Aerodyne Research, Inc.

18
Aerodyne Research, Inc. Utilization of Tunable Infrared Laser Sensors for Cross-Road Mobile Source Emissions Characterization and Qualifications Prepared by: M.S. Zahniser, D.D. Nelson, J.B. McManus and C.E. Kolb Aerodyne Research, Inc. 45 Manning Rd. Billerica, MA 01821 Prepared for: NARSTO Emission Inventory Workshop on Innovative Methods for Emission Inventory Development and Evaluation University of Texas Austin, TX October 15, 2003 ARI-VGR-116

Transcript of Aerodyne Research, Inc.

Aerodyne Research, Inc.Utilization of Tunable Infrared Laser Sensors for

Cross-Road Mobile Source Emissions Characterization and Qualifications

Prepared by:M.S. Zahniser, D.D. Nelson, J.B. McManus and C.E. Kolb

Aerodyne Research, Inc.45 Manning Rd.

Billerica, MA 01821

Prepared for:NARSTO Emission Inventory Workshop on

Innovative Methods for Emission Inventory Development and EvaluationUniversity of Texas

Austin, TX

October 15, 2003ARI-VGR-116

Outline

• Motivation• Traditional Automotive Remote Sensing• TILDAS Remote Sensing• NO and N2O Emissions from Automobiles• NO Emissions from Heavy Duty Diesel

Trucks• Quantum Cascade Implementation• Summary

Traditional Remote Sensing

Retro-Reflector

RemoteSensor

ExhaustPlume

VideoCamera

Data Acquisitionand Display

Advantages:• Thousands of cars per day• Split second inspection• Real world emissions• Faster & cheaper

Limitations:•Species coverage is limited -works best for CO monitoring•Range is severely limited •Site selection constrained

0%

20%

40%

60%

80%

100%

120%

4.459 4.458 4.457 4.456 5.256 5.254 5.253 5.252

Wavelength (microns)

Rel

ativ

e S

ign

al S

tren

gth

LASER 1 ON LASER 2 ON

CO2NO

N2O

LAS

ER

S O

FF

TILDAS Remote Sensing

∆II

NL))0

= −exp( ( )σ υ

AbsorptionCross-Section

Frequency

MolecularDensity

Path Length

NO = 0.0104 * CO2

N2O = 0.0018 * CO2

0

5

10

15

20

25

30

35

40

45

50

0 1000 2000 3000 4000 5000

CO2 Excess Column Density (ppm-m)

NO

an

d N

2O E

xces

s C

olu

mn

Den

sity

(p

pm

-m)

TILDAS Data Processing

ppm NO = * CO2NOCO2

stoichiometric0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

-34 0 34 67 101 134 168 202 235

Time After Car Passed (ms)

CO

2 C

olu

mn

Den

sity

(pp

m-m

)

0

10

20

30

40

50

NO

an

d N

2O C

olu

mn

Den

sity

(pp

m-m

)

CO2NON2O

High Sensitivity

Precision ~ 5 ppm of the exhaust-10

0

10

20

30

40

50

60

70

80

90

100

-5 0 5 10 15 20 25 30 35 40 45 50 55

Time After First Measurement (minutes)

NO

Em

issi

on

of U

LE

V (p

pm

)

ENGINE OFF

ULEV NOx Emission Standard

NOx Result for This Vehicle on

FTP Test

2 PASSES NOT DETECTED

0

500

1000

1500

2000

2500

3000

3500

40001

NO

Em

issi

on L

evel

s (p

pm) Maximum

Level Observed

Average US Car

ULEVStandard

NO vs. Manufacturer

0

100

200

300

400

500

600

700

83 84 85 86 87 88 89 90 91 92 93 94 95 96

Model Year

Ave

rage

NO

Em

issi

on (p

pm)

ALL VEHICLES (1141)

Manufacturer 1 (418)

Manufacturer 2 (142)

