Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

download Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

of 357

Transcript of Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    1/356

    Published under the aegis of the AGU Books Board

    Library of Congress Cataloging-in -Publication DataMineral phys ics and crystallo graphy : a handbook of phys ical constants/

    Thomas J. Ahrens, editor.p. cm. - (AGU reference shelf ISSN 3080-305X; 2)Includes bibliographic al references and index.ISBN o-87590-852-7 (acid-free)I. Mineralogy-Handbook s, manuals, etc. 2. Crystallo graphy--Handbooks, manuals, etc. I. Ahrens, T. J. (Thomas J.), 1936II. Series.QE366.8.M55 1995549. l-dc20 95-3663CIPISBN o-87590-852-7ISSN 1080-305XThis book is printed on ac id-free paper. @

    Copyright 1995 by the America n Geoph ysical Union2000 Florida Avenue, N.W.Washington, DC 20009Figures, tables, and short excerpts may be reprinted in scien tific b ooks and journals if the source isproperly cited.Authorization to photocopy items for internal or personal use, or the internal or personal use ofspec ific clients, is granted by the American Geoph ysical Union for libraries and other users registeredwith the Copyright Clearance C enter (CCC) Transaction al Reporting Servic e, provided that the basefee of $1.00 per copy plus $0.20 per page is paid directly to CCC, 222 Rosewood Dr., Danvers, MA01923. ISSN 1080-305X/95/$01.00+0.20

    This consent does not extend to other kinds of copying, such as copying for creating newcolle ctive works or for resale. The reproduction of multiple copies and the use of full articles or the useof extracts, including figures and tables, for commerc ial purposes requires pe rmission from AGU.Published byAmerican Geophysical Union

    Printed in the United States of America .

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    2/356

    CONTENTS

    PrefaceThomas .I. Ahrens viiCrystallographic Data for Minerals (2- l)Joseph R. Smyth and Tamsin C. McCormickThermodynamic Proper ties of Minerals (2-2)Alexandra Navrotsky 18Thermal Expansion (2-4)Yingwei Fei 29Elasticity of Minerals, Glasses, and Melts (2-5)Jay D. Bass 45Elast ic Constants of Mantle Minerals at High Temperature (2-5a)Orson L. Anderson and Donald G. Isaak 64Static Compression Measurements of Equations of State (2-6a)Elise Knittle 98Shock Wave Data for Minerals (2-6h)Thomas .I. Ahrens and Mary L. Johnson 143Electrical Properties of Minerals and Melts (2-8)James A. Tyburczy and Diana K. Fisler 185Viscosity and Anelasticity of Melts (2-9)Donald B. Dingwell 209Viscosity of the Outer Core (2-9a)R. A. Secco 218Models of Mantle Viscosity (2-9h)Scott D. King 227Plastic Rheology of Crystals (2-10)J. P. Poirier 237Phase Diagrams of Earth-Forming Minerals (2-11)Dean C. Presnall 248

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    3/356

    CONTENTS

    Diffusion Data for Silicate Minerals, Glasses , and Liquids (2-12)John B. Brady 269Infrared, Raman, and Optical Spec troscopy of Earth Materials (2-13)Q. Williams 291Nuclear Magnetic Resonance Spectroscopy of Silica tes and Oxides inGeochemistry and Geophys ics (2-14)Jonathan F. Stebbins 303MGssbauer Spectroscopy of Minerals (2-15)Catherine McCammon 332Index 349

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    4/356

    PREFACEThe purpos e of this Handbook is to provide, in highly accessible form, selected

    critical data for professional and student solid Earth and planetary geophysicists.Covera ge of topics and authors were carefully chosen to fulfill these objectives.

    These volumes represe nt the third version of the Hand book of Physical Constants.Several ge nerations of solid Earth scientists have found these handboo ksto be the mostfrequently used item in their personal library. The first version o f this Handb ook wasedited by F. Birch, J. F. Schairer, and H. Cecil Spicer and published in 19 42 by theGeological Society of America (GSA) as Special Paper 36. The second edition, editedby Sydney P. Clark, Jr., w as also published by GSA as Memoir 92 in 1966. Since1966, our scientific knowledge of the Earth and planets has grown enormously, spurredby the discovery and verification of plate tectonics and the systematic exploration of thesolar system.The presen t revision was initiated, in part, by a 1989 chance remark by AlexandraNavrotsky asking what the Mineral Physics (now Mineral and Rock Physics) Committeeof the American Geophysical Union could produce that would be a tangible u sefulproduct. At the time I responded, upd ate the Handbook of Physical C onstants. Assoon as these words were uttered, I realized that I could edit such a revised Handbook.I thank Raymond Jeanloz for his help with initial suggestions of topics, the AGUsBooks Board, especially Ian McGregor, for encouragement and enthusiastic support.Ms. Susan Yamada, my assistant, deserves special thanks for her meticulousstewardship of these volumes. I thank the technical re viewers listed below whoseefforts, in all cases, improved the manuscripts.

    Thomas J. Ahrens, EditorCalifornia Institute of Technology

    Pasadena

    Carl AgeeThomas J. AhrensOrson AndersonDon AndersonGeorge H. BrimhallJohn BrodholtJ. Michael BrownBruce BuffettRobert ButlerClement ChaseRobert CreaserVeronique DehantAlfred G. DubaLarry FingerMichael GaffeyCarey GazisMichael GumisWilliam W. Hay

    Thomas HeatonThomas HerringJoel haAndreas K. KronenbergRobert A. Lange1John LonghiGuenter W. LugmairStephen Ma&wellGerald M. MavkoWalter D. MooneyHerbert PalmeDean PresnallRichard H. RappJustin RevenaughRich ReynoldsRobert ReynoldsYanick RicardFrank Richter

    William 1. Rose, Jr.George RossmanJohn SassSurendra K. SaxenaUlrich SchmuckerRicardo SchwarzDoug E . SmylieCarol SteinMaureen SteinerLars StixrudeEdward StolperStuart Ross TaylorJeannot TrampertMarius VassiliouRichard P. Von HerzenJohn M. WahrYuk Yung

    Vi i

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    5/356

    ~- ~-------

    Crystallographic Data For Minerals

    Joseph R. Smyth and Tamsin C. McCormick-

    With the advent of modern X-ray diffraction instrumentsand the improving availability of neutron diffractioninstrument time, th ere has been a substantial improvementin the number and quality of structural characterizations ofminerals. Also, the past 25 years has seen great advances inhigh pressure mineral synthesis technology so that manynew high pressure silicate and oxide phases of potentialgeophysical significance have been synthesized in crystalsof sufficient size for complete structural characterization byX-ray methods. The object of this work is to compile andpresent a summary of these data on a selected group of themore abundan t, rock-forming minerals in an internallyconsistent format for us e in geophysical and geochemicalstudies.

    Using mostly primary references on crystal struc turedeterminations of these minerals, we have compiled basiccrystallographic property information for some 300minerals. These data are presented in Table 1. The mineralswere selected to represent the most abundant mineralscomposing the crust of the Earth as well as high pressuresynthetic phases hat are believed to compose the bulk of thesolid Earth. The data include mineral name, ideal formula,ideal formula weight, crystal system, space group, s tructuretype, Z (number of formula units per cell), unit cell edges, a,

    b, and c in Angstrom units (lo-lo m) and inter-axial anglescc, p, yin degrees, unit cell volume in A3, molar volume incm3, calculated density in Mg/m3, and a referenc e to thecomplete crystal structure data.

    To facilitate geochemical and geophysical modeling, datafor pure synthetic end mcmbcrs arc presented whenavailable. Otherwise, data arc for near end-member naturalsamples. For many minerals, structure data (or samples) forpure end members are not available, and in these cases,indicated by an asterisk after the mineral name, data for animpure, natural sample are presente d together with anapproximate ideal formula and formula weight an d densitycalculated from the ideal formula.

    In order to conse rve space we have omitted the precisiongiven by the original workers in the unit cell parameterdetermination. However, we have quoted the data such thatthe stated precision is less than 5 in the last decimal placegiven. The cell volumes, molar volumes and densities arecalculated by us given so that the precision in the last givenplace is less than 5. The formula weights prese nted arecalculated by us and given to one part in approximately20,OflO for pure phases and one part in 1000 for impurenatural samples.

    J. R. Smyth, and T. C. McCorm ick, Department of Geolog icalScienc es, Unive rsity of Colorado, Boulder, CO 80309-0250Mineral Physic s and CrystallographyA Handbook of Phy sica l ConstantsAGU Reference Shelf 2Copyright 1995 by the American Geophy sical Union.

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    6/356

    Table 1, Crystallographic Properties of Minerals. h)Formula Crystal Space structure z a B Y Unit Cell Molar Density Ref.Weight System Group Type (4 (! () Vol (K3) Vol (cm3) (calc)(h4g/m3)ineral Formula

    Single OxidesHemhxkiecuprite cuzoMonoxides GroupPericlase NsOWUStite Fe0Lime CaOBunsenite NiOMunganosite MnOTenorite cueMontroydite HgOZincite ZnOBromellite Be0sesquioxide Group

    143.079 Cub. Pdm Cuprite 2 4.2696 17.833 23.439 6.104 2540.312 Cub. F&n Halite 4 4.21171.848 Cub. F&n Halite 4 4.310856.079 Cub. F&n Halite 4 4.168474.709 Cub. F&m Halite 4 4.44670.937 Cub. Fm%m Halite 4 4.810579.539 Mono.C2lc Tencrite 4 4.6837 3.4226

    216.589 Orth. Prima Montroydite 4 6.612 5.2081.369 Hex. P63mc Wurtzite 2 3.242725.012 Hex. P63nu: Wurtzite 2 2.6984

    74.67 11.244 3.585 9380.11 12.062 5.956 61

    111.32 16.762. 3.346 23572.43 10.906 6.850 23587.88 13.223 5.365 19599.54 8 1.080 12.209 6.515 11

    128.51 19.350 11.193 1247.306 14.246 5,712 18926.970 a.122 3.080 189

    5.12883.5315.19484.2770

    254.80 25.517 3.986 157302.72 30.388 5.255 23289.92 29.093 5.224 157297.36 29.850 5.021 157834.46 31.412 5.027 75

    1171.9 44.115 10.353 167331.8 49.961 3.960 176

    1358.19 51.127 3.870 1771386.9 52.208 5.583 217331.27 49.881 5.844 216

    CorundumHematiteEskolaiteKureliuniteBixbyiteAvicenniteClaudetiteArsenoliteSenurmontiteValentiniteDioxide GroupBrookiteAnataseRutileCassiteriteStishovitePyrolusiteBaddeleyiteUianiniteThoriunite

    -41203F e203Cr203v203Mnz03T 1203A S 203A S 203SW3S b203

    TiO2 79.890 Orth. Ph B rookite 8 9.184 5.447TiO2 79.890 Ten. Mtlamd Anatase 4 3.7842Ti02 79.890 Tetr. P42/mnm Rutile 2 4.5845SnO2 150.69 Tetr. P42/mnm Rutile 2 4.737SiO2 60.086 Tea P4dmnm Rutile 2 4.1790MnO2 86.94 Ten. P42/mnm Rutile 2 4.3%m2 123.22 Mono.P;?t/c Baddeleyite 4 5.1454 5.2075UOZ 270.03 Cub. F&m Fluorite 4 5.4682Th02 264.04 Cub. F&m Fluorite 4 5.5997

    Multiple OxidesChry~YlSpin.51GroupSpine1HercyniteMagnesiofenite

    BeAl & 126.97 Orth. Prunb Oiivine 4 4.424 9.396 5.471 227.42 34.244 3.708 96M&QFeA120.tMgFezQMugnesiochromite M&r204

    Magnetite FeFe204Jacobsite MnFe204Chnnnite FeCr204

    101.961 Trig.159.692 Trig.151.990 Trig.149.882 Trig.157.905 Cub.456.738 Cub.197.841 Mono.197.841 Cub.291 A98 Cub.291.498 Chth.

    R3CR%R%R%la71ClSP21lnF&mF&m

    6 4.75896 5.0386 4.96076 4.952

    16 9.414616 10.5434 7.99 4.65

    16 11.074416 11.15194 4.911 12.464

    12.991213.77213.59914.002

    CorundumCorundumCorundumBixbyiteBixbyiteClaudetiteArsenoliteArsenoliteVulentinite

    9.12 78.3

    5.4125.1459.51462.95333.1852.66512.8715.3107

    257.38 19.377 4.123 17136.25 20.156 3.895 10562.07 18.693 4.2743 20471.47 21.523 7.001 1546.54 14.017 4.287 2055.48 86.937 5.203 121

    140.45 21.149 5.826 208163.51 24.620 10.968 126175.59 26.439 9.987 227

    99.23

    142.27 Cub. F&m Spinet173.81 Cub. F&m Spinet200.00 Cub. F&m Spine1-

    8 8.08328 8.15588 8.3608 8.3338 8.3948 8.51108 8.3794

    528.14 39.762 3.578 61542.50 40.843 4.256 99584.28 43.989 4.547 100578.63 43.564 4.414 100591.43 44.528 5.200 100616.51 46.416 4.969 100588.31 44.293 5.054 10062 1.96 46.826 4.775 106

    192.30 Cub. F&m Spine1231.54 Cub. Fcdm Spine1230.63 Cub. k&m Spine1223.84 Cub. F&m Spine1-Ulvwspinel TiFe204 223.59 Cub. F&m Spinet 8 8.536

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    7/356

    Table 1. Crystallographic Properties of Minerals (continued).Mineral Formula Fotmula Crystal Space StNCtUE z 0 Y Unit Cell Molar Density Ref.Weight System Group be (A) () Vol (A3) Vol (cm3) (calc)(Mg/m3)

    Tilanale GroupIhnenite FeTiOsPyrophanite MnTiO3Perovskite CaTiArmalcolite Mg.@esTiS%Pseudobrookite FeaTiTungstates and Molybdnks

    151.75 Trig. R? Ilmenite 6 5.0884 14.0855 315.84 3 1.705 4.786 229150.84 Trig. Rs Ilmenite 6 5.137 14.283 326.41 32.766 4.603 235135.98 Orth. Pbnm Perovskite 4 5.3670 5.4439 7.6438 223.33 33.63 4.044 113215.88 Otth. Bbmm Pseudobrookite 4 9.7762 10.0214 3.7485 367.25 55.298 3.904 230239.59 Orth. Bbmm Pscudobrookite 4 9.747 9.947 3.717 361.12 54.375 4.406 3

