Aguideforcanolaandc amelina research...

14
A guide for canola and camelina research in California The University of California, Davis 1 A guide for canola and camelina research in California Nicholas George, Joy Hollingsworth & Stephen Kaffka Department of Plant Sciences, University of California, Davis 2015

Transcript of Aguideforcanolaandc amelina research...

Page 1: Aguideforcanolaandc amelina research inCaliforniaagresearch.montana.edu/wtarc/producerinfo/agronomy... · 2017-01-09 · A guide for canola and camelina research in California The

 A guide for canola and camelina research in California

The University of California, Davis 1  

A  guide  for  canola  and  camelina  research  in  California  

   

Nicholas  George,  Joy  Hollingsworth  &  Stephen  Kaffka  

Department  of  Plant  Sciences,  University  of  California,  Davis  

2015  

   

Page 2: Aguideforcanolaandc amelina research inCaliforniaagresearch.montana.edu/wtarc/producerinfo/agronomy... · 2017-01-09 · A guide for canola and camelina research in California The

 A guide for canola and camelina research in California

The University of California, Davis 2  

Introduction  .......................................................................................................................................  3  Suggested  information  sources  ...................................................................................................  3  Variety  selection  ...............................................................................................................................  3  Site  selection  ......................................................................................................................................  4  Soil  type  ...........................................................................................................................................  4  Rotations  ........................................................................................................................................  4  Water-­‐logging  ...............................................................................................................................  4  Herbicide  carryover  ...................................................................................................................  4  Wildlife  damage  ...........................................................................................................................  4  

Field  Preparation  .............................................................................................................................  6  Seed  bed  ..........................................................................................................................................  6  Fertilization  ...................................................................................................................................  6  Pre-­‐plant  weed  control  ..............................................................................................................  6  Soil  sampling  &  weather  data  ..................................................................................................  6  

Site  establishment  ............................................................................................................................  7  Planting  date  .................................................................................................................................  7  Sowing  .............................................................................................................................................  7  Plot  size  and  layout  .....................................................................................................................  8  

Post  planting  management  ...........................................................................................................  8  Irrigation  ........................................................................................................................................  8  Post-­‐planting  weed  control  ......................................................................................................  8  

Crop  monitoring  &  data  collection  .............................................................................................  9  Harvesting  ...........................................................................................................................................  9  Determining  harvest  date  .........................................................................................................  9  Harvesting  small-­‐scale  research  plots  .................................................................................  9  Data  collection  at  harvest  ......................................................................................................  10  

Volunteers  &  weed  risk  ...............................................................................................................  10  Controlling  volunteers  ............................................................................................................  10  Broader  weed  risk  ....................................................................................................................  10  Herbicide  tolerant  canola  ......................................................................................................  10  

References  .......................................................................................................................................  11  

Page 3: Aguideforcanolaandc amelina research inCaliforniaagresearch.montana.edu/wtarc/producerinfo/agronomy... · 2017-01-09 · A guide for canola and camelina research in California The

 A guide for canola and camelina research in California

The University of California, Davis 3  

Introduction  Canola  (Brassica  napus)  and  camelina  

(Camelina  sativa)  could  be  used  to  diversify  winter  crop  rotations  in  California.  Canola  is  a  well-­‐established  crop  in  Canada,  Europe  and  Australia  (FAOSTAT,  2014).  The  United  States  is  a  relatively  small  canola  producer,  with  some  production  in  North  Dakota,  Oklahoma,  Montana,  Idaho  and  Minnesota  (USDA  NASS,  2014)  and  effectively  no  commercial  production  in  California  at  the  present  time.    

Relative  to  other  oilseeds,  canola  has  received  the  greatest  research  and  development  effort,  and  has  the  greatest  yield  potential  under  good  growing  conditions.  However,  it  can  become  unreliable  in  low  rainfall  conditions  (Farré,  Robertson,  et  al.,  2007)  and  there  are  also  other  agro-­‐ecological  circumstances  where  it  may  not  be  compatible  with  existing  rotations.  Camelina,  which  is  more  cold  tolerant  and  matures  faster  than  canola  (Allen,  Vigil,  et  al.,  2014,  Jiang,  2013,  Putnam,  Budin,  et  al.,  1993),  could  therefore  be  a  good  alternative  for  growers.  

Our  research  group  at  the  University  of  California,  Davis,  has  been  investigating  canola  and  camelina  since  2006.  This  work  has  included  extensive  variety  trials  and  agronomic  research  at  locations  throughout  California.  In  this  report,  we  document  our  experiences  from  this  work  to  provide  California-­‐specific  information  to  complement  existing  production  guides  and  help  inform  future  research  and  developed  efforts.    

Suggested  information  sources    For  information  relating  to  canola  production  

in  North  America,  please  refer  to  grower  manuals  provided  by  the  Canola  Council  of  Canada,  the  United  States  Canola  Association,  and  also  the  Great  Plains  Canola  Production  Handbook  (Boyles,  Bushong,  et  al.,  2012,  CCC,  2015,  USCA,  2015).  In  some  instances,  the  information  in  these  guides  is  not  applicable  to  Californian  conditions  so  we  also  refer  people  to  canola  production  information  for  southern  Australia  (Duff,  Sermon,  et  al.,  2006,  McCaffery,  

Potter,  et  al.,  2009).    This  region  is  climatically  comparable  to  much  of  California.    

Given  its  status  as  a  minor  crop,  information  regarding  camelina  production  is  more  limited  than  for  canola,  although  a  number  of  short  production  guides  are  available  (Enjalbert  and  Johnson,  2011,  Hulbert,  Guy,  et  al.,  2012,  Lafferty,  Rife,  et  al.,  2009,  McVay  and  Lamb,  2008).    

When  conducting  variety  assessments  on  canola  and  camelina,  we  suggest  workers  adhere  to  established  protocols  for  oilseeds.    Good  sources  of  information  include  the  Australian  Grains  Research  &  Development  and  the  Kansas  State  University  National  Winter  Canola  Variety  Trials  (GRDC  NVT,  2015,  KSU,  2015).    

Successful  introduction  and  adoption  of  new  crops  requires  rigorous,  high  quality  and  efficient  research  and  development.  We  strongly  suggest  that  those  wishing  to  undertake  field  research  relating  to  canola  or  camelina  in  California  therefore  consult  production  guides  and  published  research  relating  to  both  species.    

Variety  selection  Our  work  suggests  canola  has  good  yield  

potential  in  California.  The  best-­‐adapted  varieties  tend  to  be  short-­‐season  spring-­‐types  developed  in  Australia.  Across  sites  and  years  the  best  varieties  have  achieved  approximately  3000  to  3500  kg/ha.  Winter-­‐adapted  varieties  have  failed  to  produce  seed  in  California,  even  in  the  inter-­‐mountain  region.    

Camelina  yields  in  our  trials  are  comparable  to  what  has  been  achieved  elsewhere  in  North  America  (Putnam,  Budin,  et  al.,  1993),  with  the  best  varieties  reliably  producing  1000  to  1200  kg/ha  of  seed.    In  contrast  to  canola,  camelina  yields  are  more  uniform  across  varieties;  however  the  best  performing  varieties  in  our  trials  tend  to  be  commercial  lines.      

