Aerodynamis Project of Arun Prabhath

download Aerodynamis Project of Arun Prabhath

of 8

Transcript of Aerodynamis Project of Arun Prabhath

  • 7/31/2019 Aerodynamis Project of Arun Prabhath

    1/8

  • 7/31/2019 Aerodynamis Project of Arun Prabhath

    2/8

  • 7/31/2019 Aerodynamis Project of Arun Prabhath

    3/8

    Comparison of graphs

    Output from matlab program theoretical value of Cp

    Output from program Theoretical value of Cp

    The source for theoretical value of Cp of cylinder is

    http://www.creatis.insa-

    lyon.fr/~dsarrut/bib/others/phys/www.mas.ncl.ac.uk/%257Esbrooks/b

    ook/nish.mit.edu/2006/Textbook/Nodes/chap11/node22.html

    The source for theoretical value of Cp of airfoil ishttp://www.ae.metu.edu.tr/tuncer/ae443/12/prj/prj1-

    team3/case1.htm

    Cd and Cl values of zero angle of attack are respectively

    http://www.creatis.insa-lyon.fr/~dsarrut/bib/others/phys/www.mas.ncl.ac.uk/%257Esbrooks/book/nish.mit.edu/2006/Textbook/Nodes/chap11/node22.htmlhttp://www.creatis.insa-lyon.fr/~dsarrut/bib/others/phys/www.mas.ncl.ac.uk/%257Esbrooks/book/nish.mit.edu/2006/Textbook/Nodes/chap11/node22.htmlhttp://www.creatis.insa-lyon.fr/~dsarrut/bib/others/phys/www.mas.ncl.ac.uk/%257Esbrooks/book/nish.mit.edu/2006/Textbook/Nodes/chap11/node22.htmlhttp://www.creatis.insa-lyon.fr/~dsarrut/bib/others/phys/www.mas.ncl.ac.uk/%257Esbrooks/book/nish.mit.edu/2006/Textbook/Nodes/chap11/node22.htmlhttp://www.ae.metu.edu.tr/tuncer/ae443/12/prj/prj1-team3/case1.htmhttp://www.ae.metu.edu.tr/tuncer/ae443/12/prj/prj1-team3/case1.htmhttp://www.ae.metu.edu.tr/tuncer/ae443/12/prj/prj1-team3/case1.htmhttp://www.ae.metu.edu.tr/tuncer/ae443/12/prj/prj1-team3/case1.htmhttp://www.ae.metu.edu.tr/tuncer/ae443/12/prj/prj1-team3/case1.htmhttp://www.creatis.insa-lyon.fr/~dsarrut/bib/others/phys/www.mas.ncl.ac.uk/%257Esbrooks/book/nish.mit.edu/2006/Textbook/Nodes/chap11/node22.htmlhttp://www.creatis.insa-lyon.fr/~dsarrut/bib/others/phys/www.mas.ncl.ac.uk/%257Esbrooks/book/nish.mit.edu/2006/Textbook/Nodes/chap11/node22.htmlhttp://www.creatis.insa-lyon.fr/~dsarrut/bib/others/phys/www.mas.ncl.ac.uk/%257Esbrooks/book/nish.mit.edu/2006/Textbook/Nodes/chap11/node22.html
  • 7/31/2019 Aerodynamis Project of Arun Prabhath

    4/8

    Cl = 4.3368e-018, Cd = -6.7405e-004

    These values are approximately zero. This because the flow is invisid

    and non rotational. These values must be zero but because of the

    control panels at the trailing edge. The values are significantly changing.

    These value we are getting are not for every point but over a plate, so

    values will change when the angle of attack is non zero.

    The value at which all cp curves are intersecting is the point

    where there is no change in Cp with respective to angle of attack. The

    middle curve is the curve for zero angle of attack. The first above andfirst below curves are for angle of attack one degree. Similarly for two

    and three degrees.

  • 7/31/2019 Aerodynamis Project of Arun Prabhath

    5/8

    For angle of attack +5 degree for angle of attack -5degree

    Since the air foil is symmetric the positive angle of attack and negativeangle of attack should be equal. And we can also observe large value of

    cp at the trailing edge.

    clear allclck=input ('enter 0 if you want airfoil and anyother for cylinder');if k==0load top_bottom.mat;elseload top_and_bottom_cylinder.mat;endS=1:60; Phi=1:60; x=1:60; y=1:60; I=zeros(60);J=zeros(60);alpha = input('enter the value of angle of

    attack in degrees');XY=[XYt;flipud(XYb)];Vo=input('enter the value of free streamvelocity');alfa=alpha*pi/180;n=length(XY(:,1))-1;

  • 7/31/2019 Aerodynamis Project of Arun Prabhath

    6/8

    for j=1:nS(j)=sqrt((XY(j+1,1)-XY(j,1))^2+(XY(j+1,2)-

    XY(j,2))^2);Phi(j)=atan2( XY(j+1,2)-XY(j,2),XY(j+1,1)-

    XY(j,1));x(j)=(XY(j,1)+XY(j+1,1))/2;y(j)=(XY(j,2)+XY(j+1,2))/2;

    endfor i=1:n

    for j=1:nif j==i

    I(i,j)=pi;

    J(i,j)=0;elseA=-(x(i)-XY(j,1))*cos(Phi(j)) -

    (y(i)-XY(j,2))*sin(Phi(j));B=(x(i)-XY(j,1))^2 + (y(i)-

    XY(j,2))^2;C=sin(Phi(i)-Phi(j));D=(y(i)-XY(j,2))*cos(Phi(i))-(x(i)-

    XY(j,1))*sin(Phi(i));

    E=sqrt(B-A*A);F=-cos(Phi(i)-Phi(j));G=(y(i)-XY(j,2))*sin(Phi(i))+(x(i)-

    XY(j,1))*cos(Phi(i));H1=log((S(j)*S(j)+2*A*S(j)+B)/B)/2;H2=(atan((S(j)+A)/E)-atan(A/E))/E;I(i,j)=C*H1+(D-A*C)*H2;J(i,j)=F*H1+(G-A*F)*H2;

    endend

    endlamda=I\sin(Phi-alfa)'*2*pi*Vo;total_source=S*lamda;for a=1:n

  • 7/31/2019 Aerodynamis Project of Arun Prabhath

    7/8

    Vi=J*lamda/2/pi+Vo*cos(Phi-alfa)';endK=1:60;cp=1-Vi.^2/(Vo^2);

    plot( x,cp );for i=1:60

    K(i)=cp(i)*(XY((i+1),1)-XY(i,1));Q(i)=cp(i)*(XY((i),2)-XY(i+1,2));

    endCl=sum(K);Cd=sum(Q);

  • 7/31/2019 Aerodynamis Project of Arun Prabhath

    8/8