Affimer® reagents facilitate affinity chromatography ... · used for affinity chromatography....

1
A C B 10 atom spacer b-turn 3 C-terminus Binding loops Geoffrey Platt For further information regarding Affimer technology, please contact [email protected] or visit www.avacta.com Summary Affimer reagents in affinity resins Figure 1A. Structure of the Affimer scaffold protein with the two regions containing variable amino acid loops in grey. 1B. Schematic showing conjugation of Affimer protein to agarose resin. 1C. Column loaded with affinity resin. Affimer® reagents facilitate affinity chromatography purification of IgG. Affimer reagents are proteins which present high affinity binding surfaces for specific interactions with a wide range of targets. The scaffold is based on the cystatin fold and permits the presentation of two variable binding loops (Fig 1). The Affimer reagents are small (~12-14 kDa), easy to manufacture in bacterial expression systems and biophysically stable over a wide range of pH conditions. As both the scaffold and the randomised binding loops are engineered to lack cysteines, the introduction of this residue using basic molecular biology methods provides a straightforward route for immobilising the protein to surfaces in a defined orientation via thiol chemistry (Fig 1). agarose The high specificity achieved by Affimer protein-based affinity resins suggests potential applications in pharmacokinetic studies and bioprocessing platforms. Flexible reformatting provides a route to further optimisation - improvements in performance may be possible by development of the resin, cysteine location, multiple domain options, linker lengths and coupling methods. Affimer resins are robust to a wide range of pH conditions enabling a high level of reproducibility and ability to endure cleaning routines. Affimer D11 binds the F c domain of human IgG (hIgG) and exhibits high target specificity in the presence of complex mixtures and when challenged with mammalian homologues (Fig 2). High specificity has enabled the use of this resin for pharmacokinetic studies of hIgG-drug conjugate stability in mouse plasma (data not shown). An Affimer clone that binds IgG molecules was immobilised on highly cross-linked 4 % agarose beads via iodoacetyl chemistry and the resin packed in a column (bed height 31 mm, column volume 0.6 mL). The characteristics of the affinity resin were studied for target specificity, elution profile, binding capacity, reproducibility and stability. Binding capacity Affimer D11 was engineered to include extra residues (Gly-Gly-Ser) that extend the length of linker to the agarose bead. The dynamic binding capacities of columns packed with Affimer resin containing standard and extended linkers were measured. Extension of the linker produced a resin with increased binding capacity (Fig 3). Figure 5A. Example trace demonstrating elution of hIgG from Affimer D11 resin using MES (pH 5.2) elution buffer. 5B. Elution efficiency of Affimer D11 resin across a range of pH values. It was observed that efficient elution of IgG from Affimer D11 resin could be achieved at relatively mild elution conditions (pH 5.2) (Fig 5). This is due to the presence of ionisable His residues in the binding loops that become positively charged in this pH range. As Affimers are selected via an in vitro process it is possible to ensure that clones with similarly advantageous loop sequences are used for affinity chromatography. Furthermore, the flexibility of the in vitro selection process offers the potential to produce Affimer-based resins that elute targets upon introduction or removal of complexing ligands, such as metal ions, into otherwise unchanged wash buffer. 0 10 20 30 40 mL 2000 1000 0 mAU C/C 0 Standard linker Extended linker (GGS) 0.8 0.6 0.4 0.2 0.0 Saturated column capacity (mg mL -1 ) Dynamic binding capacity (mg mL -1 ) Extended linker Standard linker Extended linker Standard linker Standard linker Extended linker (GGS) 0 5 10 15 20 25 30 mL A C B D Load | Wash | Elute Figure 3. Dynamic binding during continual loading of 0.5 mg mL -1 pure hIgG over Affimer D11 resins with a column residence time of 3 min. 3A. Full traces showing load, wash and elution phases. 3B. Normalised breakthrough curves. 3C. The amount of target protein recovered during elution, normalised to column volume. 3D. The dynamic binding capacity at 10 % breakthrough, normalised to column volume. Mild elution Figure 4A. An Affimer D11 column demonstrated high levels of reproducibility over 81 consecutive purification cycles. Inset: Example traces for a section of the experiment. 4B. Example western blot indicating no detectable leaching during elution, pure Affimer protein is included for reference. Stability and reproducibility The reproducibility and stability of an Affimer-based resin was measured by repeated injection and elution of pure hIgG (81 runs), including 19 clean-in-place (CIP) cycles (100 mM NaOH, 10 min). The data indicate consistent capture performance over the course of this study (Fig 4A). No leaching from Affimer columns was detected by western blotting of concentrated elution fractions (Fig 4B). Pure affimer 160 ng 16 ng Eluted fractions (240 x conc) A B 0 20 40 60 80 Run 100 98 96 94 92 90 % Area in eluted peak CIP CIP mAU Conductivity % Elution buffer CV Unbound (UB) Eluted (El) mL % area in eluted peak 100 80 60 40 20 0 A B Human IgG Dog IgG Rat IgG Mouse IgG Figure 2A. Traces produced upon loading IgG-depleted human serum spiked with known concentrations of hIgG onto Affimer D11 resin. The wash buffer used is PBS (pH 7.4) and elution buffer is glycine, NaCl (pH 3.0). Inset: SDS-PAGE (under reducing conditions) confirms specificity of binding and elution. 2B. % Area of elution peak after injection of 1 mg of pure immunoglobulins. Specific target binding and elution mAU Unbound Eluted mL A B POS027

Transcript of Affimer® reagents facilitate affinity chromatography ... · used for affinity chromatography....