Preliminary  analysis  of  our  field  data  suggests  there  is  only  minimal  genotype  by  environment  interaction  occurring  in  either  canola  or  camelina  across  California.  In  other  words,  variety  rankings  seem  to  be  consistent  across  sites  and  years.    

Page 4: Aguideforcanolaandc amelina research inCaliforniaagresearch.montana.edu/wtarc/producerinfo/agronomy... · 2017-01-09 · A guide for canola and camelina research in California The

 A guide for canola and camelina research in California

The University of California, Davis 4  

Site  selection    Soil  type  

Canola  yields  best  when  grown  on  deep,  well-­‐drained,  silt  loam  soils  that  do  not  crust;  however,  it  can  be  grown  successfully  on  a  wide  range  of  soil  types  (CCC,  2015,  Duff,  Sermon,  et  al.,  2006)  and  should  be  suited  to  the  loam  soils  commonly  found  throughout  the  Central  Valley,  Central  Coast  and  Imperial  Valley  of  California.    There  is  less  information  regarding  the  soil  types  suitable  for  camelina,  but  it  is  a  relatively  adaptable  species  (Campbell,  Rossi,  et  al.,  2013,  Putnam,  Budin,  et  al.,  1993)  and  in  California  we  have  observed  camelina  to  perform  well  in  similar  soils  to  canola.    

Rotations  

Canola  is  most  commonly  grown  following  cereals  or  pastures.  However,  California  agro-­‐ecosystems  are  more  diverse  than  many  other  regions,  so  canola  and  camelina  could  follow  multiple  different  crops.    

To  reduce  the  risk  of  problems  from  soil-­‐borne  diseases,  the  field  should  not  have  had  a  brassica  crop  in  the  past  four  years.  It  should  also  be  one  year  since  dicotyledonous  crops  like  legumes  or  sunflowers  have  been  grown  because  these  can  also  harbor  disease  that  can  affect  canola.  Camelina  is  potentially  more  disease  resistant  than  canola  (Putnam,  Budin,  et  al.,  1993),  but  similar  rotational  practices  should  still  be  observed.    

Water-­‐logging  

Canola  and  camelina  are  both  less  tolerant  of  waterlogging  than  cereals  and  our  observations  suggest  camelina  is  more  sensitive  to  waterlogging  than  canola.  Short  periods  of  inundation  or  saturated  soil  can  cause  crop  injury,  particularly  when  plants  are  small.  Short  durations  of  waterlogging  can  also  reduce  the  yield  potential  of  canola,  and  presumably  also  camelina,  even  without  obvious  crop  injury  (Duff,  Sermon,  et  al.,  2006,  McCaffery,  Potter,  et  al.,  2009).  Fields  with  poorly  drained  soils  or  a  history  of  flooding  should  therefore  be  avoided.  If  waterlogging  is  unavoidable  then  bedding  is  recommended  (McCaffery,  Potter,  et  al.,  2009).  

We  have  found  bedding  can  reduce  waterlogging  damage  relative  to  flat-­‐planting  under  Californian  conditions.    

Herbicide  carryover  

Brassicas  can  be  very  sensitive  to  herbicide  carry-­‐over  (notably  from  sulfonylureas)  so  the  herbicide  history  of  the  field  must  be  known.  Refer  to  the  Canola  Council  of  Canada  for  information  regarding  plant-­‐back  restrictions  for  canola.  Similar  restrictions  are  also  thought  to  apply  for  camelina  (Enjalbert  and  Johnson,  2011).      

Wildlife  damage  

In  Canada,  Australia  and  the  northern  and  eastern  United  States,  vertebrates  are  generally  not  reported  to  cause  significant  damage  to  large-­‐scale  plantings  of  canola  or  camelina.  Farmers  and  other  researchers  conducting  large-­‐scale  trials  of  canola  and  camelina  in  California  also  do  not  report  vertebrate  damage.  For  this  reason,  we  do  not  anticipate  vertebrate  pests  will  cause  serious  yield  losses  to  large-­‐scale  commercial  plantings  of  canola  or  camelina  in  California.  Nevertheless,  vertebrates  can  cause  serious  damage  to  research-­‐scale  plots.    

In  California  we  have  observed  extensive  damage  to  plants  from  Columbian  black-­‐tailed  deer  (Odocoileus  hemionus  columbianus),  black-­‐tailed  jackrabbit  (Lepus  californicus)  and  California  quail  (Callipepla  californica),  as  well  as  moderate  to  heavy  damage  to  maturing  seedpods  by  birds.  The  most  problematic  species  appear  to  be  purple  finches  (Carpodacus  purpureus)  and/or  house  finches  (C.  mexicanus).  Our  colleagues  conducting  small-­‐plot  oilseed  research  elsewhere  in  California  have  also  encountered  similar  problems.  Damage  from  vertebrates  should  therefore  be  expected  in  small-­‐plot  experiments  and  steps  taken  to  mitigate  it.    

If  deer  damage  is  likely,  an  electric  fence  can  be  erected  (Figure  1).  We  have  found  that  these  fences  are  a  simple  and  cost  effective  way  to  exclude  deer  from  sites.  If  rabbits  are  likely  to  be  problematic,  plastic  mesh  fencing  can  be  attached  to  the  fence.    

Page 5: Aguideforcanolaandc amelina research inCaliforniaagresearch.montana.edu/wtarc/producerinfo/agronomy... · 2017-01-09 · A guide for canola and camelina research in California The

 A guide for canola and camelina research in California

The University of California, Davis 5  

 

Figure  1:  Dual  electric  fence  to  exclude  deer.    

Bird  damage  to  canola  and  camelina  plots  has  been  common  and  widespread  across  California.  Birds  will  damage  seedlings,  green  pods  and  mature  seed  (Figure  2,  Figure  3,  Figure  4,  Figure  5).  We  have  completely  lost  experiments  to  bird  damage.    

 Preventing  bird  damage  is  challenging,  and  although  there  are  many  bird  control  methods  available  on  the  market,  there  are  very  few  that  are  truly  effective,  especially  in  the  long-­‐term  (Bishop,  McKay,  et  al.,  2003,  Salmon,  Whisson,  et  al.,  2006).  The  only  effective  means  to  exclude  birds  is  through  netting;  however,  fully  netting  research  sites  is  practically  challenging  and  prohibitively  expensive  under  most  circumstances,  and  therefore  not  usually  a  viable  option.    