    Ferberite FeW04Huebnerite MnW04Scheelite CaWO4Powellitc CaMoO4Stolzite P bw o4Wulfenite PbMoO4

    303.70 Mono. PZ/c Fe&rite 2 4.730 5.703 4.952 90.0 133.58 40.228 7.549 225302.79 Mono.P2/c Ferberite 2 4.8238 5.7504 4.9901 91.18 138.39 4 1.676 7.265 231287.93 Tetr. 141/a Scheelite 4 5.243 11.376 312.72 47.087 6.115 114200.02 Tetr. 141/a Scheelite 4 5.23 11.44 301.07 45.333 4.412 101455.04 Tetr. 141/a Scheelite 4 5.46 12.05 359.23 54.091 8.412 101367.12 Tctr. 141/a Scheelite 4 5.435 12.11 357.72 53.864 6.816 101

    HydroxidesGibbsiteDiasporeBochmiteBrucitcGoethiteLepidoehrosite

    WW3AIDAPOWMgWhFeO(OH)FeO(OH)

    78.00 Mono.P2t/n59.99 Orth. Pbnm59.99 Orth. Amam58.33 Trig. !%I88.85 Or&. Pbnm88.85 orth. cmczt

    Gibbsite 8 8.684 5.078 9.7364 4.401 9.421 2.8454 3.693 12.221 2.8651 3.124 4.7664 4.587 9.937 3.0154 3.08 1 2.50 3.87

    9454BoehmiteBruciteGocthiteBoehmite

    427.98 32.222 2.421 188117.96 17.862 3.377 34129.30 19.507 3.075 9840.75 24.524 2.377 243

    137.43 20.693 4.294 65148.99 22.435 3.961 43

    CarhonotesMagnesiteSmithsoniteSideriteRhodochrositcOtaviteCalciteVateriteDolomiteAnkeriteAragoniteStrontianiteCerussiteWitheriteAmriteMalachite

    M & 03 84.32 Trig. R%zatco3 125.38 Trig. R%FeCQ 115.86 Trig. R%MnCOs 114.95 Trig. R%CdCOj 172.41 Trig. R%CaC03 100.09 Trig. R?cCaC03 100.09 Hex. P63hmcCaMgKQh 184.41 Trig. dc*dco3)2 215.95 Trig. RTCaC03 100.09 orth. PmcnSrC03 147.63 Orth. PmcnPbco3 267.20 Orth. PmcnBaC03 197.39 orth. PmcnCu3@H)2(C03)2 344.65 Mon0.P2~/cCuz@H)zC% 221.10 Mono.P2t/a

    CalciteCalciteCalciteCalciteCalciteCalciteVateriteDolomiteDolomiteAragoniteAranoniteAraaoniteAragoniteAmriteMalachite

    6 4.6328 15.01296 4.6526 15.02576 4.6916 15.37966 4.7682 15.63546 4.923 16.2876 4.9896 17.061012 7.151 16.9373 4.8069 16.00343 4.830 16.1674 4.9614 7.9671 5.74044 5.090 8.358 5.9974 5.180 8.492 6.1344 5.3126 8.8958 6.42842 5.0109 5.8485 10.3454 9.502 11.974 3.240

    92.4398.75

    279.05 28.012 3.010 54281.68 28.276 4.434 54293.17 29.429 3.937 54307.86 30.904 3.720 54341.85 34.316 5.024 26367.85 36.9257 2.7106 54750.07 37.647 2.659 146320.24 64.293 2.868 182326.63 65.516 3.293 21226.91 34.166 2.930 51255.13 38.416 3.843 51269.83 40.629 6.577 191303.81 45.745 4.314 51302.90 91.219 3.778 245364.35 54.8 62 4.030 244

    NitratesSoda NiterNiterBeratesBorax

    Nd% 85.00 Trig. R% Calcite 6 5.0708 16.818 374.51 37.594 2.261 198KNOs 101.11 or&l. Pmcn Aragonite 4 5.4119 9.1567 6.5189 323.05 48.643 2.079 159Na2B40s(OH)4.8HaO 381.37 Mono. C2/c 11.885 10.654 12.206 106.62 1480.97 223.00 1.710 128

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    8/356

    Table 1. Crystallographic Properties of Minerals (continued). PMineral Formula FormulaCrystal Space StNCtUE % a(A) Y Unit Cell Molar Density Ref.Weight System Group TYPe () Vol (A3) Vol (cm3) (calc)(Mg/m3) 2bKernite Na2B406(0tI)2.31~20

    Colemanite CZ~B~O~(OH)~.H~O273.28 Mono. P21k Kernitc 4 7.0172 9.1582 15.6114 108.86 953.41 143.560205.55 Mono. P2,la Colemanitc 4 8.74 1 .264 6.102 110.12 564.30 84.869 1.904 48 F2.419 42 E;Q

    BaS04 233.40 Orth. Pbnm Bar itc 4 7.157 8.884 5.457 346.91 52.245SrS04 183.68 Orth. Pbnm I&rit e 4 6.870 8.371 5.355 307.96 46.371PbS04 303.25 Oh. Pbnm Barit e 4 6.959 8.482 5.398 318.62 47.911CaS04 136.14 Orth. A m m a Anhy drite 4 7.006 6.998 6.245 306.18 46.103CaS042H20KAk@0dz(0HkiKFes(S0dz(W6CU3(S04)(OW4NqSO4K2SG4MgS047HzO

    15.20172.17 Mono.lZ/a GypS lUll 4 5.670414.21 Trig. RTm Alunite 3 7.020500.81 Trig. RTm Alunite 3 7.304354.71 orth. Prima Antlerite 4 8.244142.04 Orth. F&ii Thenardite 8 9.829114.21 Orb. Pmcn Arcanite 4 5.763246.48 orth. P212121 Epsomite 4 11.846

    118.60

    6.04312.30210.07112.002

    6.53317.22317.26811.9875.8687.4766.859

    494.37 74.440735.04 147.572797.80 160.172597.19 89.920709.54 53.419433.90 65.335975.18 146.838

    Cag(PO&OHWPWsFCa#O&CIccPo4ym4W~~~dWQhLiFcPOqLiMnP0.jLiAI(F,OH)POdAMOW3WAm 4

    502.32 Hex. P63lm Apatite504.31 Hex. P63/m Apatite520.77 Hex. P63im Apatite235.09 Mono.P2t/n Monazite183.88 Tetr. I4tlomd Ziicon 7.04

    2133. Trig. R3c Wbitlockite157.76 Grth. Pmnb Olivine156.85 Orth. Pmnb Olivine146.9 Tric. Pi Amblygonite199.9 Mono.C2/m Augelitc121.95 Trig. P3t21 Qu==

    2 9.4242 9.3612 9.6284 6.714 6.8783 10.3304 10.3344 6.052 5.184 13.1243 4.943

    6.879 529.09 159.334 3.153 2146.884 523.09 157.527 3.201 2156.764 543.01 163.527 3.185 1376.46 104.0 298.7 44.98 5.23 766.036 285.54 43.00 4.277 12337.103 3428.8 688.386 3.099 384.693 291.47 43.888 3.595 2374.71 294.07 44.280 3.542 1015.04 112.11 9 7.78 67.88 160.20 48.242 3.045 165.066 112.42 490.95 73.924 2.705 101

    10.974 232.21 46.620 2.616 206

    6.01010.327.157.988

    Garnet 8 11.452 1501.9 113.08 3.565 8Garnet 8 11.531 1533.2 115.43 4.312 8Garnet 8 11.612 1565.7 117.88 4.199 161Garnet 8 11.845 1661.9 125.12 3.600 161Garnet 8 12.058 1753.2 13 1.99 3.850 161Garnet 8 11.988 1722.8 129.71 3.859 161

    MgzSiQFqSiO4MnzSi04Ni2Si04Ca2Si04CqSiO4CaMgSiOdCaFeSi

    403.15 Cub. l&d497.16 Cub. I&d495.03 Cub. In%403.15 Cub. IaTd508.19 Cub. IaTd500.48 Cub. IaTd140.70 orth. Pbw?z203.77 O rth. Pbnm201.96 Orth. Pbnm209.50 Ortb. Ptnm172.24 Orth. Phm209.95 Orth. Pbmn156.48 orth. Pbnm188.01 Orth. Pbnm

    Olivine 4 4.7534 10.1902 5.9783 289.58 43.603 3.221 69Olivine 4 4.8195 10.4788 6.0873 307.42 46.290 4.402 69Olivine 4 4.9023 10.5964 6.2567 325.02 48.939 4.121 69Olivine 4 4.726 10.118 5.913 282.75 42.574 4.921 124Olivine 4 5.078 11.225 6.760 385.32 58.020 2.969 50Olivine 4 4.7811 10.2998 6.0004 295.49 44.493 4.719 32Olivine 4 4.822 11.108 6.382 341 x4 51.412 3.040 165Olivine 4 4.844 10.577 6.146 314.89 47.415 3.965 32

    SulfatesBariteCelestiteAnglesiteAnhydriteGypsumAlunite*Jamsite*AntleritcThenarditcArcaniteEpsomitePhosphatesHydroxyspatiteFluorapatiteChlorapatiteMonazitcXenotimeWhitlockiteTriphyliteLithiophylliteAmblygonite*AugeIite*BerliniteOrthosillcatesGarner GroupAlmandineSpessartineGrossularAndraditeUvaroviteOlivine GroupForsteriteFayaliteTephroitcLiebenbergiteCa-olivineCo-olivineMonticelliteKirschsteinite

    2.953 118 u2.313 462.807 1453.127 1122.959 91 $2.659 90 z2.661 142 m1.678 36 Fv1

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    9/356

    Table 1. Crystallographic Properties of Minerals (continued).Mineral Fonnula Formula Crystal Space Stlucture z a(A) 8,

    Y Unit Cell Molar Density Ref.Weight System Group Type (1 Vol (A3) Vol (cm3) (calc)(Mg/m3)

    Zircon GroupZircon ZrSiO4Hafnon HfSi04Thorite* ThSiO4Coffinhe USiWilhife GroupPhenacite BezSi04Willemite ZnzSiO4Eucryptite LiAlSIO4Ahminosilicate GroupAndalusite Al2SiOSSillimanite AlzSi05Kyanite A12SiO5Topaz Al$i04(OH,E)2Humite GroupNorbergite* Mg3Si04F2Chondrodite* MgstSiOdzF2Humite* MmMW3FzClinohumite* MgdSQhFzStaurolite* Ee.+ALtaSixO&OH)2Other OrtbosilicotesTitanite CaBSiDatolite CaBSiOd(OH)Gadolinite* BE$eB2SizOtoChloritoid* FeA12Si05(OH)zSapphirine* MgwWit.502oPrehnite* Ca2Ai(Al,Si3)0to(OH)2

    183.30 Tetr. Irlllumd Zircon 4 6.6042 5.9796 260.80 39.270 4.668 95210.51 Tetr. 14~lumd Zircon 4 6.5125 5.9632 257.60 38.787 6.916 212324.1 Tetr. 14tlumd Zircon 4 7.1328 6.3188 321.48 48.401 6.696 222330.2 Tetr. 14@zd Zircon 4 6.995 6.236 305.13 45.945 7.185 115

    110.10 Trig. R7 Wiilemite 18 12.472 8.252 1111.6 37.197 2.960 241222.82 Trig. RI Willemite 18 13.971 9.334 1577.8 52.195 4.221 207126.00 Trig. Rj Willemite 18 13.473 9.001 1415.0 41.341 2.661 97162.05 Orth. Pnnm Andalusite 4 7.7980 7.9031 5.5566162.05 Orth. Pbam Sillimanite 4 1.4883 1.6808 5.7774162.05 Tric. PI Kyanite 4 1.1262 7.8520 5.5741 89.99182.0 Orth. Pbnm Topaz 4 4.6651 8.8381 8.3984

    342.44 51.564 3.1426 233332.29 50.035 3.2386 233

    106.03 293.72 44.221 3.6640 233346.21 52.140 3.492 242

    101.11

    203.0 Orth. fhm343 .I Monof2tlb484.4 Oh. fhm624.1 Mono. f&lb

    1704. Mono. c2/m

    Norbergite 4 4.7104 10.2718 8.7476Chondrodite 2 4.7284 10.2539 7.8404Hurnite 4 4.7408 10.2580 20.8526Clinohumite 2 4.7441 1 0.2501 13.6635Staurolite 1 7.8713 16.6204 5.6560

    423.25 63.13 3.186 13359.30 108.20 3.158 74

    1014.09 152.70 3.159 183652.68 196.55 3.259 186139.94 445.67 3.823 209

    109.06

    100.78690.0

    196.06 Mo~o.~?$/Q Titanite 4 7.069 8.122 6.566159.94 Mono.f&lc Datolite 4 4.832 7.608 9.636604.5 Mono f&/a Datolite 2 lO.ooo 7.565 4.786251.9 Tric. Pi Chioritoid 4 9.46 5.50 9.15 97.05690.0 Mono.fZ& Sapphirine 4 11.266 14.401 9.929412.391 Orth. fxm Prehnite 2 4.646 5.483 18.486

    90.4090.31

    101.56125.46

    C~(Mg~eAl)AlaSi~~O~42(0H)r~l915.1 Mono.CZlmHFeCa&BSbOra 570.12 Tric. fi

    Pumpelieyite 1 8.831 5.894 19.10 97.53Axinite 2 1.151 9.199 8.959 91.8 98.14

    370.23 55.748 3.517 213354.23 53.338 2.999 63360.69 108.62 5.565 148

    90.10 462.72 69.674 3.616 881312.11 197.57 3.493 149

    470.91 141.82 2.908 170985.6 593.6 3.226 172

    77.30 569.61 171.54 3.324 220PumpelleyiteAxiniteSorosiiicates & CyciosiiicatesEpidote GroupZoisite Cafil&Otz(OH)Clinozoisite Ca2Al$Si3012(OH)Hancockite* Ca(Rh,Sr)FeAl2Si30r~(OH)Allanite* CaBE(Al,Fe)$i30t2(0H)Epidote* Ca~FeAl#i30t2(0H)Melilite GroupMelilite* CaNaAlSizqGehlenite* Ca;?AlAiSi@Akerrnanite Ca2MgSi207Olher Sorosilicates and CyclosilictaesLawsonite CaAizSiz07(OH)$I20BUYi Be3Ai2SieOtxCordierite MgzA4SisOts