TDL Setup / EPA Parking Lot

RetroReflector

TILDASInstrument

EPA’sInstrumented

Truck2nd TurningMirror

1st TurningMirror

Long Range Remote Sensing Using TILDAS

• Remote sensing of heavy duty diesel NO emissions across five lanes of traffic on NC-54 in North Carolina

RetroReflectorTILDAS

InstrumentIR Laser

Beam

37 m (120 ft)

NO and CO2 Plumes from Heavy Duty Diesel on NC-54

• NO and CO2 plumes measured at 32 Hz on Route 54 in NC

• Optical pathlengthof approximately 280 ft

• NO emission index is NO/CO2 = 0.0101(5)

NO and CO2 Plumes

-10.0

0.0

10.0

20.030.0

40.0

50.0

60.0

0 0.5 1 1.5 2

Time (s)

NO

(p

pm

-m)

NO

CO2

NO vs. CO2 Column Density

010

2030

4050

60

0 1000 2000 3000 4000 5000 6000

CO2 (ppm-m)

NO

(p

pm

-m)

NOx Emission DistributionsLight-Duty Gasoline Heavy-Duty Diesel

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 1000 2000 3000

NO Emission (ppm)

Per

cen

tag

e o

f Rem

ote

Sen

sin

g M

easu

rem

ents

Remote Sensing

10% Vehicles = 50% Emissions

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 1000 2000 3000

NO Emission (ppm corrected for excess air)

Per

cen

t or

Rem

ote

Sen

sin

g M

easu

rem

ents

Remote Sensing

10% Vehicles = 17% Emissions

QUAD-QC Open Path TILDAS

• Four QC Lasers with time-multiplexing

• NO, NO2, N2O, NH3,CO

• CO2 reference• Cross-road retro-

reflector• Range 100 meters

Automobile Exhaust Plume Spectra

LASER 12240 cm-1

LASER 2967 cm-1

LASER 31906 cm-1

CO2

N2ONH3

NO

Automobile Exhaust Plume

8

6

4

2

0

CO

2, %

0.80.60.40.20.0TIME (s)

40

30

20

10

0

N2O

, ppm

60

40

20

0

NH

3, p

pm300

250

200

150

100

50

0

NO

, ppm

1994 Mitsubishi mmol/mol CO2

CO2

N2O 0.46 NH3 0.83 NO 3.4

start of plume

Catalytic Converter Warm-up

0

200

400

600

800

NO

, ppm

0 2 4 6 8 10 12CO2, %

cold start ∆t = 93 s ∆t = 133 s ∆t = 172 s ∆t = 208 s ∆t = 244 s ∆t = 280 s

0

20

40

60

80

NH

3, p

pm

0 2 4 6 8 10 12CO2, %

cold start ∆t = 93 s ∆t = 133 s ∆t = 172 s ∆t = 208 s ∆t = 244 s ∆t = 280 s

NO NH3

NO emissions decrease

NH3 emissions increase

Emission Ratios to CO2

Multiple passes with same automobile

1994 Mitsubishi “Expo”160,000 km odometer

NH3N2ONO

Summary

Tunable IR Laser Remote Sensing Advantages• Increased sensitivity (10 – 1000 over NDIR) • Increased specificity (e.g. NH3, N2O, NO2,

individual VOCs)• Self calibrating (no cal gases required)• Increased range (up to 100 meters)• Easier adjustment for exhaust emission heights

(for HDD measurements)• Automated/Remote instrument operation

Acknowledgments• Aerodyne Colleagues

– David Nelson– Mark Zahniser– Barry McManus– Joda Wormhoudt– Patrick Kirwin

• MIT Collaborators– Jose Jimenez– Greg McCrae

• ADL Collaborator– Stephan Schmidt

• EMDOT Collaborator– Mike Koplow

• WPI Collaborator– Babara WyslouzilFunding Sources

• NSF, NASA and DOE SBIR Programs• NASA HSCT Program• South Coast Air Quality Management District• EPA-ORD• Environmental Systems Products