Bird  deterrent  chemicals  are  available.  These  include  methyl  anthranilate  (Bird  Shield/Avian  Control)  and  anthraquinone  (Avipel).  Methyl  anthranilate  is  a  pre-­‐ingestive  trigeminal  irritant  and  anthraquinone  is  a  post-­‐ingestive  cathartic  emodin  purgative  (Werner  and  Provenza,  2011).  Whilst  not  completely  effective,  research  shows  these  chemicals  can  be  useful  tools  for  repelling  birds  (Avery,  2003,  Avery  and  Mason,  1997,  Avery  and  Cummings,  2003,  Bishop,  McKay,  et  al.,  2003,  Linz,  Homan,  et  al.,  2006,  Linz,  Homan,  et  al.,  2011,  Mason  and  Clark,  1997,  Moran,  2001,  Salmon,  Whisson,  et  al.,  2006,  Schafer,  1991,  Shefte,  Bruggers,  et  al.,  1982,  Werner  and  Provenza,  2011).  APHIS  suggests  that  decoy  

crops,  and  seed  provided  for  birds  to  feed  on  can  also  be  effective  for  reducing  damage  to  research  plots.  We  have  used  bird  repellents  in  conjunction  with  decoy  seed  and  believe  it  substantially  reduced  bird  activity  in  research  plots.    

 

Figure  2:  This  image  shows  where  birds  have  damaged  the  majority  of  the  pods  from  maturing  canola  grown  at  Davis,  CA.    

 

Figure  3:  Detail  of  bird  damaged.  

 

Figure  4:  An  individual  pod  showing  damage  from  birds.  

Page 6: Aguideforcanolaandc amelina research inCaliforniaagresearch.montana.edu/wtarc/producerinfo/agronomy... · 2017-01-09 · A guide for canola and camelina research in California The

 A guide for canola and camelina research in California

The University of California, Davis 6  

 

Figure  5:  Image  showing  quail  damage  to  canola  seedlings.  

Field  Preparation  Seed  bed    

Both  canola  and  camelina  seed  are  relatively  small  and  therefore  the  field  must  be  cultivated  to  incorporate  residue  material  from  previous  crops  and  to  break  up  soil  clods.    Both  species  are  susceptible  to  soil  crusting,  so  conduct  just  enough  tillage  to  achieve  a  reasonably  level,  uniform,  well  packed,  surface  structure  with  a  mix  of  granules  in  the  1  to  5  mm  size  range  (CCC,  2015).  We  typically  disk  and  then  harrow  fields.    

Fertilization  

Fertilization  amounts  should  be  based  on  reliable  soil  analyses  and  field  history.  The  nutrient  needs  of  canola  are  approximately  P  20  kg/ha,  K  200  kg/ha  and  S  30  kg/ha  (CCC,  2015).  We  have  found  that  soils  at  our  Californian  research  sites  tend  to  have  sufficient  P,  K  and  S  for  canola,  although  not  in  all  cases.  If  P,  K  or  S  fertilization  is  needed,  it  should  be  incorporated  into  the  soil  prior  to  planting.    

Nitrogen  requirements  for  irrigated  canola  in  Australia,  which  we  believe  should  be  similar  for  California,  are  40  to  60  kg/ha  to  produce  a  1000  kg/ha  of  grain  (Pritchard,  Marcoft,  et  al.,  2010).  Total  nitrogen  requirements  for  canola  in  California  could  therefore  be  over  200  kg/ha.    

Total  nitrogen  is  considered  more  important  than  the  timing  or  type  (McCaffery,  Potter,  et  al.,  2009),  but  split  nitrogen  applications  are  

recommended  by  a  number  of  sources.  Split  applications  spread  risk  and  avoid  excessive  losses  to  leaching  or  nitrification.  Under  this  system,  fertilizer  is  incorporated  before  sowing  and  then  when  plants  begin  to  show  increased  growth  in  spring,  but  before  they  start  to  bolt.  Fall-­‐planted  canola  in  California  has  been  observed  to  bolt  as  early  as  mid-­‐January,  so  the  top-­‐dress  application  could  be  needed  as  early  as  this.    

Camelina  is  often  considered  to  have  low  nutrient  requirements,  although  evidence  suggests  its  nutrient  requirements  are  not  dissimilar  to  other  brassicas,  including  canola,  especially  on  a  per  yield  basis  (Hulbert,  Guy,  et  al.,  2012,  Putnam,  Budin,  et  al.,  1993,  Solis,  Vidal,  et  al.,  2013,  Wysocki,  Chastain,  et  al.,  2013).  To  achieve  the  highest  yield  potential,  camelina  should  be  fertilized  at  a  similar  level  to  that  required  by  canola  on  an  expected  yield  basis.    

Pre-­‐plant  weed  control  

Canola,  and  to  a  lesser  extent  camelina,  is  very  competitive  against  weeds  once  established,  however  good  weed  control  is  critical  during  establishment.  If  establishment  is  slow  or  patchy,  weeds  can  become  established  and  can  then  be  difficult  to  control.    

Chemical  weed  control  options  for  both  species  are  relatively  limited.  Fields  with  high  weed  pressure  should  therefore  be  avoided.  Treflan  (trifluralin)  is  currently  labeled  as  a  pre-­‐emergent  herbicide  for  canola  (it  is  not  labeled  for  use  with  camelina)  and  we  use  it  successfully  in  our  trials.  Cultivation  and  Roundup  (glyphosate)  can  also  be  used  for  pre-­‐plant  weed  control.    

Soil  sampling  &  weather  data  

To  facilitate  both  field  preparation  and  interpretation  of  experimental  data,  it  is  essential  that  the  physical  and  chemical  properties  of  all  research  sites  be  well  recorded.  Canola  and  camelina  can  root  to  depths  of  2  m  so  we  recommend  soil  samples  be  taken  from  throughout  the  profile  to  this  depth,  or  until  restrictive  soil  layers  are  reached.    Soil  samples  should  be  analyzed  for  nutrient  content,  texture,  

Page 7: Aguideforcanolaandc amelina research inCaliforniaagresearch.montana.edu/wtarc/producerinfo/agronomy... · 2017-01-09 · A guide for canola and camelina research in California The

 A guide for canola and camelina research in California

The University of California, Davis 7  

field  capacity  and  wilting  point.  It  can  also  valuable  to  know  the  starting  soil  water  content.    

Basic  weather  data  is  essential  to  the  interpretation  experiments,  so  research  sites  must  be  in  the  proximity  of  a  reliable  weather  station.  We  use  the  weather  stations  of  the  California  Irrigation  Management  Information  System  (CIMIS)  and  have  deployed  our  own  temporary  weather  station  when  CIMIS  stations  are  not  available.    

Site  establishment    Planting  date  

Planting  date  strongly  influences  the  seed  yield  and  oil  content  of  canola  and  camelina  -­‐  both  decline  linearly  with  later  autumn  sowing  (Allen,  Vigil,  et  al.,  2014,  Edwards  and  Hertel,  2011,  Farré,  Robertson,  et  al.,  2007,  Farré,  Robertson,  et  al.,  2002,  Hocking  and  Stapper,  2001,  Richards  and  Thurling,  1978,  Robertson,  Holland,  et  al.,  1999,  Si  and  Walton,  2004).  In  southern  Australia,  canola  is  usually  sown  as  soon  as  sufficient  autumn  rain  has  fallen  (Duff,  Sermon,  et  al.,  2006,  Eksteen,  2000,  Sharma,  Riethmuller,  et  al.,  2012).  Our  work  suggests  this  strategy  is  not  appropriate  in  California  because  sufficiently  early  fall  rain  is  unreliable.    