    454.36 ortb. funa Zoisite 4 16.212 5.559 10.036454.36 Mono. Pztlm Epidote 2 8.819 5.583 10.155590.6 Mono.f21/m Epidote 2 8.96 5.67 10.30565.2 Mono.f2t/m Epidote 2 8.927 5.761 10.150454.4 Mono.f 2t/m Epidote 2 8.8877 5.6275 10.1517

    904.41 136.19 3.336 52454.36 136.83 3.321 52416.5 143.5 4.12 53413.97 142.74 3. 96 53458.73 138.15 3.465 70

    115.50114.4114.77115.383

    258.2 Ten. fa21rn Meiilite 2 7.6344 5.0513 294.41 88.662 2.912 134214.2 Tetr. fZ21m Melilite 2 7.7113 5.0860 302.91 91.220 3.006 135212.64 Tetr. fZ2lrn Meiiiite 2 7.835 5.010 307.55 92.6 19 2.944 116

    314.24 orth. ccmm Lawsonite 4 8.795537.51 Hex. P6lmmc Beryl 2 9.2086584.97 orth. ccmm Betyl 4 17.079

    5.841

    9.730

    13.142 615.82 101 .I6 3.088 199.1900 614.89 203.24 2.645 1529.356 1554.77 234.11 2.499 45

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    10/356

    Table 1. Crystallographic Properties of Minerals (continued). mMineral Fotmula Formula Crystal Space structure 2 a Unit Cell MolarWeight System Group Type (A) (S,

    Y Density Ref.() Vol (A3) Vol (cm3) (calc)(Mg/m3)Tourmaline* NaFe~Al&S ~0~7(0H)~ 1043.3 Trig. R3mVesuvianite* CatgFezMgAltoSitsqo(OH,F)s2935. Tetr. P4/nncChain SillfatesEnstotifelFerrosilite GroupEIlStatik f+ww6 200.79 Oh. PbcaFerrosilite Fe#i& 263.86 Orth. PbcaClinoenstatite MgzSizOs 200.79 Mono. P2tlcClinoferrosilite Pe2Si206 263.86 Mono.P&lcClinopyroxme GroupDiopside CaMgSi& 216.56 Mono. C2IcHedenbergitc CaPeSi 248.10 Mono.CVcJade& Ntilsi206 202.14 Mono. C2lcAcmite NaFeSizOs 23 1.08 Mono. n/cCosmochlnr NaCrsi206 227.15 Mono.CZlcSpodumene LiAlSi206 186.09 Mono.CUcCa-Tschennaks CaAlA lSiOs 218.20 Mono. CL/cPyroxenoid GroupWollastonite CajSi3Og 348.49 Tric. CiBustamite* GaPe.dSi309 358.6 Tric. IiRho&mite MqSisOts 655.11 Tric. PiPyroxmangite Mn7Si70a 917.16 Tric. PiAenigmatite Na@5TiTiSkOzo 867.5 Tric. PiPectolitc HNaCa&Q 332.4 Tric. PiPetalite LiAlS&O te 306.26 Mono.PUaAmphibole GroupGedrite* Na,s(Mg$ez)A12Si,jO22(OH)2 853.23 Orth. PrimaAnthophyltite* C%sFez)Sis022(OH)2 843.94 orth. PmCummingtonite* ~MgsFez)SisOzz(OH)2 843.94 Mono. C2lmTremolite* ~a,~C@WWzz(OH)z 823.90 Mono CalmPargas&* NaCa2FeMg,tAl#i&22(OH)2 864.72 Mono.CZ/mGlaucophane* Naz(FeMaAlrSisOn~OH~~ 789.44 Mono.C2/mSheet SlllctaesTalcand PyrophylliteTalc &s%OldOH)z 379.65 Tric. CiPyrophyllite A12Who@H)2 360.31 Tric. CiTrioclohedral Mica GroupAn&e* KFe3(AlSi@t0(O H)2 511.9 Mono. (X/mPhlogopite* KMgfi&OldOH)2 417.3 Mono.C2/mLepidolite* KAlLi2AISi30t0(OH)2 385.2 Mono.C2/cLepidolite* KAU&AISi30tdOH)2 385.2 Mono. C2IcLepidolW KAlLifiISi3Oto(O H)2 385.2 Mono.C2lmZiiwaldite* K(AlFeLi)A lSi3Otu(OH )2 434.1 Mono.CZ/m

    Tounnaline 3 15.992 7.190 1592.5 319.7 3.263 66Vesuvianite 2 15.533 11.778 2841.8 421.9 3.429 6

    Orthopyroxene 8 18.227 8.819 5.179 832.49 62.676 3.204 197Orthopyroxene 8 18.427 9.076 5.237 875.85 65.941 4.002 197Clinoenstatite 4 9.626 8.825 5.188 108.33 418.36 62.994 3.188 150Clinoenstatitc 4 9.7085 9.0872 5.2284 108.43 437.60 65.892 4.005 33Clincpymxene 4 9.746 8.899 5.251 105.63 438.58 66.039 3.279 39Clinopyroxene 4 9.845 9.024 5.245 104.70 450.72 67.867 3.656 39Clinopyroxene 4 9.423 8.564 5.223 107.56 401.85 60.508 3.341 39Clinopyroxene 4 9.658 8.795 5.294 107.42 429.06 64.606 3.516 44Clinopyroxene 4 9.579 8.722 5.261 107.37 419.98 63.239 3.592 39Clinopymxene 4 9.461 8.395 5.218 110.09 389.15 58. 596 3.176 39Clinopyroxene 4 9.609 8.652 5.274 106.06 421.35 63.445 3.438 164

    BustantiteRhodonitePyroxmangiteAenigmatitePectolitePetalite

    4 10.104 11.054 7.305 99.53 100.56 83.44 788.04 118.66 2.937 1634 9.994 10.946 7.231 99.30 100.56 83.29 764.30 115.09 3.116 1632 7.616 11.851 6.701 92.55 94.35 105.67 579.84 174.62 3.752 1552 6.721 7.603 17.455 113.18 82.27 94.13 812.31 244.63 3.749 1552 10.406 10.813 8.926 104.93 96.87 125.32 744.52 224.21 3.869 402 7.980 7.023 7.018 90.54 95.14 102.55 382.20 115.10 2.888 1632 11.737 5.171 7.630 112.54 427.71 128.80 2.318 219

    Orthoamphibole 4 18.531 17.741Onhoamphibole 4 18.560 18.013Amphibole 2 9.51 18.19Amphibole 2 9.863 18.048Amphibole 2 9.910 18.022Amphibole 2 9.541 17.740

    5.2495.28185.33 101.925.285 104.795.312 105.785.295 103.67

    1725.65 259.81765.8 265.9902.14 271.7

    909.60 273.9912.% 274.9870.8 262.2

    3.184 1693.111 583.14 603.01 923.165 1853.135 168

    Talc 2 5.290 9.173 9.460 90.46 98.68 90.09 453.77 136.654 2.776 175Talc 2 5.160 8.966 9.347 91.18 100.46 89.64 425.16 128.036 2.814 1251MIM=412M 21M1M

    2 5.386 9.324 10.268 100.63 506.82 152.63 3.215 942 5.308 9.190 10.155 100.08 487.69 146.87 2.872 944 5.209 9.053 20.185 99.125 939.82 141.52 2.124 1924 9.04 5.22 20.21 99.58 940.38 141.60 2.791 1932 5.20 9.01 10.09 99.28 466.6 140.5 2.825 1942 5.296 9.140 10.096 100.83 480.0 144.55 2.986 82

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    11/356

    Table 1. Crystallographic Properties of Minerals (continued).FomntlaCrystal Space structure z a Y Unit Ceii Molar Density Ref.Weight System Group Type (4 () VoI (A3) Vol (cm3) (calc)(Mg/m3)ineral Formula

    Dioctahedral Mica GroupMuscovite*Paragonite*MargariteBityite*Chlorite GroupChlorite*Chlorite*clay GroupNWXiteDickiteKaoiiniteAmesite*Lizardite*TektosiiicatesSilica GroupQu-CoesiteTridymiteCristobaiiteStisboviteFeldspar GroupSanidineorthoclaseMicro&eHigh AibiteLow AibiteAnorthiteCeisian

    KAi~ISi3 0tc(OH) 2 398.3 Mono. C2/cNaAi~ AiSi~O to(OH )~ 384.3 Mono.C2/cCaAifilSi30tu(O H)2 399.3 Mono.C2/cCa(LiAi)z (AIBeSiz )Ote(OH )2 387.2 Mono.C2/c

    2Mt 4 5.1918 9.0153 20.0457 95.74 933.56 140.57 2.834 187341 4 5.128 8.898 19.287 94.35 877.51 132.13 2.909 1292M2 4 5.1038 8.8287 19.148 95.46 858.89 129.33 3.061 832M1 4 5.058 8.763 19.111 95.39 843.32 126.98 3.049 130

    Chlorite-IIb2 2 5.327 9.227 14.327 96.81 699.24 210.57Chlorite-IIW 2 5.325 9.234 14.358 90.33 97.38 90.00 700.14 210.85

    2.640 1092.636 1082.602 242.588 222.599 222.778 862.625 144

    555.8 Mono.C2/m555.8 Tric. Ci258.16 Mono.Cc258.16 Mono.Cc258.16 Tric. PI278.7 Tric . Cl277.1 Tr ig. P31m

    Nacrite 4 8.909 5.156 15.697 113.70 658.95 99.221Dickite 4 5.178 8.937 14.738 103.82 662.27 99.721Kaolinite 2 5.1554 8.9448 7.4048 91.700 104.862 89.822 329.89 99.347Amesite 4 5.319 9.208 14.060 90.01 90.27 89.96 688.61 103.69Lizardite IT 1 5.332 7.233 178.09 107.26

    SiO2SiO2SiO2SiO2SiO2

    60.085 Trig. f322l60.085 Mono.C2/c60.085 Mono.Cc60.085 Tar. f4t2t2

    CoesiteTridymiteCristobalite

    60.085 Tetr. W&nm Rutiie

    3 4.1934 5.4052 113.01 22.688 2.648 12716 7.1464 12.3796 7.1829 120.283 548.76 20.657 2.909 21048 18.494 4.991 25.832 117.75 2110.2 26.478 2.269 ill4 4.978 6.948 172.17 25.925 2.318 1732 4.1790 2.6651 46.54 14.017 4.287 20

    KAIS i& 278.33 Mono.CZm Sanidine 4 8.595 13.028 7.179 115.94 722.48 108.788 2.558 199KAISi3 0s 278.33 Mono.CZlm Sanidine 4 8.561 12.996 7.192 116.01 719.13 108.283 2.571 47KAiSisOs 278.33 Tric. Ci Sanidine 4 8.560 l2.%4 7.215 90.65 115.83 87.70 720.07 108.425 2.561 31NaAiSigOs 262.23 Tric. Ci Albite 4 8.161 12.875 7.110 93.53 116.46 90.24 667.12 100.452 2.610 234NaAiSi& 262.23 Tric. Ci Albite 4 8.142 12.785 7.159 94.19 116.61 87.68 664.48 loo.054 2.621 89CaAI&Os 278.36 Tric. Pi Anorthite 8 8.173 12.869 14.165 93.11 115.91 91.261 1336.35 100.610 2.165 228BaAi2Si2Os 375.47 Mono.I;?/c Anorthite 8 8.627 13.045 14.408 115.22 1466.90 110.440 3.4cm 158

    Fekispathoid GroupLeucite KAiSizOeKaisilite KAiSi04Nepheiine KNa@J&tOtsMeionite* Ct&&jSi&&@Marialitef NaqAI,jSi,jO~ClZeolite GroupAnaIcime* NatsAIt&20g~i 6H2OChabazite Ca$i&sOw i3HzOMordenite* KsAi&~Oga24H20CIinoptiioIite* KNa$J+Ai&+&~24H20Heulandite Ca4Kdh%&n26H20

    218.25 Tetr. I4tla Leucite lb 13.09 13.75 2356. 88.69 2.461 139158.17 Hex. P63 NepheIine 2 5.16 8.69 200.4 60.34 2.621 178584.33 Hex. P63 Nepheiine 2 9.993 8.374 724.19 218.09 2.679 64932.9 Tetr. P42/n Scapolite 2 12.194 7.557 1123.7 338.40 2.757 131863.5 Ten. P42ln Scapoiite 2 12.059 7.587 1103.3 332.26 2.599 132

    3526.1 Tetr. I4llacd Analcime 1 13.721 13.7351030.9 Trig. R%I Chabazite 1 13.803 15.0753620.4 Ortb. Cmcm Mordenite 1 18.167 20.611 7.5292750.0 Mono.C2/m Heuiandite 1 17.633 17.941 7.4002827.7 Mono. CZm Heuiandite 1 17.715 17.831 7.430Thomsonite* NaCa2AisSis02cbH20 671.8 Chth Pncn Thomsonite 4 13.089 13.047 13.218

    116.39115.93

    2585.8 1557.42487.2 499.42819.2 1698.02097.1 1263 O2132.2 1284.32257.3 339.9

    2.264 1382.065 372.132 1532.177 2112.221 42.373 5

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    12/356

    Table 1. Crystallographic Properties of Minerals (continued). 00Mineral Formula Formula Ctystal Space structure z a(A) Y Unit Cell Molar Density Ref.

