definitions

• Hydraulic efficiency (Brown (2010)):

– Ratio of Fluid Kinetic Energy to Mechanical Energy

Input

• Flow efficiency (after Fořt et al. (2010)):

– Mass of Fluid Pumped per Joule of Energy Input

mstarcfd.com Slide 2 of 16

Po

Fl

π

8=φ

3

2HYDR

2/3-3/4

3/12FLOW)Tε()

T

D(

Po

Fl08.1=

)ND(ρPo

ρFl=

P

Qρ=φ

Page 3: AICHE 15 - IMPELLER EFFICIENCY

Efficiency governed by impeller type and tank morphology

mstarcfd.com Slide 3 of 16

Page 4: AICHE 15 - IMPELLER EFFICIENCY

Flow number does not correctly describe energy flux

mstarcfd.com Slide 4 of 16

𝑣𝑦 𝑟 = 0.5𝑟2 𝑣𝑦 𝑟 = 0.1𝑟2 + 0.2

𝑁𝑞 =2𝜋 𝑣𝑦𝑟𝑑𝑟

𝑅

𝑜

𝑁𝐷3 =𝜋

4 𝑁𝑞 =

2𝜋 𝑣𝑦𝑟𝑑𝑟𝑅

𝑜

𝑁𝐷3 =𝜋

4

𝐾 =𝜋 𝑣𝑦

3𝑟𝑑𝑟

𝑅

𝑜

𝑁3𝐷5 =57𝜋

7000= 0.008 𝐾 =

𝜋 𝑣𝑦3𝑟𝑑𝑟

𝑅

𝑜

𝑁3𝐷5 =𝜋

56= 0.018

Same pumping number, but 2.2X difference in kinetic energy flux!

Page 5: AICHE 15 - IMPELLER EFFICIENCY

mstarcfd.com Slide 5 of 16

Boltzmann as a numerical experiment: D/T=0.5

https://youtu.be/v82hdKEFB-I https://youtu.be/tTyWIQT-A_c

Page 6: AICHE 15 - IMPELLER EFFICIENCY

Power draw output data from the DMT

mstarcfd.com Slide 6 of 16

Page 7: AICHE 15 - IMPELLER EFFICIENCY

Underlying DMT physics are correct

mstarcfd.com Slide 7 of 16

32334/3

max 08.004.1 sm

w

DNPo

p

Nq

https://youtu.be/x0Zvun5txk8

Page 8: AICHE 15 - IMPELLER EFFICIENCY

Power dissipation output data from the DMT

mstarcfd.com Slide 8 of 16

Page 9: AICHE 15 - IMPELLER EFFICIENCY

Net effect is a change in kinetic energy

mstarcfd.com Slide 9 of 16

𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡 =𝑑𝐾

𝑑𝑡

Page 10: AICHE 15 - IMPELLER EFFICIENCY

Non-dimensionalize to create similarity solution

mstarcfd.com Slide 10 of 16

Page 11: AICHE 15 - IMPELLER EFFICIENCY

The kinetic energy number, Ke, for this system

mstarcfd.com Slide 11 of 16

Page 12: AICHE 15 - IMPELLER EFFICIENCY

Same tank: Hydrofoil versus PBT

mstarcfd.com Slide 12 of 16

𝑁𝑘,𝐻 = 0.76

𝑁𝑘,𝑃 = 2.25

Page 13: AICHE 15 - IMPELLER EFFICIENCY

Comparing performance

mstarcfd.com Slide 13 of 16

Identical Power and Diameter

PBT imparts 12% more KE PBT requires 15% less power

Identical KE and Diameter

-or-

Page 14: AICHE 15 - IMPELLER EFFICIENCY

Why is the PBT more efficient (for this tank)?

mstarcfd.com Slide 14 of 16 https://youtu.be/j9hmBA-Hbsw https://youtu.be/tTyWIQT-A_c

Page 15: AICHE 15 - IMPELLER EFFICIENCY

But the hydrofoil produces a more homogenous flow

mstarcfd.com Slide 15 of 16

0.03 0.025 0.015 0.02 0.005 0.01 0

Kinetic Energy (J)

100

101

102

104

105

106

103

Voxels Hydrofoil

Kinetic Energy (J)

0.03 0.025 0.015 0.02 0.005 0.01 0

Voxels

100

101

102

104

105

106

103

Pitched Blade

Page 16: AICHE 15 - IMPELLER EFFICIENCY

Conclusions and Key Points

• Boltzmann is excellent at running numerical experiments

– No meshing

– LES turbulence/correct EDR

– 3D/Fully transient

– Scales exceptionally well on HPC

• Impeller efficiency is governed by first law of thermodynamics

– Power In-Power Out=Total Kinetic Energy

– Can derive a system-specific Nk

– Function of impeller/tank competition

• Np and Nk together combine to score relative efficiency

• Still should consider implications of energy distribution

mstarcfd.com Slide 16 of 16