Under  field  conditions,  the  germination  and  establishment  of  canola  seed  can  be  suboptimal  below  approximately  10°C  (CCC,  2015,  Chen,  Jackosn,  et  al.,  2005,  Edwards  and  Hertel,  2011,  Nykiforuk  and  Johnson-­‐Flanagan,  1994,  Nykiforuk  and  Johnson-­‐Flanagan,  1999,  Vigil,  Anderson,  et  al.,  1997),  and  approximately  80  growing  degree  days  with  a  base  temperature  of  0.9°C  are  required  for  50%  germination  (Chen,  Jackosn,  et  al.,  2005,  Vigil,  Anderson,  et  al.,  1997).  Our  research  has  found  that  throughout  most  of  California,  seedbed  temperatures  will  usually  reach  the  10°C  threshold  by  the  end  of  November.  This  suggests  that  canola  should  therefore  be  sown  no  later  than  mid-­‐November.  

Camelina  is  more  tolerant  of  cold  than  canola.  It  can  germinate  at  close  to  freezing,  and  requires  only  50  growing  degree  days  with  a  base  temperature  of  -­‐0.7°C  for  50%  germination  (Allen,  Vigil,  et  al.,  2014).  The  average  seed  bed-­‐

temperature  across  the  growing  regions  generally  does  not  drop  below  7°C,  suggesting  there  is  no  temperature-­‐based  cutoff  date  for  sowing  camelina  in  much  of  California.  

Our  experiments  with  winter  canola  lines  show  they  tend  not  to  flower  when  planted  in  the  central  valley  (Figure  6).    Winter-­‐adapted  varieties  may,  however,  be  adapted  to  winter  production  in  the  intermountain  region  of  California.    

Winter-­‐type  canola  is  generally  planted  six  weeks  before  the  average  killing  frost  date  (-­‐4°C).  Both  earlier  and  later  plantings  can  result  in  reduced  yields.  Long-­‐term  climate  data  from  the  Tulelake  area  suggests  the  killing  freeze  date  for  the  intermountain  region  will  generally  occur  around  the  middle  of  November,  although  it  can  be  as  early  as  the  middle  of  October.  This  suggests  the  ideal  planting  date  for  the  intermountain  region  is  around  the  end  of  September.    

 

Figure  6:  A  comparison  between  winter  and  spring  canola  lines  growing  in  the  San  Joaquin  valley.    Winter  lines  have  not  begun  flowering  due  to  insufficient  chilling  hours.  

Sowing  

Uniform,  vigorous,  crop  establishment  is  critical  for  successful  canola  production  and  most  likely  for  camelina  as  well.  Changing  sowing  practices  to  achieve  good  establishment,  which  has  relatively  little  impact  on  production  costs,  can  have  a  large  impact  on  final  yield  (Duff,  Sermon,  et  al.,  2006).    

Page 8: Aguideforcanolaandc amelina research inCaliforniaagresearch.montana.edu/wtarc/producerinfo/agronomy... · 2017-01-09 · A guide for canola and camelina research in California The

 A guide for canola and camelina research in California

The University of California, Davis 8  

Canola  and  camelina  can  be  planted  using  a  range  of  methods.  Direct  drilling  canola  at  seeding  rates  of  4-­‐6  kg/ha  with  15  cm  row  spacing  and  at  less  than  2.5  cm  planting  depth  generally  results  in  the  highest  yields  for  canola  (CCC,  2015).  Slightly  lower  seeding  rates  and  shallower  planting  depth  are  suggested  for  camelina  (Lafferty,  Rife,  et  al.,  2009,  McVay  and  Lamb,  2008).  We  follow  these  recommendations  in  our  trial  work  in  California  with  good  success.  

Plot  size  and  layout  

Plot  size  and  layout  is  an  important  consideration  for  experimental  field  trials  for  both  canola  and  camelina.  Harvested  plots  need  to  be  of  a  sufficient  size  to  ensure  that  yield  data  is  reliable.  The  minimum  plot  size  accepted  by  the  Australia  Crop  Accreditation  System  for  oilseed  trials  is  5  m2    and  should  have  other  plots  grown  along  their  axes.    

Post  planting  management  Irrigation  

In  other  regions,  canola  and  camelina  are  usually  grown  using  only  rainfall  or  stored  soil  moisture.  The  total  water-­‐use  of  both  species  under  high  yield  potential  is  reported  to  be  350  to  400  mm  (Lafferty,  Rife,  et  al.,  2009,  McCaffery,  2006)  and  work  by  our  group  in  California  using  soil  moisture  sensors  supports  this.    

The  growing  season  for  canola  and  camelina  in  California  will  be  roughly  between  October  and  June.  The  average  rainfall  in  the  Sacramento  Valley  during  this  period  is  over  400  mm,  which  should  be  sufficient  to  support  high  yield  potential  of  both  canola  and  camelina  with  little  irrigation.  However,  we  believe  supplemental  irrigation  may  be  needed  in  early  fall  to  allow  for  the  earliest  possible  planting  and  to  avoid  establishment  issues  from  cold  soil.    Workers  in  Australia  have  also  found  this  to  be  the  case  (McCaffery,  2004,  McCaffery,  2006).    

Canola  is  not  considered  reliable  with  less  than  250  mm  (8  inches)  of  plant  available  water.  Average  winter  rainfall  in  the  San  Joaquin  and  Imperial  Valleys  is  usually  less  than  250  mm,  which  is  too  low  to  support  canola  without  supplemental  irrigation.    

The  minimum  water  requirement  for  camelina  is  less  clear  but  we  have  obtained  crops  from  only  190  mm  (7.5  inches)  of  rainfall,  so  it  may  be  possible  to  grow  camelina  in  the  San  Joaquin  Valley  without  irrigation.    

To  achieve  high  yields  in  both  species,  some  supplemental  irrigation  may  be  required  in  dry  years  or  prolonged  dry  spells.  Supplemental  irrigation  can  also  provide  more  flexibility  in  the  timing  of  spring  fertilizer  applications.    

Canola  and  camelina  are  sensitive  to  waterlogging  and  excess  soil  moisture  can  also  cause  crop  lodging  (Hang,  Collins,  et  al.,  2009,  McCaffery,  2006,  McCaffery,  Potter,  et  al.,  2009).  We  have  encountered  both  of  these  problems  in  California.  The  timing  and  amount  of  irrigation  applied  will  therefore  need  to  be  managed  to  avoid  these  problems.    

In  Australia,  the  best  canola  crops  are  irrigated  to  facilitate  establishment  and  then  receive  between  two  and  four  spring  irrigations  (McCaffery,  2004,  McCaffery,  2006,  McCaffery,  Potter,  et  al.,  2009).  In  Australia  peak  water  use  in  canola  is  from  stem  elongation  until  the  end  of  pod  filling  (about  25  days  after  the  end  of  flowering)  when  any  stress  will  result  in  yield  loss  (McCaffery,  Potter,  et  al.,  2009).  This  is  in  agreement  with  our  work  in  California.  We  have  found  that  both  canola  and  camelina  have  low  water  demand  during  the  first  90  days  after  sowing,  and  water  use  then  increases  between  90  and  160  days  after  planting.  This  suggests  that  in  California  irrigation  should  commence  around  90  days  after  sowing.    