    BWeight System Group be () Vol (A3) Vol (cm3) (calc)(Mg/m3) 4

    Harmotome* Ba$a,5Al$itt03~12H20 1466.7 Mono. P21/m Phillipsite 1 9.879Phillipsite* K2.5Cal.gAlgSit0032.12H20 1291.5 Mono. P21/m Phillipsite 1 9.865Laumontite* CaA1$%401~4H~O 470.44 Mono Am Laumontite 4 7.549Natrolite* NazA12Si30te2H20 380.23 Orth. Fdd2 Natrolite 8 18.326Sodalite* NqA13Si301~CI 484.6 Cub. Pii3n Sodahte 2 8.870StiIbite* Nal,3Ca4.~AIleSi2C,072~34H~02968. Mono. C2lm Stilbite 1 13.64ScoIecite* CaAl~Si30te~3H 20 392.34 Mono Fd Natrolite 8 18.508Gonnardite* Na&qAlgS itt0~12H~O 1626.04 Tetr. hi2d Natrolite 1 13.21Edingtonite* Ba2A14SisO2e8H20 997.22 Tetr. PTi2lm Edingtonite 1 9.581Gismondine* Ca&IsSia032.16Hfl 1401.09 Mono. P21la Gismondine 1 10.024Garronite* NaCa&I,jSireG 3~13H~O 1312.12 Tetr. lzm2 Gismondine 1 9.9266Merlinoite+ K&afilgSi~0~ 24H20 2620.81 olth. Immm Merlinoite 1 14.116Ferrierite* NgKMgAl$%3t@Zl8H20 2614.2 Mono.P2rla Fen ierite 1 18.886Fetrierite+ NaKMgfil7Si2gQzlBH20 2590.3 Orth. lmmm Ferrierite I 19.236Faujasite, NqCaAl.&0~16H20 1090.9 Cub. F&n Sodalite 16 24.74Ericnite* MgNaKZCa2AlgSi~707~18H202683.1 Hex. P63lmmc Erionite I 13.252Cancrinite* Car,~Na&leSi,@ ~~l.6C02 1008.5 Hex. P63 Cancrinite I 12.590Pollucite* CsAISi#s 312.06 Cub. la?d Analcime 16 13.682Brewsterite* SrAlfiis01~5 H20 656.17 Mono. P21lm Brewsterite 2 6.767

    14.139 8.69314.300 8.66814.740 13.072 90.18.652 6.601

    124.8124.2

    90.996.9 600.5

    1011.3 609.1111.9 1349.6 203.22256.3 169.87

    697.86 210.162210. 1331.2292.8 172.621155.6 696.00599.06 360.811024.3 630.211015.24 611.481982.28 1193.922000.8 1205.12050.5 1235.015142. 570.022252.4 1356.6

    702.4 423.052561.2 96.41910.2 274.12

    2.443 1842.120 1842.315 202 z12.238 174 E2.306 133 X2.23 71 ii2.273 1072.336 141

    P2.764 140 22.223 226 82.146 9 m2.195 72 32.169 79 2

    2.097 80In

    1.914 18 FI .978 201 rA2.383 813.237 1562.394 10

    3.380 593.435 593.327 1664.107 1033.810 1023.513 73.4729 1045.044 1513.563 1964.848 2365.174 2365.346 1512.909 2104.287 20

    2.166 2351.989 2352.839 235

    18.2418.981

    11.276.5276.6226.5269.832

    10.30319.9467.4707.527

    128.090.61

    10.626 92.4014.22914.18214.162 90.090.0

    14.8105.117

    17.455 7.729 94.40High Pressure SilicatesPhase B GroupPhase B Ww-%%KW2Anhydrous B MmSidhSuperhydrous B bmWhdOW4MgSiO+roupMgSiOg-perovskite MgSi03MgSiO+lmenite MgSiO3MgSiOs-garnet MgSi03Wadsleyiie GroupWadsleyite MgzSiO4I%-Co$SO4 CqSiO4Silicate Spine1 GrouprM8zSQ Mg#iO,y-Fez%04 FezSiO4y-Ni2SiO4 NizSi04*02SiO4 CqSiO4Silica GroupCoesite SiO2Stishovite SiO2HalidesHalite N&lSylvite KCIVilliaumite NtiFCarobbiite KF

    741.09 Mono. P21/c PhsB 4 10.588 14.097 10.073864.78 Orth. Pmcb AnhB 2 5.868 14.178 10.048619.40 Chth. Pnnm PhsB 2 5.0894 13.968 8.6956104.10 1458.4 219.567

    835.96 25 1.749618.16 186.159

    100.40 Grth. Pbnm Perovskite 4 4.7754 4.9292 6.8969 162.35 24.445100.40 Trig. RJ Ilmeni te 6 4.7284 13.5591 262.54 26.354100.40 Tetr. 141/a Garnet 32 11.501 11.480 1518.5 28.581140.71 orth. Imma Wadsleyite 8 5.6983 11.4380 8.2566 538.14 40.515209.95 Ortb. fmma Wadsleyite 8 5.753 11.524 8.340 552.92 41.628140.71 Cub. F&m Spine1 8 8.0449 524.56 39.493203.78 Cub. F&m Spine1 8 8.234 558.26 42.030209.95 Cub. Fa.h Spine1 8 8.138 538.96 40.511209.50 Cub. f%%n Spine1 8 8.044 520.49 39.18760.085 Mono. C2lc Coesite 16 7.1464 12.3796 7.182960.085 Tetr. P4dmnm Kutile 2 4.1790 2.6651

    120.283 548.76 20.65746.54 14.017

    58.443 Cub. Fmh Halite 4 5.63874.555 Cub. F&n Halite 4 6.29141.988 Cub. Fdm Halite 4 4.61458.100 Cub. Far% Halite 4 5.34

    179.22 26.985248.98 37.49098.23 14.791

    152.3 22.93 2.53 235

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    13/356

    Table 1. Crystallographic Properties of Minerals (continued).Mineral Formula Formula Crystal Space Structure Z a Y Unit Cell Molar Density Ref.Weight System Group Type (A) (1 Vol (K3) Vol (cm3) (calc)(h4g/m3)

    FluoriteFrankdicksoniteSellaiteCdOIllelCryoliteNeighbceiteChlorargyriteIodyriteNantokiteSulfidesPyrrhotitePyriteCattierheVaesiteMarcasiteTroiliteSmythiteChalcopyriteCubaniteCovellliteChalcociteTetrahedriteBon&EnargiteNiccoliteCobaltiteSphaleriteWurtzite(2H)GreenockitePentlanditeAlabanditeGalenaClausthaliteAltaite

    CaFzBaF2MtPzHszChNa3AIFsNaMgF3AgClAsICUCI

    Fe7%FeSzCd2NiSzFe&FeS(kWgS11CuFeS2CuFezS3cuscu2sCut2FeZnSb&CusFeS4Cu3AsS4Ni4sCoAsSznsznsCdSNisFe&MnSPbSPbSePbTe

    MolyMenite(2H) Md2Tungstenite ws2Acantbite h.sArgentite AgzSProustite AgsAsSjPyrargyritc has%Cinnabar HgSMetacinnabar H@Coloradoitc HgTeStibnite SW3Orpiment As2S3

    78.077 Cub. Fdm Fluorite 4 5.460175.34 Cub. Fm%r Fluorite 4 6.196462.309 Tetr. P42/mnm Rut& 2 4.660472.09 Te tr. 14/mmm Calomel 2 4.45

    209.95 Mono. P21/n Cryolite 2 5.40 5.60104.30 orth. Pcmn Perovskite 4 5.363 7.676143.32 Cub. F&m Halite 4 5.556234.17 Hex. P63mc Wurtzite 2 4.5898.99 Cub. Fz3m 4 5.418

    647.44 Trig. P3t Pyrrhotite 3 6.8613119.98 Cub. Pa3 Pyrite 4 5.418123.06 Cub. Pd Pyrite 4 5.5385122.84 Cub. Pd Pyrite 4 5.6865119.98 orth. Pnnm Marcasite 2 4.436 5.41489.911 Hex. PT2c Troilite 12 5.963855.3 Trig RTm Smythite 1 3.4651183.51 Tetr. lji2d Chalcopyrite 4 5.289271.43 Orth. Pcmn Cubanite 4 6.467 11.11795.60 Hex. Pbglmmc Covellite 6 3.7938159.14 Mono.PZt/c Chaicccite 48 15.246 11.884

    1660.5 Cub. Ia33m Tetmhedrite 2 10.364501.80 Orth. Pbca Bomite 16 10.950 21.862393.80 Orth. Pmt12~ Enargite 2 7.407 6.436133.63 Hex. Ptqlmmc NiAs 2 3.619165.92 Onh. PcaZl Cobaltite 4 5.582 5.58291.434 Cub. F;i3m Sphalerite 4 5.405397.434 Hex P6pc Wurtzite 2 3.822-l

    144.464 Hex P63mc Wurtzite 2 4.1348773.5 Cub. F&-m IT&e 4 10.04487.02 Cub. F&m Halite 4 5.214239.25 Cub. F&m Halite 4 5.9315

    286.15 Cub. Fdm I talite 4 6.1213334.79 Cub. F&m Halite 4 6.4541160.07 Hex P63lmmc Molybdenite 2 3.1602

    3.07810.891.785.5037.49

    17.062

    3.38111.75434.3410.4236.231

    16.34113.49410.9506.1545.0355.5826.26076.7490

    12.294247.92 H ex P63/mmc Molybdenite- -2H2 3.1532 12.323247.80 Mono.PZl/c Acanthite 4 4.231 6.930 9.526247.80 Cub. lm3m Argentite 2 4.86494.72 Trig. R3c Proustite 6 10.82 8.69541.55 Trig. R3c Proustite 6 Il.01 8.72232.65 Trig. P& l Cinnabar 3 4.145 9.496232.65 Cub. Fq3m Sphalerite 4 5.8717328.19 Cub. F;i3m Sphalerite 4 6.440339.69 Orth. Prima Stibnite 4 11.302 3.8341 11.222246.04 Mono. P21/n orpiment 4 11.475 9.571 4.256

    162.77237.9166.84

    215.6590.18

    226.54171.51136.06159.04

    696.84 139.90 4.628 62159.04 23.95 5.010 29169.89 25.582 4.811 162183.88 27.688 4.437 16281.20 24.45 4.906 30

    361.95 18.167 4.839 117357.08 215.07 3.977 221291.57 43.903 4.180 84447.97 67.453 4.024 218203.68 20.447 4.676 56116.35 2190.9 27.491 5.789 511113.2 335.25 4.953 179

    2521.3 98.676 5.085 122296.63 89.329 4.408 257.11 17.199 7.770 240

    173.93 26.189 6.335 71157.93 23.780 4.097 23979.23 23.860 4.084 11999.93 30.093 4.801 2351013.26 152.571 5.069 87

    141 I5 21.344 4.076 224208.69 31.423 7.614 160229.37 34.537 8.285 160268.85 40.482 8.270 160106.33 32.021 4.999 28105.77 31.853 7.785 203

    125.48 227.45 34.248 7.236 190114.79 34.569 7.168 41881.06 88.44 5.594 55920.42 92.39 5.861 5514i.29 28.361 x.202 14202.44 30.482 7.633 13267.09 40.217 8.161 223486.28 73.222 4.639 14390.68 467.68 70.422 3.494 154

    24.50935.82420.12964.9434.1125.8340.9823.95

    3.186 2324.894 1803.096 1011.269 101

    1013.058 1015.550 1015.730 1014.134 101

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    14/356

    Table 1. Crystallographic Properties of Minerals (continued). EMiIlemI Formula Formula Crystal Space StNCtUR z i JWeight System Group 5~ (4 8,

    Y Unit CeII Molar Density Ref. nP) Vol (A3) Vol (cm3) (calc)(Mg/m3)Re&ar AsS 106.99 Mono.PZl/n RealgarBismuthinite Bi$$ 514.15 Orth. Pmcn StibniteHazelwoodite Ni& 240.26 Trig. R32 HazelwooditeCOOperitc PtS 227.15 Tetr. P4~mmc CooperiteVysotskite PdS 138.46 Tetr. P42/m CooperiteMillerhe NiS 90.77 Trig. R3m MilkriteLinneaite t&s4 305.06 Cub. F&n Spine1Polydymite Ni& 304.39 Cub. Fd%n Spine1Violarite FeNi$$ 301.52 Cub. F&m Spine1Greigite Fe& 295.80 Cub. F&m Spine1Da&reel&e FeCrts,1 288.10 Cub. F&m Spine1Loellingite FeAs2 205.69 orth. Pnnm LoellingiteArsenopjrite FeAsS 162.83 Mono.C2l/d ArsenopyriteNative ElementsDiamondGraphiteSiliconSulfur(a)SUWP)KamaciteTaeniteNickelCopperArsenicTinRutheniumRhodiumPalladiumSilverAntimonyTelluriumIridiumOsmiumPlatinumGoldLead

    C 12.011 Cub. Fdh Dimmnd 8 3.56679 45.38 3.4163 3.5158C 12.011 Hex. Pbj/mmc Graphite 4 2.456 6.696 34.98 5.261 2.281Si 28.086 Cub. Fdh Diamond 8 5.43070 160.16 12.058 2.329S 32.064 Orth. Fd&i Sulfur 128 10.467 12.870 24.493 3299.5 15.443 2.076S 32.064 Mono. P2t Sulfur 48 10.926 10.885 10.790 95.92 1276.41 16.016 2.002Fe 55.847 Cub /m& a-hm 2 2.8665 23.55 7.093 7.873FeNi 114.557 Cub Ft&n Taenite 32 7.168 368.29 13.864 8.263Ni 58.710 Cub. F&n FCC 4 3.52387 43.76 6.590 8.910CU 63.540 Cub. Fn&n FCC 4 3.61496 41.2A 7.113 8.932AS 14.922 Trig. Rsrn Arsenic 18 3.7598 10.5475 129.12 4.321 17.340Stl 118.690 Tetr. f4tlamd Tin 4 5.8197 3.17488 107.54 16.194 7.329Ru 101.070 Hex. P63/mmc HCP 2 2.7056 4.2803 27.14 8.172 12.368Rb 102.905 Cub. F&m FCC 4 3.8031 55.01 8.283 12.424Pd 106.40 Cub. Fmh FCC 4 3.8898 60.16 9.059 11.74643 107.87 Cub. F&m FCC 4 4.0862 68.23 10.273 17.500Sb 121.75 Trig. RTm Arsenic 6 4.3083 Il.2743 180.06 18.075 6.736Te 127.60 Trig. P3t21 Selenium 3 4.456 5.921 101.82 20.441 6.242Ir 192.20 Cub. F&m FCC 4 3.8394 56.60 8.522 22.553OS 190.20 Hex. P63/mmc HCP 2 2.7352 4.3190 27.98 8.427 22.570Pt 195.09 Cub. F&m FCC 4 3.9231 60.38 9.092 21.458AU 196.967 Cub. F&m FCC 4 4.07825 67.83 10.214 19.285Fb 207.190 Cub. Fm% FCC 4 4.9505 121.32 18.268 11.342Bi 208.980 Trig. R%n Arsenic 6 4.54590 11.86225 212.29 21.311 9.806

    1642898888828

    9.3253.9814.07183.4656.4299.61909.4069.4899.4659.8759.9955.30016.546

    13.571 6.587 106.3811.147 11.30589.459 89.459

    6.1046.6113.1499

    5.9838 2.88219.451 5.649

    799.15 30. IO7 3.554501.67 75.539 6.806

    89.459 67.50 40.655 5.91013.29 22.070 10.292

    273.25 20.572 6.731252.4 16.891 5.374832.2 62.652 4.869854.4 64.326 4.132847.93 63.839 4.723%2.97 72.499 4.080998.50 75.175 3.83291.41 21.521 7.41289.94 349.48 26.312 6.189

    -154541101017171 6355277 $::X

    18181 ij -12020499 ?499 2238 bl

    205 iz13668

    235235235235

    7823523523523520023585235

    235235235235235235235235235

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    15/356

    SMYTH AND MCCORMICK 11

    Acknmvledgements. he authors thank Stephen J. Guggenheim(Universi ty of Illi nois) and two anonymous reviewers for con-structive criti cism of the manuscript. This work was supported by

    National Science Foundation Grant EAR 91-05391 and U.S. Dept.of Energy Office of Basic Energy Sciences.