Page 1: Affimer® reagents facilitate affinity chromatography ... · used for affinity chromatography. Furthermore, the flexibility of the in vitro selection process offers the potential

A C

B

10 atom spacer

b-turn 3

C-terminus

Binding

loops

Geoffrey Platt

For further information regarding Affimer technology, please contact [email protected] or visit www.avacta.com

Summary

Affimer reagents in affinity resins

Figure 1A. Structureof the Affimerscaffold protein withthe two regionscontaining variableamino acid loops ingrey. 1B. Schematicshowing conjugationof Affimer protein toagarose resin.1C. Column loadedwith affinity resin.

Affimer® reagents facilitate affinity chromatography purification of IgG.

Affimer reagents are proteins which present high affinity binding surfaces for specific interactionswith a wide range of targets. The scaffold is based on the cystatin fold and permits thepresentation of two variable binding loops (Fig 1). The Affimer reagents are small (~12-14 kDa),easy to manufacture in bacterial expression systems and biophysically stable over a wide range ofpH conditions.

As both the scaffold and the randomised binding loops are engineered to lack cysteines, theintroduction of this residue using basic molecular biology methods provides a straightforwardroute for immobilising the protein to surfaces in a defined orientation via thiol chemistry (Fig 1).

agarose

• The high specificity achieved by Affimer protein-based affinity resins suggests potential applications in pharmacokinetic studies and bioprocessing platforms.• Flexible reformatting provides a route to further optimisation - improvements in performance may be possible by development of the resin, cysteine location,multiple domain options, linker lengths and coupling methods.

• Affimer resins are robust to a wide range of pH conditions enabling a high level of reproducibility and ability to endure cleaning routines.

Affimer D11 binds the Fc domain of human IgG (hIgG) and exhibits high target

specificity in the presence of complex mixtures and when challenged with

mammalian homologues (Fig 2). High specificity has enabled the use of this

resin for pharmacokinetic studies of hIgG-drug conjugate stability in mouse

plasma (data not shown).

An Affimer clone that binds IgG molecules was immobilised on highly cross-linked 4 % agarosebeads via iodoacetyl chemistry and the resin packed in a column (bed height 31 mm, columnvolume 0.6 mL). The characteristics of the affinity resin were studied for target specificity, elutionprofile, binding capacity, reproducibility and stability.

Binding capacityAffimer D11 was engineered to include extra residues (Gly-Gly-Ser) that extendthe length of linker to the agarose bead. The dynamic binding capacities ofcolumns packed with Affimer resin containing standard and extended linkerswere measured. Extension of the linker produced a resin with increased bindingcapacity (Fig 3).

Figure 5A. Example trace demonstrating elution of hIgG from Affimer D11 resin using

MES (pH 5.2) elution buffer. 5B. Elution efficiency of Affimer D11 resin across a range of

pH values.

It was observed that efficient elution of IgG from Affimer D11 resin could be

achieved at relatively mild elution conditions (pH 5.2) (Fig 5). This is due to the

presence of ionisable His residues in the binding loops that become positively

charged in this pH range. As Affimers are selected via an in vitro process it is

possible to ensure that clones with similarly advantageous loop sequences are

used for affinity chromatography. Furthermore, the flexibility of the in vitro

selection process offers the potential to produce Affimer-based resins that elute

targets upon introduction or removal of complexing ligands, such as metal ions,

into otherwise unchanged wash buffer.

0 10 20 30 40 mL

2000

1000

0

mAU

C/C0

Extended linker

Standard linker

Extended linker (GGS)

0.8

0.6

0.4

0.2

0.0

Saturated column capacity (mg mL-1)

Dynamic binding capacity (mg mL-1)

Extended linker

Standard linker

Extended linker

Standard

linker

Standard linker

Extended linker (GGS)

0 5 10 15 20 25 30 mL

A C

B D

Load | Wash |

Elute

Figure 3. Dynamic binding during continual loading of 0.5 mg mL-1 pure hIgG over AffimerD11 resins with a column residence time of 3 min. 3A. Full traces showing load, wash andelution phases. 3B. Normalised breakthrough curves. 3C. The amount of target proteinrecovered during elution, normalised to column volume. 3D. The dynamic binding capacityat 10 % breakthrough, normalised to column volume.

Mild elution

Figure 4A. An Affimer D11 column demonstrated high levels of reproducibility over 81consecutive purification cycles. Inset: Example traces for a section of the experiment. 4B.Example western blot indicating no detectable leaching during elution, pure Affimerprotein is included for reference.

Stability and reproducibilityThe reproducibility and stability of an Affimer-based resin was measured byrepeated injection and elution of pure hIgG (81 runs), including 19 clean-in-place(CIP) cycles (100 mM NaOH, 10 min). The data indicate consistent captureperformance over the course of this study (Fig 4A). No leaching from Affimercolumns was detected by western blotting of concentrated elution fractions(Fig 4B).

Pure affimer

160 ng 16 ng

Eluted

fractions

(240 x conc)

A B

0 20 40 60 80

Run

100

98

96

94

92

90

% A

rea in e

lute

d p

eak

CIP CIP

mAU

Conductivity

% Elution

buffer

CV

Unbound (UB)

Eluted (El)

mL

% a

rea in e

lute

d p

eak

100

80

60

40

20

0

A B

Human IgG Dog IgG Rat IgG Mouse IgG

Figure 2A. Traces produced upon loading IgG-depleted human serum spiked with known

concentrations of hIgG onto Affimer D11 resin. The wash buffer used is PBS (pH 7.4) and

elution buffer is glycine, NaCl (pH 3.0). Inset: SDS-PAGE (under reducing conditions)

confirms specificity of binding and elution. 2B. % Area of elution peak after injection of 1 mg

of pure immunoglobulins.

Specific target binding and elution

mAU

Unbound

Eluted

mL

A B

POS027