Canola  is  considered  moderately  tolerant  to  salinity,  showing  no  yield  reductions  up  to  levels  of  5  to  6  dS/m  (CCC,  2015).  Camelina  is  also  reported  to  be  moderately  salt  tolerant.  We  have  not  encountered  obvious  salinity  problems  in  California  

Post-­‐planting  weed  control  

Post-­‐emergent  weed  control  options  in  canola  and  camelina  are  limited.  If  grassy  weeds  become  problematic,  then  Poast  (sethoxydon),  which  is  labeled  for  both  canola  and  camelina,  can  be  applied.    

Page 9: Aguideforcanolaandc amelina research inCaliforniaagresearch.montana.edu/wtarc/producerinfo/agronomy... · 2017-01-09 · A guide for canola and camelina research in California The

 A guide for canola and camelina research in California

The University of California, Davis 9  

Crop  monitoring  &  data  collection  It  is  important  to  monitor  field  trial  sites  on  a  

regular  basis  and  to  collect  data  to  facilitate  the  interpretation  of  trial  results.  If  irrigation  is  applied,  the  timing  and  quantity  of  the  application  should  also  be  recorded.  For  variety  trials,  some  groups  will  assess  crop  vigor.  The  Australian  National  Variety  Trials  assess  vigor  based  on  at  least  five  experimental  sites  over  two  or  more  years  using  a  visual  rating  on  a  scale  of  1  to  9  (1  being  poor  and  9  being  high).  The  date  when  approximately  50%  of  the  plants  in  the  field  have  one  or  more  flowers  is  also  useful.      

Harvesting  Determining  harvest  date  

In  California,  canola  and  camelina  will  usually  be  ready  for  harvest  between  early  May  and  early  June.  Camelina  is  usually  mature  about  two  weeks  prior  to  canola.  We  have  found  that,  depending  on  weather  conditions,  the  harvest  window  for  both  crops  in  California  is  usually  around  one  week,  although  in  some  cases  we  have  observed  mature  crops  persisting  for  up  to  a  month  without  problematic  shattering.    

Since  both  species  mature  during  the  onset  of  dry  summer  weather  they  tend  to  dry-­‐down  quickly  and  evenly.    

Both  species  can  be  considered  mature  when  the  pods  are  dry  and  rattle  when  shaken.  In  California,  the  stems  of  both  canola  and  camelina  may  still  be  partly  green  at  this  stage.  Pods  should  shatter  easily  when  beaten/crushed  -­‐  if  seed  cannot  be  threshed  freely  by  hand  then  crop  is  not  ready  to  harvest.  Once  the  plants  thresh  freely  the  site  must  be  harvested  immediately.    

Harvesting  small-­‐scale  research  plots  

Hand  harvesting  of  research  plots  may  be  necessary  due  to  a  lack  of  suitable  small  plot  equipment.  For  data  accuracy,  minimum  plot  sizes  of  no  smaller  than  5  m2  must  still  be  observed.  Hand  harvesting  can  therefore  be  time-­‐consuming  so  efficiency  is  important.  We  cut  plants  with  a  brush  cutter  or  tractor  mounted  sickle  mower.  Cutting  with  pruners  or  

hand  shears  is  far  too  slow  for  large  trials.  Machetes,  walk-­‐behind  sickle  mowers  or  hedge  trimmers  are  rapid  but  tend  to  shake  the  crop  and  lead  to  excessively  shattering.        

When  hand  harvesting,  the  seed  must  be  manually  threshed  and  then  separated  from  chafe.  In-­‐field  threshing  and  seed  cleaning  is  considerably  more  practical  and  efficient  than  bagging  plots  and  threshing  later.  Thresh  plants  onto  tarps  by  stamping/walking  on  them.  To  crudely  separate  seed  from  chafe  in  the  field  we  use  wooden  boxes  fitted  with  3  mm  perforated  metal  screens  as  sieves.    

In  California,  canola  and  camelina  mature  at  a  time  of  increasing  temperatures  and  decreasing  rainfall  and  humidity.  This  promotes  rapid  and  even  stand  drying  and  means  crops  can  generally  be  directly  combined  without  the  need  for  swathing  or  desiccants.  Some  degree  of  pod  shatter  is  always  present  and  essentially  unavoidable.    

Modern  combines  generally  have  specified  settings  for  canola,  and  other  small-­‐seeded  crop  species,  so  consult  these  for  the  combine  model  being  used.  Both  canola  and  camelina  will  partially  thresh  at  the  reel,  so  if  small  plots  are  being  harvested  combines  will  need  to  have  belt-­‐conveyors  in  the  throat  to  move  seed  into  the  body  of  the  combine.  Small  differences  in  combine  setup  and  operation  can  greatly  affect  the  outcome  of  combining  operations  in  canola  and  camelina.  One  of  the  most  important  factors  is  speed.  Problems  from  jamming  can  be  alleviated  by  reducing  ground,  reel  and  cylinder  speeds.  The  crop  should  also  be  cut  as  high  as  possible,  just  below  the  seed  canopy,  to  minimize  the  amount  of  material  moving  through  the  combine.  Since  both  canola  and  camelina  are  easily  threshed,  the  cylinder/rotor  speed  can  be  lower  than  that  used  for  cereals.  This  will  reduce  damage  to  seeds.  The  concave  should  be  wide  open  but  not  fully  so  that  if  plugging  occurs  there  is  still  an  opportunity  to  clear  jams.    Both  canola  and  camelina  have  small  seeds,  so  set  fan  speeds  low  and  then  raise  them  slowly  to  ensure  seed  is  not  being  blown  out  the  back  of  the  combine.  

Page 10: Aguideforcanolaandc amelina research inCaliforniaagresearch.montana.edu/wtarc/producerinfo/agronomy... · 2017-01-09 · A guide for canola and camelina research in California The

 A guide for canola and camelina research in California

The University of California, Davis 10  

Data  collection  at  harvest  

The  following  data  is  useful  for  the  interpretation  of  oilseed  experiments  and  therefore  should  be  collected  at  harvest:    

1) Crop  height,  maturity,  lodging  and  shattering  (maturity,  lodging  and  shattering  are  recorded  qualitatively).    

2) End  of  season  soil  moisture  content  throughout  the  soil  profile.  

3) Plot  dimensions  for  yield  estimates.    4) Stand  counts.    5) Total  seed  yield.  6) The  oil  and  moisture  content  of  the  seed.    

Volunteers  &  weed  risk    Controlling  volunteers    

Concerns  have  been  raised  regarding  the  weed  risk  posed  by  canola  in  California,  especially  from  herbicide  tolerant  lines  (Munier,  Brittan,  et  al.,  2012).  Those  undertaking  research  on  canola  in  California  need  to  be  sensitive  to  this.    

Even  with  ideal  timing  and  methodology,  seed  losses  during  the  harvesting  of  canola  are  unavoidable.  It  is  normal  to  have  seed  losses  of  20  to  30  kg/ha,  which  is  around  five  times  the  recommended  seeding  rate  (Gulden,  Thomas,  et  al.,  2004).  We  have  found  seed  losses  from  camelina  to  be  similar.  Both  species  are  therefore  prone  to  volunteering.    