    1. Adenis, C., V. Langer, and 0. Lindqvist,Reinvestigation of the structure of

    2. Adiwidjaja, G. and J. Lohn, Struktur-tellurium, Acta Cryst., C45, 941-942,

    verfeinerung von enargite, CugAsS4.Acta Cryst , B26, 1878-1879, 1970.

    1989.

    3. Akimoto, S., T. Nagata, and T. Katsura,The TiFe205 - TizFe05 solid solutionseries, Nature, 179.37-38, 1957.

    4. Alberti, A., and G. Vezzalini, Thermalbehavior of heulandites: a structuralstudy of the dehydration of Nadapheulandite, Tschermaks Mineral. Pe-trol. Mitteilungen, 31, 259-270, 1983.

    5. Alberti, A., G. Vezzalini, and V. Tazzoli,Thomsonite: a detailed refine- mentwith cross checking by crystal energycalculations, Zeolites, I, 91-97, 198 1.Allen, F. Chemical and structuralvariations in vesuvianite. (PhD Thesis)Harvard University, 44Op., 1985.

    Angel, R.J., L.W. Finger, R.M. Hazen,M. Kanzaki, D.J. Weidner, R.C.Liebermann, and D.R. Veblen, Struc-ture and twinning of single-crystalMgSiO3 garnet synthesized at 17GPaand 1800C, Am. Mineral ., 74, 509-512, 1989.

    Armbruster, T.. C.A. Geiger, and G.A.Lager, Single-crystal X-ray structurestudy of synthetic pyrope almandinegarnets at 100 and 293K, Am. Mineral.,77,512-521, 1992.Artioli , G., The crystal structure ofgarronite, Am. Mineral ., 77, 189-196,1992.

    10. Artiol i, G., J.V. Smith, and A. Kvick,Multiple hydrogen positions in thezeolite brewsterite, (SrO,9s,Bao&Al2Si6016.5H20. Acta Cryst., C41, 492-497, 1985.11. Asbrink, S. and L.-J. Norrby, Arefinement of the structure of copper(II) oxide with a discussion of someexceptional e.s.d.s, Ada Cryst., B26,8-15, 1970.

    12. Auriv ilius, K., The crystal structure ofmercury (II) oxide, Acta Cry&.. 9,685-686, 1956.

    REFERENCES13. Auriv illius . K., An X-ray and neutron

    diffraction study of metacinnabarite,

    14. Auvray, P. and F. Gcnet, Aflinement deActa Chem., Scand., 18. 1552-1553,

    la structure cristall ine du cinabrea-HgS, Bull. Sot. Fr. Mineral. Crist.,

    1964.

    96. 218-219, 1973.15. Baur W. H., Ueber die Verfeinerung der

    Kristallstrukturbestimmung einigerVertreter dcs Rutiltyps: TiO2 SnO2,GeO2 und MnF2, Acta Cryst .. 9, 515-520 1956.

    16. Baur, W.H. Die Kristall struktur desEdelamblygonits LiAlP04(0H,F),Acta Cryst ., 12, 988-994, 1959.17. Baur, W.H., Atomabstaende und Bil -

    dungswinkel im Brookite, TiO2, ActaCryst ., 14, 214-216, 1961.

    18. Baur, W.H., On the cation and waterpositions in faujasite, Am. Mineral., 49,697-704, 1964.

    19. Baur, W. H., Crystal structure refine-ment of lawsonite, Am. Mineral., 63,311-315, 1978.

    21

    22

    71

    20. Baur, W.H., and A.A. Kahn, Rutile-type compounds IV. SiO2, GeO2, and acomparison with other rutile-typecompounds, Acta Cryst. B27,2133-2139, 1971.Beran, A. and J. Zemann, Refinementand comparison of the crystalstructures of a dolomite and of anFe-rich ankerite, Tschermasks Mine-ral. Petro l. Mitt., 24, 279-286, 1977.Bish, D.L. and R.B. Von Dreele, Reit-veld refinement of non-hydrogen po-sitions in kaolin&. Clays and ClayMiner., 37.289-296, 1989.

    LJ. Blake, R. L., R. E. Hessevick. T. Zoltai,and L. W. Finger, Refinement of thehematite structure, Am. Mineral., 51,123-129, 1966.

    24. Blount, A. M., I. M. Threadgold, and S.W. Bailey, Refinement of the crystalstructure of nacrite, Clays and ClayMiner., 17, 185-194, 1969.

    25. Borie, B., Thermally excited forbiddenreflections, Acta Cryst., A30,337-341,1974.

    26. Borodin, V. L., V. I. Lyutin, V. V.Ilyukhin, and N. V. Belov, Iso-morphous calciteatavite series, Dokl.Akad. Nauk SSSR, 245, 1099-1101,1979.

    27. Brese, N. E.. P. J. Squatrrito, and J. A.Ibers, Reinvestigation of the structureof PdS, Acta Crysf., C41, 1829-1830,1985.

    28. Bronsema, K. D., J. L. de Boer, and F.Jell&k , On the structure of molyb-denum diselen ide and disulph ide, Z.Anorg. Al&. Chem., 5401541, 15-17,1986.29. Brostigen, G. and A. Kjekshus. Redete-rmined crystal structure of FeS2(pyrite), Acta Chem.. Stand., 23,2186-2188, 1969.

    30. Brostigen, G., A. Kiekshus, and C.Ramming, Compounds with themarcasite type crystal structure. VIII.Redetermination of the prototype, ActaChem. Scand., 27.2791-2796 1973.

    31 Brown, B. E., and S. W. Bailey, Thestructure of maximum microcline,Acta Cryst ., 17, 1391-1400, 1964.

    32. Brown G. E., The crystal chemistry ofthe olivines (PhD Thesis), V irginiaPolytechnic Institute and StateUniversity Blacksburg, VA 121 p.1970.

    33. Burnham, C. W., Ferrosilit e, CarnegieInst. Wuhington, Yb, 65, 285-290,1967.

    34. Busing, W. R., H. A. Levy, A singlecrystal neutron diffraction study ofdiaspore, AlO( Ada Cryst., 11,798-803, 1958.

    35. Cabris, L. J., J. H. G. Leflamme, and J.M. Stewart, On cooperite, braggite, andvysotskite, Am. Mineral., 63.832-839,1978.36. Calleri, M., A. Gavetti, G. Ivaldi, andM. Rubbo, Synthetic epsomite,MgS04.7H20: Absolute configurationand surface features of the comple-mentary ( 111) forms, Actu Cryst., 840,218-222, 1984.

    37. Calligaris, M., G. Nardin, and L.

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    16/356

    12 CRYSTALLOGRAPHIC DATA FOR MINERALS

    Randaccio, Cation-site location inantaural chabazite, Actu Cryst., B38,602-605, 1982.

    38. Calvo, C.. and R. Gopal, The crystalstructure of whitlock ite from thePalermo quarry , Am. Mineral. 60,120-133, 1975.

    39. Cameron, M., S. Sueno, C. T. Prewitt,and J. J. Papike, High-temperaturecrys tal chemistry of acmite, diopside,hedenbergite, jadeite, spodumene, andureyite, Am. Mineral., 58, 594-618,1973.

    40. Cannillo, E., F. Maui, J.H. Fang, P.D.Robinson, and Y. Ohya, The crystalstructure of aenigmatite, Am. Mineral.,56.427446. 1971.

    41.

    42.

    Cava, R. J., F. Reidinger, and B. J.Weunch, Single crystal neutron diff-raction study of the fast-ion conductorP-Ag zS between 186 and 325V, J.Solid St. Chem., 31, 69-80, 1980.Christ, C.L., J.R. Clark, and H.T.

    Evans,Jr., Studies of borate minerals(III): The crys tal structure of coleman-ite, CaB304(OH)3.H20, Acta Cryst.,II, 761-770, 1969.

    43. Christensen, H., and A.N. Christensen,The crys tal struc ture of lepidochros ite(y-FeOOH), Acta Chem. Stand., A32,87-88.

    44. Clark, J. R., D. E. Appleman, and J. J.Papike, Crystal chemical characteri-zation of clinopyroxe nes based oneight new structure refinements, Mine-ral. Sot. Am. Spec. Pap., 2, 31-50,1969.

    45. Cohen, J. P., F. K. Ross, and G. V. Gibbs,An X-ray and neutron diffraction studyof hydrous low cordierite, Am. Mine-ral., 62, 67-78, 1977.46. Cole, W.F., and C.J. Lancucki, Arefinement of the crys tal structure ofgyspum, CaS04 .2H20, Acta Cryst.,B30,921-929.1974.

    47. Colvil le, A. A., and P. H. Ribbe, Thecryst al snucture of an alularia and arefinement of the crys tal structure oforthoclase, Am. Mineral., 53, 25-37,1968.

    48. Cooper, W.F., F.K. Larsen, P. Coppensand R.F. Giese, Electron populationanalysis OSaccurate diffraction data. V.Structure and one-center chargerefinement of the light-atom mineralkemite. Na2B406(OH)2. 3Hz0, Am.

    Mineral., 58, 21-3 1, 1973.49. Craig, J. R., Violar ite stabil ity relations,

    Am. Mineral., 56, 1303-1311, 1971.50. Czaya R., Refinement of the structure

    of gamma-CazSi04, Acta Cryst., B27,848-849, 1971.5 1. De Villiers, J. P. R., Crystal structures ofaragonite, strontian ite, and witherite,Am. Mineral., 56, 758-767, 1971.

    52. Dollase W.A., Refinement and com-parison of the structures zoisite andclinozo isite. Am. Mineral., 53,1882-1898, 1968.

    53. Dollase, W. A., Refinement of thecrys tal structures of epidote, a llanite,and hancockite, Am. Mineral., 56,447-464, 1971.

    54. Effenberger, H., K. Mereiter, and J.Zemann, Crystal structure refinementsof magnesite, calcite , rhodochrosite,siderite, smithson ite, and dolomite,with di scuss ion of some aspects of thestereochemis try of calcite tYPecarbonates, Z. Krist ., 156, 233-243,1981.

    55. Engel, P. and W. Nowacki, Dieverfeinerung der kristallstruktur vonproustit, AgsAsS3, und pyrargyrit,Ag$bSs, Neues Jb. Miner. Mh., 6,181-184, 1966.

    56. Evans, H. T., Jr. and J. A. Konnert,Crysta l structure refinement ofcovellite , Am. Mineral., 61,996-1000.1976.

    57. Evans, H. T., Jr., The crys tal structuresof low chalcoc ite and djurleite, Z.Krist. , 150, 299-320, 1979.

    58. Finger, L.W., Refinement of the crys talstructure of an anthophyllite, CarnegieInst. Washington, Yb, 68, 283-288,1970.

    59. Finger, L.W., R.M. Hazen, and C.T.Prewitt, Crystal structures ofMgl2Si4019(OH)2 (phase B) andMgJ&i5024 (phase AnhB), Am. Mine-ral., 76, 1-7, 1991.

    60. Fischer , K., A further refinement of thecrys tal structu re of curnmingtonite,(Fe,Mg)7(S&Ot&(OH)2, Am. Mine-ral., 51, 814-818, 1966.

    6 1. Fischer P., Neutronenbeugungsunter-suchung der Strukturen von MgA1204-und ZnAlzOe- spinellen in Abhaen-gigkeit von der Vorgesch ichte. Z.Krist. , 124, 275-302, 1967.

    62. Fleet, M. E., The crys tal structure of a

    pyrrhotite (Fe7S8), Acta Cryst., B27,1864-1867, 1971.

    63. Foit, F.F., Jr, M.W. Phill ips, and G.V.Gibbs, A refinement of the crys talstructure of datolite, Am. Mineral., 58,909-914, 1973.64. Foreman, N., and D. R. Peacor, Refine-ment of the nepheline structure atseveral temperatures, Z. Krist., 132,45-70, 1970.

    65. Forsyth, J. B., I. G. Hedley, and C. E.Johnson, The magnetic structure andhyperfine field of goethite (a -FeOOH), J. of Phys., Cl, 179-188,1968.

    66. Fortier, S., and G. Donnay, Schor lrefinement showing composition de-pendence of the tourmaline structure,Canad. Mineral., 13, 173-177, 1975.

    67. Foster, I? K., and A. J. E. Welch, Metaloxide solutions: I. Lattice constantsand phase relations in ferrous oxide(wustite) and in solid solutions offerrous ox ide and manganous oxide,Trans. Faraday Sot., 52, 1626-1634,1956.

    68. Fuess, H., T. Kratz, J. Topel-Schadt,and G. Mieher, Crysta l structure re-finement and electron microscopy ofarsenopyrite, Z. Krist ., 179, 335-346,1987.

    69. Fugino, K., S. Sasak i, Y Takeuchi, andR. Sadanaga, X-ray determination ofelectron distributions in forsterite,fayalite, and tephroite, Acta Cryst.,B37,513-518,198l.

    71.

    72.

    70. Gabe, E. J., J. C. Portheine, and S. H.Whitlow, A reinvestigation of theepidote structure: confirmation of theiron location, Am. Mineral., 58,218-223, 1973.Gall i, E., Refinement of the crysta lstructure of stilbite, Acta Cryst., B27,833-841, 1971.

    Galli, E., G. Gottardi, and D.Pongiluppi, The crys tal structure of thezeolite merlinoite, Neues J. Mineral.Mona., l-9, 1979.Gibbs, G. V, and P. H. Ribbe, Thecrys tal structures of the humiteminerals: I. Norbergite. Am. Mineral.,54.376-390, 1969.Gibbs, G. V., P. H. Ribbe, and C. W.Anderson, The crys tal structures of thehumite minerals II. Chondrodite, Am.

