AGB Stars and Massive Star...

32
AGB Stars and Massive Star Evolution Sunday, May 1, 2011

Transcript of AGB Stars and Massive Star...

Page 1: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

AGB Stars and Massive Star Evolution

Sunday, May 1, 2011

Page 2: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Iben

Sunday, May 1, 2011

Page 3: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

The Helium Flash (< 2 Msun)

Helium burning

Once He fusion stars, temperature goes up, but core doesn’t expand immediately. This creates a brief burst of energy, much of which goes into inflating the core and star..

The central core becomes dense enough, that degeneracy pressure dominates over thermal pressure. Still, the core radiates energy and continues to contract, until Helium fusion occurs.

Sunday, May 1, 2011

Page 4: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

From Bohm Vitense

Degeneracy occurs when there are not enough quantum states at low velocities, pushing electrons to higher momentum (i.e. velocity) states.

Sunday, May 1, 2011

Page 5: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Nuclear Burning: the triple α process

4He + 4He -> 8Be

8Be+4He -> 12Cq = k ρ2 T40

Releasing 7.275 Mev (compared 25 Mev for Hydrogen burning)

12CO + 4 He -> 16OWhen enough carbon accumulates:

Releasing 7.162 MevSunday, May 1, 2011

Page 6: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

The core expands and nuclear reaction rates and luminosity may decrease. The star then enters a helium burning main sequence.

The Horizontal Branch

At this point the star is relatively steady for 108 years. However, pulsations may occur. Luminosities of 50-100 Lsun.

Helium burning

Hydrogen burning

Sunday, May 1, 2011

Page 7: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

http://www.atlasoftheuniverse.com/hr.htmlhttp://stars.astro.illinois.edu/sow/hrd.html

Eddington Luminosity

Sunday, May 1, 2011

Page 8: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Piotto et al. 2002

More Envelope

Less Envelope

RR Lyrae gap

Sunday, May 1, 2011

Page 9: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Asymptotic Giant Branch

Helium burning

The star may become a supergiant. However, pulsations and dust formation in the envelope may lead to the ejection of the envelope, leaving a white dwarf.

Now the central carbon/oxgen core becomes unstable and starts to contract. There is now Helium and Hydrogen burning in shells.

Hydrogen burning

Sunday, May 1, 2011

Page 10: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

MS

Horizontal Branch AGB

Sub-

gian

t t

o G

iant

PrialnikSunday, May 1, 2011

Page 11: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Thin Shell InstabilitiesIn Hydrostatic Equilibrium

PrialnikSunday, May 1, 2011

Page 12: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Imagine layers expands. If pressure from surrounding gas (i.e. hydrostatic equilibrium) drops faster than the pressure in expansion, layer continues to expand and cool. If not, temperature rises and we get thermal instability.

PrialnikSunday, May 1, 2011

Page 13: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Prialnik

Dredge Up

H -> Hein convective

region

Sunday, May 1, 2011

Page 14: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Schwarzchild & Harm (1967)

AGB stars pulsing

Sunday, May 1, 2011

Page 15: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

The 9th Cycle

Schwarzchild & Harm (1967)Sunday, May 1, 2011

Page 16: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Carbon Burning12C + 12C -> 24Mg + γ

12C + 12C -> 23 Mg + n

12C + 12C -> 23Na + p

12C + 12C -> 20Ne + α

12C + 12C -> 16Ο + 4α

~13 ΜeV per reaction

Sunday, May 1, 2011

Page 17: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

When does degeneracy happen?Prialnik

Sunday, May 1, 2011

Page 18: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Siess et al. 2006

Carbon Burning in Intermediate Mass AGB Stars

Sunday, May 1, 2011

Page 19: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Siess et al. 2006

Carbon Burning in Intermediate Mass AGB Stars

Sunday, May 1, 2011

Page 20: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Prumo & Siess 2007

Sunday, May 1, 2011

Page 21: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Sunday, May 1, 2011

Page 22: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Sunday, May 1, 2011

Page 23: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

http://www.atlasoftheuniverse.com/hr.htmlhttp://stars.astro.illinois.edu/sow/hrd.html

The Supergiant Branch

Relatively Constant Luminosity

Sunday, May 1, 2011

Page 24: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

PrialnikSunday, May 1, 2011

Page 25: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Contracting core and Hydrogen shell burning lead to large envelope and red colors.Helium burning in core implies expanded core and shell, smaller envelope and bluer colors.

The Blue Loop Excursions

Sunday, May 1, 2011

Page 26: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

The Blue Loop Excursions

Sunday, May 1, 2011

Page 27: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Massive Star Evolution

Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011

Page 28: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Sunday, May 1, 2011

Page 29: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Sunday, May 1, 2011

Page 30: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Semi-ConvectionOpacity per mass higher for Hydrogen then Helium

(more electrons per mass)

Imagine core of 40% Helium surrounded by an envelope layer of mostly 10% Helium. High opacity leads to convection, which mixes Helium into envelope, lowering opacity.

Thus, such regions may have slow convection just to keep material mixed.

Sunday, May 1, 2011

Page 31: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

Sunday, May 1, 2011

Page 32: AGB Stars and Massive Star Evolutionastro1.physics.utoledo.edu/~megeath/ph6820/lecture24_ph6820.pdf · Massive Star Evolution Maeder et al. 1990 A&AS 84, 139 Sunday, May 1, 2011.

SummaryAsymptotic Giant Branch phase occurs after Helium core burning.

Thin shell instability in helium burning leads to pulsations.

These pulsations lead to significant change in luminosity. Helium and Hydrogen shell burning alternate.

Intermediate mass AGB stars may have carbon burning phase.

Massive stars shown mainly evolution in temperature (close to Eddington limit). Mass loss important.

Contains nested shells of nuclear burning, up to Iron

Semi-convection mixes hydrogen and helium in core,

Sunday, May 1, 2011