Canola  has  been  grown  for  many  decades  in  places  such  as  Canada,  Europe  and  Australia  and  has  not  become  a  problematic  agricultural  weed  in  these  regions.  Southern  Australia  is  climatically  comparable  to  California,  therefore  the  experiences  there  are  likely  to  be  transferable  to  California.  So  given  suitable  management  canola  and  camelina  are  unlikely  to  become  problematic  agricultural  weeds  in  California.  

As  with  all  crops,  proper  management  is  necessary  to  ensure  control  of  volunteers.  The  Canola  Council  of  Canada  and  the  Western  Australian  Agricultural  Department  provide  best  practices  for  the  management  of  volunteer  

canola  (CCC,  2015,  Duff,  Sermon,  et  al.,  2006).  These  practices  should  also  apply  to  camelina.    

To  minimize  seed  loss,  harvest  at  the  correct  time  using  the  correct  combine  set  up.  Following  harvest,  avoid  burying  seeds  by  not  cultivating  the  field.  Burial  of  canola  seed,  particularly  under  cold,  wet  conditions,  can  lead  to  secondary  dormancy  and  the  formation  of  a  soil  seed  bank  (Gulden,  Thomas,  et  al.,  2004).  Seed  on  the  soil  surface  will  have  high  chance  of  predation  and  seedling  death.  If  irrigation  is  possible,  fields  can  be  irrigated  shortly  after  harvest  to  encourage  lost  seed  to  germinate.  Actively  control  any  remaining  volunteers  prior  to  seed  set.  Australian  research  has  found  that  soil  seed  banks  of  canola  rapidly  decline  if  proper  management  methods  are  followed  (Baker  and  Preston,  2008).    

Broader  weed  risk  

The  species  B.  napus  and  C.  sativa  and  their  wild  relatives  are  already  naturalized  in  North  America  and  feral  canola  is  reported  from  most  regions  where  the  crop  is  commonly  grown,  including  Europe,  Canada,  the  United  States  and  Australia  (Crawley  and  Brown,  1995).  Canola  is  already  growth  for  seed  increases  in  California.    

Canola  and  camelina  are  not  reported  to  be  problematic  weeds  of  non-­‐agricultural  land  anywhere  in  the  world.  Canola  is  an  early  successional  species,  and  is  not  a  competitive  weed  in  established  vegetation  (Crawley  and  Brown,  1995).  Camelina  is  a  smaller  plant  than  canola  and  we  observe  it  to  be  even  less  competitive  against  weeds.    It  is  therefore  unlikely  that  either  species  will  become  an  important  weed  outside  of  cultivated  land  in  California.  

Herbicide  tolerant  canola  

Varieties  of  canola  resistant  to  Glufosinate,  Triazine,  Glyphosate  and  Imidazolinone  are  commercially  available.  These  varieties  have  been  adopted  by  growers  in  the  United  States,  Canada  and  Australia.  From  a  weed-­‐management  standpoint,  the  use  of  herbicide  tolerant  lines  will  reduce  the  number  of  herbicides  that  can  be  used  to  effectively  control  both  volunteer  and  feral  canola.  With  alternative  

Page 11: Aguideforcanolaandc amelina research inCaliforniaagresearch.montana.edu/wtarc/producerinfo/agronomy... · 2017-01-09 · A guide for canola and camelina research in California The

 A guide for canola and camelina research in California

The University of California, Davis 11  

herbicides,  and  standard  non-­‐herbicide  management  methods,  it  is  straightforward  to  deal  with  herbicide  tolerant  canola  that  volunteers  (Baker  and  Preston,  2008).  In  areas  of  Canada  where  herbicide  tolerant  canola  has  been  grown  for  a  number  of  decades  surveys  of  growers  find  the  majority  do  not  have  trouble  managing  volunteers  in  subsequent  crops  (Gusta,  Smyth,  et  al.,  2011).  With  the  exception  of  situations  where  management  methods  are  more  limited,  we  expect  the  situation  in  California  will  be  similar  (Munier,  Brittan,  et  al.,  2012).    

Herbicide  tolerant  canola  has  become  established  outside  of  agricultural  environments  in  Canada  and  the  United  States(Knispel,  McLachlan,  et  al.,  2008),  and  has  already  escaped  cultivation  in  California  (Munier,  Brittan,  et  al.,  2012).  Outcrossing  amongst  feral  canola  populations  has  also  led  to  the  stacking  of  herbicide  tolerance  traits  (Knispel,  McLachlan,  et  al.,  2008).  It  is  therefore  likely  that  if  herbicide  tolerant  canola  varieties  are  grown  in  California,  feral  populations  will  become  established,  but  as  explained,  canola  is  not  a  competitive  weed  in  established  vegetation  and  herbicide  tolerance  traits  will  generally  not  provide  a  selective  advantage.  Herbicide  tolerant  feral  canola  is  therefore  no  more  likely  to  become  a  problematic  weed  than  non-­‐herbicide  tolerant  canola.  The  exception  to  this  will  be  in  areas  such  as  road  verges  where  chemical  weed  control  is  frequently  utilized.    

Canola  will  hybridize  with  its  wild  relatives  (Warwick,  Simard,  et  al.,  2003)  and  whilst  hybridization  rates  are  low,  it  is  possible  that  herbicide  tolerance  could  transfer  to  other  Brassica  species,  although  it  is  worth  noting  that  herbicide  tolerance  has  been  evolving  in  other  Brassica  weeds  in  the  absence  of  herbicide  tolerant  canola  (Heap,  2013).  Under  cultivation  alternative  weed  control  methods  can  be  used  to  control  these  types  of  weeds,  similar  to  the  control  of  volunteer  canola.  Similarly,  herbicide  tolerance  will  not  offer  a  competitive  advantage  to  these  weeds  under  feral  conditions  unless  herbicides  are  used  in  those  environments.  Under  situations  where  there  is  a  reliance  on  a  small  number  of  herbicide  for  weed  control,  

such  as  orchards  and  road  verges,  herbicide  tolerant  Brassica  weeds  could  become  more  difficult  to  control.  

References  

Allen,  B.L.,  M.F.  Vigil  and  J.D.  Jabro.  2014.  Camelina  growing  degree  hour  and  base  temperature  requirements.  Crop  Ecology  and  Physiology  106:  940-­‐944.  

Avery,  M.  2003.  Avian  repellents.  In:  J.  R.  Plimmer,  D.  W.  Gammon  and  N.  N.  Ragsdale,  editors,  Encyclopedia  of  Agrochemicals.  John  Wiley  &  Sons  Inc.  p.  1-­‐8.  Avery,  M.  and  J.R.  Mason.  1997.  Feeding  responses  of  red-­‐winged  blackbirds  to  multisensory  repellents.  Crop  Protection  16:  159-­‐164.  