    73.

    74.

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    17/356

    Mineral.. 5.5, 1182-l 194, 1970.75. Gclle r, S.. Structures of alpha-Mn203,

    (Mn0.9de.o17)203. and (Mn.37Fe.ah03 and relation to magnetic ordering,Acfa Cryst., B27, 821-828, 1971.

    76. Ghousc K. M., Refinement of thecrys tal structure of heat-treatedmonazite crystal, Indian J. Pure Appl.Phys., 6.265-268.1968.

    77. Giese. R. F., Jr., and P. F. Kerr, Thecrys tal structures of ordered anddisordered cobaltite, Am. Mineral., 50,1002-1014, 1965.

    78. Goldsmith, L. M. and C. E. Strouse,Molecular dynamics in the solid state.The order-disorder transition of mo-noclinic sulfur, J. Am. Chem. Sot., 99,7580-7589. 1977.

    79. Gramlich-Meier, R., V. Gramlich andW.M. Meier, The crys tal structure ofthe monoclin ic variety of ferrierite,Am. Mineral., 70,619-623, 1985.

    80. Gramlich-Meier, R., W.M. Meier, andB.K. Smith, On faults in the frameworkstructure of the zeolit c ferric rite. Z.Kristal .. 168, 233-254.

    81. Grundy, H.D. andI. Hassan, Thecrys talstructure of a carbonate-rich cancrin-ite, Canad. Mineral., 20, 239- 251,1982.

    82. Guggenheim, S., and S. W. Bailey, Therefinement of zinnwaldite-1M in sub-group symmetry, Am. Mineral., 62,1158-1167, 1977.83. Guggenheim, S., and S. W. Bailey ,Refinement of the margarite structurein subgroup symmetry: correction ,further refinement, and comments, Am.Mineral., 63, 186-187, 1978.

    84. Hall, A. R. , Crysta l structures of thechalcopyrite series, Canad. Mineral.,13, 168-172, 1975.

    85. Hall, E. 0. and J. Crangle, An X-ra yinvestigation of the reported high-temperature allotropy of ruthenium,Acta Cryst., 10, 24&241, 1957.

    86. Hall, S. H., and S. W. Bailey, Cationordering pattern in amesite, Clays andClay Miner., 27.241-247, 1979.

    87. Hall, S.R. and J.M. Stewart, The crystalstructure of argentian pentlandite (Fe,Ni)gAgSg, compared with the refinedstructure of pentlandite (Fe,Ni)$&Canad. Mineral., 12, 169-177, 1973.

    88. Hanscom R., The structure of tricl inicchloritoid and chloritoid polymor-

    phism, Am. Mineral., 65, 534-539,1980.

    89. Harlow, G. E., and G. E. Brown, LowAlbite: an X-ray and neutrondiffraction study, Am. Mineral., 65,986-995, 1980.

    90. Hawthorne, F.C. and R.B. Ferguson,

    91

    Anhydrous sulfates. I: Refinement ofthe crys tal structure of celestite with anappendix on the structure of thenardite,Canad. Mineral., 13, 181-187, 1975.Hawthorne, F.C., L.A. Groat and R.K.Eby, Antlerite, CuSOd(OH)4, a hetero-polyhedral wallpaper structure, Canad.Mineral., 27, 205-209, 1989.

    92. Hawthorne, F. C., and H. D. Grundy,The crys tal chemistry of the amphi-boles: IV. X-ray and neutron re fine-ments of the crys tal structure of tremo-lite, Canud. Mineral., 14, 334-345,1976.

    93. Hazen, R. M., E ffects of temperatureand pressure on the cell dimension andX-ra y temperature factors of periclase,Am. Mineral., 61,266-271, 1976.

    94. Hazen, R. M., and C. W. Burnham, Thecrystal structures of one-layerphlogopite and annite, Am. Mineral.,58,889-900.1973.

    95. Hazen, R. M., and L. W. Finger, Crysta lstructure and compressibility of zirconat high pressure, Am. Mineral., 64,196-201, 1979.

    96. Hazen, R.M. and L.W. Finger, Hightemperature crys tal chemistry ofphenacite and chrysoberyl, Phys.Chem. Miner., 14.426432, 1987.

    97. Hesse, K.-F. Crystal structures ofnatural and synthetic a-eucryptite,LiAlSiOa, Z. Kristal., 172, 147-151,1985.

    98. Hill, R.J., Hydrogen atoms in boehmite:a single-crystal X-ray diffraction andmolecular orbital study, Clays andClay Miner., 29,435-445, 1981.

    99. Hill R. J., X-ray powder diffractionprofile refinement of synthetic her-cynite, Am. Mineral., 69, 937-9421984.

    100. Hill , R. J., J. R. Craig G. V. Gibbs,Systematics of the spine1 structuretype, Phys . Chem. Miner., 4, 317-3191979.

    101. Hoelzel, A.R., Systemafics ofMinerals. Hoelzel, Mainz, 584pp.,1989.

    102. Horiuchi, H., M. Hirano, E. Ito, and Y.

    SMYTH AND MCCORMICK 13

    Matsui, MgSi03 (ilmenite-type) : Sin-gle crystal X-ray diffraction study, Am.Mineral., 67, 788-793, 1982.

    103. Horiuch i, H., E. Ito, and D.J. Weidner,Perovskite-type MgSi03: Single-ery-stal X-ray diffraction study, Am. Mine-ral., 72.357-360, 1987.

    104. Horiuchi , H., and H. Sawamoto,B-MgzSiO4: Single-crystal X-ray dif-fraction study, Am. Mineral., 66,568-575, 1981.

    105. Horn, M., C. F. Schwerdtfeger, and E.P. Meagher , Refinement of thestructure of anatase at severaltemperatures, Z. Krist., 136, 273-281,1972.

    106. Ishikawa, Y., S. Sato, and Y. Syono,Neutron and magnetic studies of asingle crystal of Fe2Ti04, Tech. rep.,Inst. Sol. State Phys., Univ. of Tokyo A455,197l.107. Joswig, W., H. Bartl, and H. Feuss,Structure refinement of scolecite byneutron diffraction, Z. Kristal., 166,219-223, 1984.

    108. Joswig, W., and H. Feuss, Refinementof a one-layer triclinic chlorite. Claysand Clay Miner., 38,216-2 18, 1990.

    109. Joswig, W., H. Feuss, and S.A. Mason,Neutron diffraction study of aone-layer monoclinic chlorite, Claysand Clay Miner., 37,511-514, 1989.

    110. Kanisceva, A. S., Ju.N. Mikha ilov andA. F. Trippel, zv. Akad. Nauk SSSR,Neorg. Mater., 17, 1972-1975, 1981,as cited in Structure Reports, 48A, 3 1,1981.

    111. Kato, K., and A. Nukui, Die Krista ll-struktur des monoklinen tief tridymits,Actu Cryst., B32, 2486-2491, 1976.

    112. Kato, T., and Y. Miura, The crystalstructures of jarosite and svanbergite,Mineral. J., 8.419-430, 1977.

    113. Kay, H. F., and P. C. Bailey, Structureand properties of CaTiO3, Acta Cryst.,10.219-226, 1957.

    114. Kay, M. I., B. C. Frazer, and I.Almodovar, Neutron diffraction re-finement of CaWO4, J. Chem. Phys.,40.504506, 1964.115. Kelle r, C., Untersuchungen ueber diegermanate und silikate des typs AI304der vierwertigen elemente Thorium bisAmericium, Nukleonik, 5, 41-48,1963.

    116. Kimata. M., and N. Ii, The crystalstructure of synthetic akermanite

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    18/356

    14 CRYSTALLOGRAPHIC DATA FOR MINERALS

    Ca2MgSi207. Neues Jahrbuch fuerMineral., Mortars., l-10, 1981.

    117. King, H. E., Jr., and C. T. Prewitt,High-pressure and high-temperaturepolymorphism of iron sulfide (FeS),Acta Cryst., B38, 1877-1887, 1982.118. Kirfel, A., and G. Will , Charge densityin anhydrite, CaSOd, from X-ray andneutron diffraction measurements,Acta Crysf., 836, 2881-2890, 1980.

    119. Kis i, E. H. and M. M. Elcombe, Uparameters for the wurzite structure ofZnS and ZnO using powder neutrondiffraction, Acta Crysf., C45, 1867-1870, 1989.

    120. Knop, 0.. K. I. G. Reid, Sutarno, andY. Nakagawa, Chalcogenides of thetransition elements. VI. X-ray, neutronand magnetic investigation of thespinels Co304, NiCo204, Co& andNiCo&, Canad. J. Chem., 22,3463-3476, 1968, as cited in StructureReports, 33A, 290-291, 1968.

    121. Kondrasev, J. D., and A. I. Zaslavskij,Izv. Akad. Nauk SSSR, 15, 179-186,1951.

    122. Koto, K. and N. Morimoto,Superstructure investigation of bor-nite, CusFeS4. by the modified partialPatterson function, Acta Cryst., B31,2268, 1975.

    123. Krstanov ic. I., Redetermination ofoxygen parameters in xenotime. YP04,Z. Kristal., 121, 315-316, 1965.

    124. Lager, G . A., and E. P. Meagher, Hightemperamre suuctural study of sixolivines , Am. Mineral., 63, 365-377,1978.

    125. Lee, J. H., and S. Guggenheim, Singlecrystal X-ray refinement ofpyrophyllite -ITc, Am. Mineral., 66,350-357, 1981.

    126. Leonova, V. A., Effect of conta-mination on the lattice parameters ofuraninite, DOW. Akad. NaukSSSR, 126,1342-1346 1959.127. LePage, Y., L. D. Calvert, and E. J.Gabe, Parameter variation in lowquartz between 94 and 298K, J. ofPhys. and Chem. Solids, 41.721-725,1980.

    128. Levy, H.A. and G.C. Lisensky, Crystalstructure of sodium sulfatedecahydrate (Glaubers salt) andsodium tetraborate decahydrate(borax). Redetermination by neutrondiffraction, Acta Cryst, B34,

    3502-3510, 1978.129. Lin, C., and S.W. Bailey, The crystal

    structure of paragonite-2Mt, Am.Mineral., 69, 122-127, 1984.

    130. Lin, J.C., and S. Guggenheim, Thecrystal structure of a Li,Be-rich brittlemica: a dioctahedral-trioctahedra in-termediate. Am. Mineral. 68, 130-142,1983.131. Lii, S.B., and B.J. Burley, The crystalstructure of meionite, Acfa Cryst., B29,2024-2026, 1973.

    132. Lin. S.B., and B.J. Burley, Crystalstructure of a sodium and chlorine- richscapolite, Acta Cryst., 829, 1272-1278.1973.133. I.&m, J. and H. Schulz , Struk-turverfeinerung von sodalith, Nag&A16024C12, Acta Cryst., 23, 434-436,1967.

    134. Louisnathan, S.J., The crystalstructure of synthetic soda melilite,CaNaAlSi$&, Z. Krist., 131, 314-321, 1970.

    135. Louisnathan, S.J., Refinement of thecrysta l structure of a natural gehlenite,Ca2AlAlS i)207, Canad. Mineral., 10,822-837 1970.

    136. Lutz, H. D., M. Jung, and G.Waschenbach, Kristallstrukturen deslolling its FeAsz und des pyrits RuTe2,Z.Anorg., Chem.,S54,87-91.1987, ascited in Structure Reports, WA, 43,1987.

    137. Mackie, P. E., J. C. Elliot t and R. A.Young, Monoclinic structure ofsynthetic Ca~(PO&Cl. chlorapatite,Acta Cryst., B28, 1840-1848, 1972.

    138. Mazzi, F., and E. Galli. Is eachanalcime different? Am. Mineral., 63.448-460, 1978.

    139. Mazzi, F., E. Galli, and G. Gottardi,The crystal structure of tetragonalleucite. Am. Minerai., 61, 108-115,1976.

    140. Mazzi. F., E. Galli, and G. Gottardi,Crystal structure refinement of twotetragonal edingtonites, Neues Jah-buch fur Mineralogie Monat., 373-382, 1984.

    141. Mazzi, F.. A.O. Larsen, G. Gottardi,and E. Galli, Gonnardite has thetetrahedral framework of natrolite:experimental proof with a sample fromNorway, Neues J. Mineral. Monat.,219-228, 1986.

    142. McGinnety, J.A., Redetermination of

    the structures of potassium sulfate andpotassium chromate: the effect ofelectrostatic crysta l forces uponobserved bond lengths, Acta Cryst.,B28,2845-2852.1972.

    143. McKee, D. 0. and J. T. McMulian,Comment on the structure of antimonytrisulfide, Z. Krist., 142, 447-449,1975.

    144. Mellini, M., The crystal structure oflizardite 1T hydrogen bonds andpobtypism, Am. Mineral., 67,587-598, 1982.

    145. Menchetti, S. and C. Sabelli, Crystalchemistry of the ahmite series: Crystalstructure refinement of alunite andsynthetic jarosite, Neues J. Mineral.Monat., 406-417,1976.

    146. Meyer, H.J., Struktur und Fehlord-nung des Vaterits, Z. Kristal. , 128,182-212, 1969.

    147. Miyake, M., I. Minato, H. Morikawa,and S. Iwai, Crystal structures andsulfate force constants of baritecelestite, and anglesite. Am. Mineral.,63,506-510, 1978.

    148. Miyazawa, R., I. Nakai, and K.Magashima, A refinement of thecrystal structure of gadolinite, Am.Mineral., 69,948-953, 1984.

    149. Moore, P.B., The crystal structure ofsapphirine, Am. Mineral. 54, 31-49,1969.

    150. Morimoto,N., D. E. ApplemanandH.T. Evans, The crysta l struc tures ofclinoenstatite and pigeon&, Z. Krist.,114, 120-147, 1960.

    151. Morimoto, N., M. Tokonami, M.Watanabe, and K. Koto, Crystalstructures of three polymorphs ofCo2SiO4, Am. Mineral., 59,475-485,1974.

    152. Morosin, B., Structure and thermalexpansion of beryl, Acta Cryst., 828,1899-1903, 1972.

    153. Mortier, L., J. J. Pluth, and I. V. Smith,Positions of cations and molecules inzeolites with the mordenite-typeframework IV. Dehydrated andrehydrated K-exchanged ptilolite,Pergamon, New York, 1978.