Avery,  M.L.  and  J.L.  Cummings.  2003.  Chemical  repellents  for  reducing  crop  damage  by  blackbirds.    USDA  NMational  Wildlife  Research  Center  -­‐  Staff  Publications.  Baker,  J.  and  C.  Preston.  2008.  Canola  (Brassica  napus  L.)  seedbank  declines  rapidly  in  farmer-­‐managed  fields  in  South  Australia.  .  Australian  Journal  of  Agricultural  Research  59:  780-­‐784.  Bishop,  J.,  H.  McKay,  D.  Parrott  and  J.  Allan.  2003.  Review  of  international  research  literature  regarding  the  effectiveness  of  auditory  bird  scaring  techniques  and  potential  alternatives.    Department  for  Environment  Food  and  Rural  Affairs.,  United  Kingdom.  p.  53.  

Boyles,  M.,  J.  Bushong,  H.  Sanders  and  M.  Stamm.  2012.  Great  Plains  Canola  Production  Handbook.    Oklahoma  State  University.  Kansas  State  University.  University  of  Nebraska.  Great  PLains  Canola  Association.  US  Canola  Association.  p.  60.  Campbell,  M.C.,  A.F.  Rossi  and  W.  Erskine.  2013.  Camelina  (Camelina  sativa  (L.)  Crantz):  agronomic  potential  in  Mediterranean  environments  and  diversity  

Page 12: Aguideforcanolaandc amelina research inCaliforniaagresearch.montana.edu/wtarc/producerinfo/agronomy... · 2017-01-09 · A guide for canola and camelina research in California The

 A guide for canola and camelina research in California

The University of California, Davis 12  

for  biofuels  and  food  uses.  Crop  &  Pasture  Science  64:  388-­‐398.  

CCC.  2015.  Canola  Council  of  Canada  (http://www.canolacouncil.org/).  Chen,  C.,  G.  Jackosn,  K.  Neill,  D.  Wichman,  G.H.  Johnson  and  D.L.  Johnson.  2005.  Determining  the  feasibility  of  early  seeding  canola  in  the  Northern  Great  Plains.  Agronomy  Journal  97:  1252-­‐1262.  Crawley,  M.J.  and  S.L.  Brown.  1995.  Seed  limitation  and  the  dynmaics  of  feral  oilseed  rape  on  the  M25  motorway.  Proceedings:  Biological  Sciences  259:  49-­‐54.  

Duff,  J.,  D.  Sermon,  G.H.  Walton,  P.  Mangano,  C.  Newman,  K.  Walden,  et  al.,  editor.  2006.  Growing  western  canola:  An  overview  of  canola  production  in  Western  Australia.  Oilseeds  Industry  Assocation  of  Western  Australia,  Perth,  Western  Australia.  Edwards,  J.  and  K.  Hertel.  2011.  Canola  growth  and  development.State  of  New  South  Wales  Department  of  Primary  Industries.  Eksteen,  D.  2000.  Profitable  canola  production  in  the  south  coastal  region.    Agriculture  Western  Australia.  p.  25.  

Enjalbert,  J.N.  and  J.J.  Johnson.  2011.  Guide  for  producing  dryland  camelina  in  eastern  Colorado.    Colorado  State  University.  

FAOSTAT.  2014.  http://faostat3.fao.org.    Food  and  Agriculture  Organization  of  the  United  Nations.  

Farré,  I.,  M.  Robertson  and  S.  Asseng.  2007.  Reliability  of  canola  production  in  different  rainfall  zones  of  Western  Australia.  Australian  Journal  of  Agricultural  Research  58:  326-­‐334.  

Farré,  I.,  M.J.  Robertson,  G.H.  Walton  and  S.  Asseng.  2002.  Simulating  phenology  and  yield  response  of  canola  to  sowing  date  in  Western  Australia  using  the  APSIM  model.  

Australian  Journal  of  Agricultural  Research  53:  1155-­‐1164.  

GRDC  NVT.  2015.  National  Variety  Trials  http://www.nvtonline.com.au/.    Grains  Research  and  Development  Corporation,  Australia.  Gulden,  R.H.,  A.G.  Thomas  and  S.J.  Shirtliffe.  2004.  Secondary  dormancy,  temperature,  and  burial  depth  regulate  seedbank  dynamics  in  canola.  Weed  Science  52:  382-­‐388.  Gusta,  M.,  S.J.  Smyth,  K.  Belecher  and  P.W.B.  Phillips.  2011.  Economic  benefits  of  genetically-­‐modified  herbicide-­‐tolerant  canola  for  producers.  .  AgBioForum  14:  1-­‐13.  

Hang,  A.N.,  H.P.  Collins  and  K.E.  Sowers.  2009.  Irrigated  spring  and  winter  canola  production  in  Washington.    WSU  Extension  Manual  EM006E.  Washington  State  University    

Heap,  I.  2013.  The  International  Survey  of  Herbicide  Resistant  Weeds  http://www.weedscience.com.  

Hocking,  P.J.  and  M.  Stapper.  2001.  Effects  of  sowing  time  and  nitrogen  fertiliser  on  canola  and  wheat,  and  nitrogen  fertiliser  on  Indian  mustard.  I.  Dry  matter  production,  grain  yield,  and  yield  components.  Australian  Journal  of  Agricultural  Research  52:  623-­‐634.  Hulbert,  S.,  S.  Guy,  W.  Pan,  T.  Paulitz,  W.  Schillinger  and  K.  Sowers.  2012.  Camelina  Production  in  the  Dryland  Pacific  Northwest  Washington  State  University  Extension  p.  5.  

Jiang,  Y.  2013.  Effect  of  environmental  and  managment  factors  on  growth  and  seed  quality  of  selected  genotypes  of  Camelina  sativa  L.  Crantz.  Dalhousie  University,  Halifax,  Nova  Scotia.  

Knispel,  A.L.,  S.M.  McLachlan,  R.C.  Van  Acker  and  L.F.  Friesen.  2008.  Gene  flow  and  

Page 13: Aguideforcanolaandc amelina research inCaliforniaagresearch.montana.edu/wtarc/producerinfo/agronomy... · 2017-01-09 · A guide for canola and camelina research in California The

 A guide for canola and camelina research in California

The University of California, Davis 13  

multiple  herbicide  resistance  in  escaped  canola  populations.  Weed  Science  56:  72-­‐80.  

KSU.  2015.  Kansas  State  University  National  Winter  Canola  Variety  Trial  (http://www.agronomy.k-­‐state.edu/services/crop-­‐performance-­‐tests/canola-­‐and-­‐cotton.html).    Kansas  State  University.  

Lafferty,  R.M.,  C.  Rife  and  G.  Foster.  2009.  Spring  camelina  production  guide  for  the  Central  High  Plains.    Blue  Sun  Agriculture  Research  &  Development,  14143  Denver  West  Parkway  #100  Golden,  CO  80401.  p.  8.  

Linz,  G.M.,  H.J.  Homan,  A.A.  Slowik  and  L.B.  Penry.  2006.  Evaluation  of  registered  pesticides  as  repellents  for  reducing  blackbird  (Icteridae)  damage  to  sunflower.  Crop  Protection  25:  842-­‐847.  

Linz,  G.M.,  H.J.  Homan,  S.J.  Werner,  H.M.  Hagy  and  W.J.  Bleier.  2011.  Assessment  of  bird-­‐managment  strategies  to  protect  sunflowers.  BioScience  61:  960-­‐970.  

Mason,  J.R.  and  L.  Clark.  1997.  Avian  repellents:  options,  modes  of  action,  and  economic  considerations.  In:  J.  R.  Mason,  editor  Repellents  in  Wildlife  Managment.  USDA  National  Wildlife  Research  Center,  Fort  Collins,  CO.  p.  371-­‐391.  

McCaffery,  D.  2004.  Irrigated  canola  -­‐  Management  for  high  yields.    Research  Update  -­‐  Southern  Region  (Irrigation).  Griffith,  NSW.  p.  6.  McCaffery,  D.  2006.  Is  there  a  place  for  canola  on  irrigation?    IREC  Farms'  Newsletter.  p.  4.  

McCaffery,  D.,  T.  Potter,  S.J.  Marcoft  and  F.  Pritchard.  2009.  Canola:  Best  practive  management  guide  for  south-­‐eastern  Australia.    Grains  Research  &  Development  Corporation  Barton,  ACT.  p.  92.  

McVay,  K.A.  and  P.F.  Lamb.  2008.  Camelina  production  in  Montana.    Montana  State  University  Extension.  p.  8.  

Moran,  S.  2001.  Aversion  of  the  feral  pigeon  and  the  house  sparrow  to  pellets  and  sprouts  treated  with  commercial  formulations  of  methyl  anthranilate.  Pest  Management  Science  57:  248-­‐252.  

Munier,  D.J.,  K.L.  Brittan  and  W.T.  Lanini.  2012.  Seed  bank  persistence  of  genetically  modified  canola  in  California.  Environ  Sci  Pollut  Res  19:  2281-­‐2284.  

Nykiforuk,  C.L.  and  A.M.  Johnson-­‐Flanagan.  1994.  Germination  and  early  seedling  development  under  low  temperature  in  canola.  Crop  Science  34:  1047-­‐1054.  

Nykiforuk,  C.L.  and  A.M.  Johnson-­‐Flanagan.  1999.  Storage  reserve  modilization  during  low  temperature  germination  and  early  seedling  growth  in  Brassica  napus.  Plant  Physiol.  Biochem.  37:  939-­‐947.  

Pritchard,  F.,  S.  Marcoft,  M.  Cribb  and  A.  Betzner,  editor.  2010.  Overt  the  bar  with  better  canola  agronomy:  demonstration  and  trial  results,  crop  establishment  case  studies.  Australian  Government.  Grains  Research  and  Development  Corporation.  Putnam,  D.H.,  J.T.  Budin,  L.A.  Field  and  W.M.  Breene.  1993.  Camelina:  a  promising  low-­‐input  oilseed.  In:  J.  Janick  and  J.  E.  Simon,  editors,  New  Crops.  Wiley,  New  York.  p.  314-­‐322.  Richards,  R.A.  and  N.  Thurling.  1978.  Variation  between  and  within  species  of  rapeseed  (Brassica  campestris  and  B.  napus)  in  response  to  drought  stress.  II.  Growth  and  development  under  natural  drought  stresses.  Australian  Journal  of  Agricultural  Research  29:  479-­‐490.  

Robertson,  M.J.,  J.F.  Holland,  R.  Bambach  and  S.  Cawthray.  1999.  Response  of  canola  and  Indian  mustard  to  sowing  date  in  risky  

Page 14: Aguideforcanolaandc amelina research inCaliforniaagresearch.montana.edu/wtarc/producerinfo/agronomy... · 2017-01-09 · A guide for canola and camelina research in California The

 A guide for canola and camelina research in California

The University of California, Davis 14  

Australian  enviroments.    Proceedings  of  the  10th  International  Rapeseed  Congress.  .  Canberra,  Australia.  

Salmon,  T.P.,  D.A.  Whisson  and  R.E.  Marsh.  2006.  Wildlife  Pest  Control  Around  Gardens  and  Homes.    University  of  California  Dept.  of  Natural  Resources  Pub.,  Oakland.  p.  4.  

Schafer,  J.E.W.  1991.  Bird  control  chemicals  -­‐  nature,  modes  or  actiona  and  toxicity.    CRC  Handbook  of  Pest  Management  in  Agriculture.  Vol  II.  p.  599-­‐610.  Sharma,  D.,  G.  Riethmuller,  C.  Peek,  D.  Abrecht  and  G.  Pasqual.  2012.  Successful  canola  establishment  -­‐  a  review  of  literature  and  new  trial  results.  .    Western  Australian  Agribusiness  Crop  Updates.  Government  of  Western  Australia  Department  of  Agriculture  and  Food.  p.  4.  

Shefte,  N.,  R.L.  Bruggers  and  E.W.J.  Schafer.  1982.  Repellency  and  toxicity  or  three  bird  control  chemicals  to  four  species  of  African  grain-­‐eating  birds.  J.  Wildl.  Manage.  46:  453-­‐457.  

Si,  P.  and  G.H.  Walton.  2004.  Determinants  of  oil  concentration  and  seed  yield  in  canola  and  Indian  mustard  in  the  lower  rainfall  areas  of  Western  Australia.  Australian  Journal  of  Agricultural  Research  55.  

Solis,  A.,  I.  Vidal,  L.  Paulina,  B.L.  Johnson  and  M.  Berti,  T.  2013.  Camelina  seed  yield  

response  to  nitrogen,  sulfur,  and  phosphorus  fertilizer  in  South  Central  Chile.  Industrial  Crops  and  Products  44:  132-­‐138.  

USCA.  2015.  The  United  States  Canola  Association  (http://www.uscanola.com).  

USDA  NASS.  2014.  National  Agricultural  Statistics  Service  http://www.nass.usda.gov/.    United  States  Department  of  Agriculture.  

Vigil,  M.F.,  R.L.  Anderson  and  W.E.  Beard.  1997.  Base  temperature  and  growing-­‐degree-­‐hour  requirements  for  the  emergence  of  canola.  Crop  Science  37:  844-­‐849.  

Warwick,  S.I.,  M.-­‐J.  Simard,  A.  Légère,  H.J.  Beckie,  L.  Braun,  B.  Zhu,  et  al.  2003.  Hybridization  between  transgenic  Brassica  napus  L.  and  its  wild  relatives:  Brassica  rapa  L.,  Raphanus  raphanistrum  L.,  Sinapis  arvensis  L.,  and  Erucastrum  gallicum  (Willd.)  O.E.  Schulz.  Theoretical  and  Applied  Genetics  107:  528-­‐539.  

Werner,  S.J.  and  F.D.  Provenza.  2011.  Reconciling  sensory  cues  and  varied  consequences  of  avian  repellents.  Physiology  and  Behavior  102:  158-­‐163.  

Wysocki,  D.J.,  T.G.  Chastain,  W.F.  Schillinger,  S.O.  Guy  and  R.S.  Karow.  2013.  Camelina:  Seed  yield  response  to  applied  nitrogen  and  sulfur.  .  Field  Crops  Research  145:  60-­‐66.