    154. Mullen, D.J.E. and W. Nowacki,ReIinement of the crysta l structures ofrealgar, ASS and orpiment, As2S3, Z.Krist., 136.48-65, 1972.

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    19/356

    SMYTH AND MCCORMICK 15

    155. Narita, H., K. Koto, and N. Morimoto,The crystal structures of MnSi03polymorphs, rhodonite- and pyrox-mangite-type, Mineral. J., 8.329-342,1977.

    156. Newnham, R.E., Crysta l structure andoptical properties of pollucite, Am.Mineral., 52,1515-1518, 1967.

    157. Newnham, R.E. and Y. M. deHaan,Refinement of the alpha-AlzO3,Ti203, V203 and Cr203 structures, Z.Krist. , II 7, 235-237, 1962.

    158. Newnham, R. E., and H. D. Megaw,The crystal structure of celsian (bariumfeldspar), Acta Cryst., 13, 303-312,1960.

    159. Nimmo, J. K., and B. W. Lucas, Aneutron diffraction determination ofthe crys tal struc ture of alpha-phasepotassium nitrate at 25C and 100C,J. of Phys., C6, 201-211, 1973.

    160. Noda, Y., K. Matsumoto, S. Ohba, Y.Saito, K. Toriumi, Y. Iwata, and 1.Shibuya, Temperature dependence ofatomic thermal paramters of leadchalcogenides, PbS, PbSe and PbTe,Acta Cryst., C43. 1443-1445, 1987.

    161. Novak, G. A., G. V. Gibbs,Thecrystalchemistry of the silicate garnets, Am.Mineral., 56.791-825, 1971.

    162. Nowack, E., D. Schwarzenbach, W.Gonschorek, and Th. Hahn, Defor-mationsdichten in Co& und NiS2 mitpyritstruk tur, Z. Krist. , 186, 213-215,1989.

    163. Ohashi, Y., and L. W. Finger, The roleof octahedral cations in pyroxenoidcrystal chemistry I. Bustamite,wollastonite, and the pectolite-schizo-lite-serandite series , Am. Mineral., 63,274-288, 1978.

    164. Okamura, F. P, S. Chose, and H.Ohashi, Structure and crystal chemis-try of calcium Tschermaks pyroxene,CaAlAlSiOa, Am. Mineral., 59,549-557, 1974.

    165. Onken H., Verfeinerung der kris tall-struktur von monticellite, TschermaksMineral. Petrol. Miit., IO, 34-44 1965.166. Pacalo, R.E.G. and J.B. Parise, Crystalstructure of superhydrous B, a hydrousmagnesium sili cate symthesized at1400C and 2OGPa, Am. Mineral., 77,681-684,1992.

    167. Papamantellos, P. Verfeinerung derTlZOg-struktur mittels neutronenbeu-

    gung, Z. Krist., 126. 143-146, 1968.168. Papike, J. J.. and J. R. Clark, The

    crys tal s tructure and cation distributionof glauwphane, Am. Mineral., 53,1156-1173, 1968.

    169. Papike, J. J., and M. Ross, Gedrites:crystal structures and intra-crystallinecation distributions , Am. Mineral., 55,1945-1972, 1970.

    170. Papike, J.J., and T. Zoltai, Ordering oftetrahedral aluminum in prehnite, Am.Mineral., 52.974-984, 1967.

    171. Parise, J. B., Structure of hazclwood-ite (Ni$2), Acta Cryst., B36, 1179-1180, 1980.

    172. Passag lia, E., and G. Gottardi, Crystalchemistry and nomenclature of pum-pellyit es and julgoldites, Canad.Mineral., 12.219-223, 1973.

    173. Peacor, D. R., High-temperaturesingle-crystal study of cristobaliteinversion, Z. Krist., 138. 274-298,1973.

    174. Pechar, F., W. Schaefer, and G. Will , Aneutron diffraction refinement of thecrys tal structure of a natural natrolite,Na2Al2Si30tu 2H20, Z. Krista l., 164.19-24,1983.

    175. Perdikatsis, B., and H. Burzlaff,Strukturverfeinerung am Talk Mg3[(OH)$4Otu], Z. Krista l., 156, 177-186, 1981.

    176. Pertl ik, F., Verfeinerung der kris tall-struktur von claudetit (ASTOR), Mo-ruts. Chem., 106.755-762, 1975.

    177. Pert lik F., Strukturverfeinerung vonkubischem As203 (Arsenolith) mitEinkristalldaten, Czech. J. Phys., B.28,170-176, 1978.

    178. Perrotta, A. J., and J. V. Smith, Thecrystal structure of kalsilite, KAlSi04,Mineral. Msg., 35,588-595, 1967.

    179. Peterson, R. C. and I. Miller, Crysta lstructure and cation distribution infreibergite and tetrahedrite, Mineral.Msg., 50.717-721, 1986.

    180. Radke, A. S., andG. E. Brown, Frank-dicksonite , BaF2, a new mineral fromNevada, Am. Mineral., 59, 885-888,1974.181. Rajamani, V. and C. T. Prewitt, Thecrys tal structure of millerite, Canad.Mineral., 12,253-257,1974.

    182. Reeder, R. J., Crysta l chemistry of therhombohedral carbonates, Rev. Miner-al., 11, l-47, 1983.

    183. Ribbe, P. H., and G. V. Gibbs, Crysta lstructures of the humite minerals: III.

    Mg/Fe ordering in humite and itsrelation to other ferromagnesiansilicates, Am. Mineral.,56,1155-1169,1971.

    184. Rinaldi, R., J. J. Pluth, and J. V. Smith,Zeolites of the phillips ite family.Refinement of the crys tal structures ofphillipsite and harmotome, ActaCryst., B30, 2426-2433, 1974.

    185. Robinson, K., G. V. Gibbs, P. H.Ribbe, and M. R. Hall, Cationdistribution in three homblendes, Am.J. Sci., 273A, 522-535, 1973.

    186. Robinson, K., G. V. Gibbs, and I? H.Ribbe, The crys tal structures of thehumite minerals IV. Clinohumite andtitanoclinohumite. Am. Mineral., 58,4349, 1973.

    187. Rothbauer, R., Untersuchung eines2Mt-Muskovits mit Neutronenstrah-len, Neues J. Mineral. Monat., 143-154, 1971.

    188. Saalfeld, H., and M. Wedde, Reline-ment of the crys tal structure of gibbsite,AI(O %. Krist. , 139, 129-135,1974.

    189. Sabine, T. M. and S. Hogg, Thewurtzite Z parameter for berylliumoxide and zinc oxide, Acta Cryst., B25.2254-2256. 1969.

    190. Sadanaga, R. and S. Sueno, X -raystudy on the a-p transition of AgzS,Mineral. J. Japan, 5, 124-143, 1967.

    191. Sahl, K., Verfeinerung der kris -tallstruktu r von ceruss it, PbC03, Z.Krist., 139, 215-222, 1974.

    192. Sartori, F., The crysta l structure of a2Mt lepidolite, Tschermuks Mineral.Petrol. Mitt, 24.23-37, 1977.

    193. Sartori, F., M. Franzini, and S.Merlino, Crysta l structure of a 2M2lepidolite, Acta Cryst., B29, 573-578,1973.

    194. Sartori, F., The crys tal structure of a1M lepidolite, Tschermaks Mineral.Petrol. Mitt, 23, 65-75, 1976.

    195. Sasak i, S., K. Fujino, Y. Takeuchi, andR. Sadanaga, On the estimation ofatomic charges by the X-ray methodfor some oxides and silica tes, ActaCryst., A36, 904-915, 1980.

    196.Sasaki,S.,C.T.Prewitt,Y.SatoandE.Ito, Single-crystal X-ray study ofgamma-MgzSiO4, J. of Geophys icalResearch, 87.7829-7832, 1982.

    197. Sasak i, S., Y. Takeuchi, K. Fujino, andS. Akimoto, Electron density dis-tributions of three orthopyroxenes,

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    20/356

    16 CRYSTALLOGRAPHIC DATA FOR MINERALS

    MgzSizOe, Co2StzGe. and Fe2SizGe. Z.Krist., 156, 279-297, 1982.

    198. Sass, R.L., R. Vidale, and J. Donohue,Interatomic distances and thermalanisotropy in sodium nitrate andcalcite, Acta Cryst.. 10, 259-265,1957.199. Scambos, T. A., J. R. Smyth, andT. C.McCormick, Crystal structure refine-ment of a natural high sanidine of uppermantle origin, Am. Mineral. 72,973-978, 1987.200. Schiferl, D. and C. S. Barrett, Thecrystal structure of arsenic at 4.2, 78and 299 X, J. Appl. Cryst. 2, 30-36,1969.

    201. Schlenker, J.L., J.J. Pluth, and J.V.Smith, Dehydrated natural erionitewith stacking faults of the offretitetype, Acta Cryst., 833, 3265-3268,1977.

    202. Schramm, V., and K.F. Fischer,Refinement of the crysta l structure oflaumontite, Molecular Seive Zeolites-I, Advances in Chemistry Series, 101,259-265, 1971.

    203. Schutte, W. J., J. L. de Boer, and F.Jellinek, Crystal structures of tungstendisulphide and diselenide, J. Solid St.Chem., 70.207-209, 1987.

    204. Shintani, II., S. Sato, and Y. Saito,Electron-density distribution in rutilecrystals, Acta Cryst., B31, 1981-1982,1975.

    205. Shirane, G. and D. E. Cox, Magneticstructures in FeCr& and FeCrzOJ, J.Appl. Phys., 35.954-955, 1964.

    206. Shtemberg, A.A., G.S. Mironova, andO.V. Zvereva, Berlinite, Kristal. , 31,1206-1211 1986.

    207. Simonov,M. A.,P. A. Sandomerski, F.K. Egorov-Tesmenko, and N. V. Belov,Crystal structure of willemite,ZnzSiO4, Kristal. , Dokl., Akad. NaukUSSR, 237,581-583,1977.

    208. Smith, D. K., and H. W. Newkirk, Thecrystal structure of baddeleyite(monoclinic ZrGz) and its relation tothe polymorphism of ZrOz, ActaCryst ., 18, 983-991 1965.

    209. Smith, J. V., The crystal structure ofstaurolite, Am. Mineral., 53, 1139-1155, 1968.

    210. Smyth, J. R., G. Artiol i, J. V. Smith,and A. Kvick, Crystal structure ofcoesite, a high-pressure form of SiOz,at 15 and 298 K from single-c rystalneutron and X-ray diffraction data: testof bonding models. J. of Phys . Chem.,

    91.988-992, 1987.211. Smyth, J.R., A.T. Spaid, and D.L.

    Bish, Crystal structures of anatural anda Cs-exchanged clinoptilolite. Am.Minera l., 75, 522-528, 1990.

    212. Speer, J. A., andB. J. Cooper, Crystalstructure of synthetic hafnon, HfSi04 ,comparison with zircon and theactinide orthosilicates, Am. Mineral.,67.804-808, 1982.

    213. Speer, J. A., and G. V. Gibbs, Thecrystal structure of synthetic titanite,CaTiOSiO4, and the domain texturesof natural titanites, Am. Mineral., 61,238-247, 1976.

    214. Sudarsanan, K. and R. A. Young,Significant precision in crystalstructural details: Holly Springshydroxyapatite, Acta Cryst., B25,1534-1543, 1969.

    215. Sudarsanan, K., P. E. Mackie, and R.A. Young, Comparison of syntheticand mineral fluorapatite, Ca5(PO&F,in crystallographic detail, Mat. Res.Bull ., 7, 1331-1338, 1972.

    216. Svennson, C., The crystal structure oforthorhombic antimony trioxide, Sb;!03, Acta Cryst., B30,458-461, 1974.

    217. Svennson, C., Refinement of thecrystal structure of cubic antimonytrioxide, Sbz03, Acta Cryst., B31,2016-2018, 1975.

    218. Szymanski, J. T.. A refinement of thestructure of cubanite, CuFe&, Z.Krist., 140, 218-239, 1974.

    219. Tagai, Y., H. Ried, W. Joswig, and M.Korekawa, Kristallographische unter-suchung eines petalits mittels neu-tronenbeugung und transmissions-elektronmikroskopie. Z. Kristal., 160,159-170, 1982.

    220. Takeuchi, Y., T. Ozawa, T. Ito, T.A&i, T. Zoltai, and J.J. Finney, TheBzSis03o groups of tetrahedra inaxinite and comments on thedeformation of Si tetrahedra in sil i-cates, Z. Kristal. , 140, 289-312, 1974.

    221. Taylor, L. A., Smythite, Fq+xS4, andassociated minerals from theSilverfields Mine, Cobalt, Ontario, Am.Mineral ., 55, 1650-1658, 1970.222. Taylor, M., and R. C. Ewing, Thecrysta l structures of the ThSi04polymorphs: huttonite and thorite, ActaCryst., B34, 1074-1079, 1978.

    223. Thompson, R. M., The tellur ideminerals and their occurrence inCanada, Am. Minera l., 34, 342-383,1949.

    224. Tomoos, R., Properties of alabandite;alabandite from Finland, Neues Jb.,Miner. Abh., 144,1, 107-123.1982.

    225. Ulkii, I)., Untersuchungen zur Kris -tallstruktur turd magnetischen strukturdes ferberits FeW04, Z. Krist., 124,192- 219 1967.

    226. Vezzalini, G. and R. Oberti, Thecrystal chemistry of gismondines: thenon-existence of K-ric h gismondines,Bulletin de Mineralogie, 107, 805-812, 1984.

    227. Vogel, R. E. and C. P. Kempter,Mathematica l technique for theprecision determination of latticeconstants, U. S. Atomic EnergyCommission, LA-231 7, 30, 1959.

    228. Wainwright, J. E., and J. Starkey, Arefinement of the crystal structure ofanorthite, Z. Krist., 133, 75-84, 1971.229. Wechsler, B.A. and C.T. Prewitt,Crystal structure of ilmenite at hightemperature and at high pressure, Am.Minera l., 69, 176-185, 1985.

    230. Wechsler, B. A., C. T. Prewitt, and J. J.Papikc, Chemistry and structure oflunar and synthetic armalcolite, EarthPlanet. Sci . Len., 29.91-103 1976.

    23 1. Weitzel, H., Kristallstrukturverfeiner-ung von Wolframiten und Columbiten.Z. Krist., 144, 238-258, 1976.

    232. Will is, B.T.M., Anomalous behaviourof the neutron reflexions of fluorite,Acta Cryst., 18, 75-76, 1965.233. Winter, J. K., and S. Ghose, Thermalexpansion and high temperature crystalchemistry of the AlzS iOs polymorphs,Am. Minera l., 64,573-586, 1979.

    234. Winter, J. K., F. P. Okamura, and S.Ghose, A high-temperature structuralstudy of high albite, monalbite, and theanalbite-monalbite phase transition,Am. Minera l., 64,409-423, 1979.

    235. Wyckoff, R. W. G. Crystal Structures,John Wiley & Sons, New York, 1963.

    236. Yagi, T., F. Marumo, and S. Akimoto,Crystal structures of spine1 poly-morphs of FezSi04 and NizSi04, Am.Minera l., 59.486490, 1974.

    237. Yakubovich, O.V., M.A. Simonov,and N.V. Belov The crystal structure ofsynthetic triphylite, LiFe(P04). SovietPhys. Dokl., 22,347-450,1977.

    238. Yamaguchi, S. and H. Wada,Remarques sur une griegite preparee

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    21/356

    SMYTH AND MCCORMICK 17

    par processus hydrothermal, Bull. Sot.Fr. Mineral. Cristallogr.. 94. X9-550,1971.

    239. Yamanaka, T. and M. Tokonami, Theanharmonic thermal vibration in ZnX(X=S, Se, Te) and its dependence on thechemical-bond characters, AclaCrysf .. B41, 298-304, 1985.

    240. Yund, R. A., Phase relations in thesystem Ni-As, Econ. Geol., 56,1273-1296, 1961.

    241. Zachariasen, W. H., Refined crystalstructure of phenacite, Be$SQ, Kris -tallographiya. , 16, 1161-1166, 1971.

    242. Zemann, J., E. Zobetz, G. Heger, andH. Voellenkle, Strukturbestimmungeines OH-reichen topases, Oest. Akad.Wissenschajien, 6. 145-147, 1979.243. Zigan, F. and R. Rothbauer, Neu-tronenbeugungsmessungen am brucit ,Neues J. Minera l. Monat., 137-143,1967.

    244. Zigan, F., W. Joswig, H.D. Schuster,and S.A. Mason, Verfeinerung derStruktur von Malachit, Cuz(OH)zC03,durch Neutronenbeugung, Z. Krist.,145.412-426, 1977.

    245. Zigan, F., and H.D. Schuster,Verfeinerung der struktur von azurit,CU~(OH)~(CO-&, Z. Krist., 13.5, 416-436, 1972.

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    22/356

    Thermodynamic Properties of Minerals

    Alexandra Navrotsky

    1. INTRODUCTIONThermochemicalproperties of minera lscan be used ocalculate the thermodynamic stability of phases asfunctions of temperature, pressure, component fugacity,and bulk composition, A number of compendia ofthermochemicaldata [4,5,7,9, 10, 13, 15, 16, 18, 19,311contain detailed data. The purposeof th is summary s togive, in short form, useful data for anhydrous phasesofgeophysical mportance. The values selectedare, in theauthorsopinion, reliable, but no attempt hasbeenmade osystematically select values most consistentwith a largeset of experimental observations. When possible,estimatesof uncertainty are given.

    2. HEAT CAPACITIESThe isobaric heat capacity, Cp, is the temperaturederivative of the enthalpy, Cp = (dH/aT)p. For so lids, Cpis virtually independentof pressurebut a strong functionof temperature (see Fig. 1). Contributions to Cp arisefrom lattice vibrations, and rom magnetic,electronic,andpositional order-disorder. The relation between heatcapacity at constant pressure, Cp, and that at constant

    volume, Cv = (aE/aT)V, is given by Cp - Cv = TVa2/13,where T = absolute emperature, V = molar volume, a =thermal expansivity = (l/V) (aV/aT), and B =compressibility = inverse bulk modulus = -(l/V)

    A. Navrotsky, Princeton Unive rsity, Department of Geologica land Geophysical ciences nd Princeton Materials Institute,Guyot Ha ll, Princeton, NJ 08544Mineral Physics and CrystallographyA Handbook f PhysicalConstantsAGU Reference helf2Copyright 1995 by the American Geophysical Union.

    @V/aP)T. For solids, Cp - Cv is on the order of a fewpercent of C,, and increases with temperature. Thevibrational heat capacitycan be calculatedusingstatisticalmechanics rom the density of states,which in turn can bemodeled at various degreesof approximation [20]. Themagnetic contributions, important for transition metals,play a major role in iron-bearing minerals [321.Electronic transitions are usually unimportant in silicatesbut may become significant in iron oxides and ironsilicates at high T and P. Order-disorder is an importantcomplication in framework silicates (Al-Si disorder ontetrahedral sites), in spine ls (M2+-M3+ disorder overoctahedral and tetrahedral sites) and in olivines,pyroxenes, amphiboles, and micas (cation disorder overseveral nequivalent octahedralsites). These actors mustbe considered or specific mineralsbut detaileddiscussionis beyond he scopeof this review.

    As T--> 0 K, Cp --> 0 (see Fig. 1). At intermediatetemperatures, Cp increases sharply. The Debyetemperature is typically 800-1200 K for oxides andsilicates. At h igh temperature, he harmonic contributionto C v approaches he Dulong and Petit limit of 3nR (R thegasconstant,n the number of atomsper formula unit). Cpis then 510% larger than 3nR and varies slowly androughly linearly with temperature seeFig. 1).Table 1 lists heat capacities for some commonminerals. The values at high temperature may becompared with the 3nR limit as follows: Mg2Si04(forsterite) 3nR = 175 Jmmol, Cp at 1500 K = 188J/K*mol; MgA1204 (spinel) 3nR = 188 Jfimol, Cp at1500 K = 191 J/K*mol. Thus the Dulong and Petit limitgives a usefu l first order estimateof the high temperatureheat capacity of a solid, namely 3R per gram atom,irrespectiveof structural detail.The entropy,s; = &C, / TNT (1)

    18

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    23/356

    NAVROTSKY 19

    T(K)

    T(K)Fig. 1. Heat capacity of Mg2SiO4 (forsterite) from 0 to1800K, data rom [311.

    Any zero point entropy, arising from frozen inconfigurational disorder, must be added to thiscalorimetric entropy. Entropies of some common phasesare alsoshown in Table 1.The sharp dependenceof Cp on T at intermediatetemperature makes it difficult to fit Cp by algeb raicequationswhich extrapolate properly to high temperatureand such empirical equations almost never show properlow temperature behavior. At 298 - 1500 K. anexpression f the Maier-Kelley form, 13 1Cp = A + BT + CT-O5 + DT-2 (2)gives a reasonable it but must be extrapolatedwith care.A form which ensuresproper high temperaturebehavior,recommended y Fei and Saxena 8] isCp=3nR[1+klT-1+k2T-2+k3T-31+A + BT + C p (disordering) (3)Because different authors fit Cp data to a variety ofequations and over different temperature ranges, atabulation of coefficients is not given here but the readeris referred to Robie et al. [3 11.Holland and Powell [ 15

    Table 1. Heat Capacities nd Entropiesof Minerals (J/(K*mol))298K 1OOOK 1500KCP S Q S Q S

    MgO (periclase) 37.8 26.9 51.2 82.2Al 203 (corundum) 79.0 50.9 124.9 180.2FeO (wustite) 48.12 57.6 55.8 121.4Fe203 (hematite) 103.9 87.4 148.5 252.7Fe304 (magnetite) 150.8 146.1 206.0 390.2Ti02 @utile) 55.1 50.3 73.2 129.2FeTi03 (ilmenite) 99.5 105.9 133.7 249.3Fb2TiO4 (titanomagnetite) 142.3 168.9 197.5 375.1MgAJ204 (spinel) 115.9 80.6 178.3 264.5Mg2SiO4 (forsterite) 117.9 95.2 175.3 277.2MgSi03 (enstatite) 82.1 67.9 121.3 192.9NaAlSi308 (low albite) 205.1 207.4 312.3 530.1KAtSi308 (microcline) 202.4 214.2 310.3 533.8Mg3~2si3012 @yrope) 325.5 222.0 474.0 730.8Ca3Al2Si3012 (grossular) 330.1 255.5 491.7 773.0CaSiO3 (wollastonite) 85.3 82.0 123.4 213.4CaSiO3 (pseudowollastonite) 86.5 87.5 122.3 217.6CaMgSi206 (diopside) 166.5 143.0 248.9 401.7Mg2Al2Si5018 (cordierite) 452.3 407.2 698.3 1126.6CaCO3 (calcite) 83.5 91.7 124.5 220.2MgC03 (magnesite) 76.1 65.1 131.5 190.5CaMg(C03)2 (dolomite) 157.5 155.2 253.1 406.0

    53.1 103.5132.1 232.363.6 145.3144.6 310.5201.0 471.579.5 160.1155.0 307.4243.2 463.4191.3 339.5187.7 350.8127.6 243.5

    132.3 269.1269.7 506.3753.6 1420.9

    Dalafronl [S, 311.

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    24/356

    20 THERMODYNAh4ICS

    500

    400

    G300

    0E+ 2000" 100

    0

    L

    liquid

    Tm

    t4 0 400 600 1200 1600 2000600 900 1200 1500 1800 Temperature (K)Temperature (K)300

    Fig. 2. Enthalpy and heat capacity in CaM gSi206. a glass-forming system,data rom [21].

    Table 2. Heat Capacitiesof Glasses ndLiquids andGlassTransition TemperaturesComposition Cp glass Cp glass Tg Cp liquid298 K (at Tg> 6)J/mol*K J/mol*K J/mol=KSiO2 381311 74 128,291 1~7128291 8p.291CaMgSi206 17w 256128.291 1~5PU91 y&8.291NaAlSi 308 2 10[311 321128.291 1096W.291 347128,291KAlSi 308 209[311 3 161XW 122 128,291 338128~291CaA12Si208 21 [311 33~@8,291 1160~w91 LQL@WIMS2SiO4 _____ ------ _ 268/11d21Na2Si205 --___ 217128,291 703/28>291 263/28.291K2Si205 ----- 226/28,291 770128,291 259/X291CaSiO3 871301 13 P&29301 1065 167/28,291Mg3A2Si3012 33ou 5 16/m91 1020 67@8>291Mg2A4Si5018 460a 731128,291 1118 928[28.291aEstimated,from higher temperalure data andfrom comparison with crysta lline phases.

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    25/356

    NAVROTSKY 21

    161,Berman [5], JANAF [18], and Fei et al. [9j for suchequations.In glass-forming systems, seeFig. 2. the heat capacityof the glass rom room temperature o the glass rans itionis not very different from that of the crystalline phase.For CaMgSi206 Cp, glass= 170 J/mol*K at 298 K, 256J/mol=K at 1000 K; Cl,, crystal = 167J/mobK at 298 K,249 J/mol*K at 1000 K [213. At Tg, the viscositydecreases,and the volume and heat capacity increase,reflecting the onset of configu rational rearrangements nthe liquid [27]. The heat capacity of the liquid isgenerally larger than that of the glass (see Table 2) and,except for cases with strong structural rearrangements(such as coordination number changes),heat capacities fliquids dependonly weakly on temperature.For multicomponent glasses and liquids withcompositions relevant to magmatic processes, heatcapacities can, to a useful approximation, be given as asum of terms depending on the m ole fractions of oxidecomponents, i.e., partial molar heat capacities arerelatively independent f composition. ThenCp = CXi Cpi (4)

    where i is taken over the oxide components f the glassorliquid [22, 331. The partial molar heat capacitiesof theoxide components n glasses nd melts, CpV,are given inTable 3.3. MOLAR VOLUME, ENTROPY, ENTHALPY OFFORMATION

    Table 4 lists enthalpiesand entropiesof formation ofselected minerals from the elements and the oxides atseveral emperatures. These efer to the reactionaA + bB + CC + /2 02 = AaBbCcOn (3anddo] + bBOm +cCOn=AaBbCcOn (6)respectively, where A, B, C are different elements (e.g.Ca, Al, Si), 0 is oxygen, and referencestatesare the moststable orm of the elementsor oxidesat the temperature nquestion. The free energy of formation is then given by

    Table 3. Partial Molar Heat Capacities of Oxide Componentsin Glasses nd Melts (J/K*mol)

    298 K Glass/291LiquidL22,28,33I

    400K IOOOK 1500KSiO2 44.04 52.39 70.56Ti02 44.92 58.76 84.40A1203 79.22 96.24 124.98R203 94.89 115.74 143.65Fe0 43.23 47.17 70.28MO 35.09 42.89 56.60CaO 43.00 45.67 57.66Na20 74.63 79.09 96.64K20 75.20 79.43 84.22B203 62.81 77.67 120.96H20 46.45 62.04 78.43

    82.6109.2170.3240.978.894.289.897.698.5-----__---

  • 8/3/2019 Ahrens - Mineral Physics and Crystallography - A Handbook of Physical Constants 1995

    26/356

    Table 4. Enthal pies and Entropies of Formation of Selected Compounds fromElements and From Oxides

    Compound Formation from Elements Formation from Oxides298 K lOOOK 298 K 1000 KAH Es AH AS AH AS AH ASkJ/mol J/m01 K kJ/mol J/m01 K kJ/mol J/m01 K kJ/mol J/mol K

    MgO (periclase) -601.5~5~ -108.4[51 -608.5[181 -115.51(181CaO (lime) -635.1 151 -106.5151 -634.3[181 -103.6[18~Al203 (corundum) -1675.7 f51 -313.8L51 -J693.4[181 -332.0f1@SiO 2 (quartz) -910.7 151 -182.6f51 -905.1 [I@ -174.9[181SiO2 (cristobali te) -907.8 I51 -180.6L51 -903.2(181 -173.1 [lslFeO (wustite) -266.3 i51 -70.9 I51 -263.3[181 -63.9[181Mg2SiO4 (forsterite) -2174.4f51 400.7 (51 -2182.1 L311 410.6(311 -60.7 IsI -1.4151MgSi03 (enstatite) -1545.9151 -293.0151 - 1552.9 (3il -296.5 1311 -33.7 (51 -2.lPlFe2SiO4 (fayalite) -1479.4[331/ -335.5(3Jll -1472.3[311 -321.4[311 -24.6L5j -12.7151CaSi03 (wollastonite) -1631.5f51 -286.5 I51 -1630.4[311 -278.