Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

download Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

of 89

Transcript of Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    1/89

    Aerodynamic Analysis of a HorizontalAxis Wind Turbine by use ofHelical Vortex TheoryVolume I-Theoryiuaaa-c~- oaosq acnoam anzc nans%sx3 oa n f185 -299 16gOGX%CB2Ab 9XXS Q f t i G 9QRD9 8H DP GSZ Ol?~ ~ C & ~ ~ , ? LVODTCX 233EQBP, VCEa ISB 1: TPIEObH

    P i m Z B c p o ~ t ( 2~9cdoXlaiw.) 88 p U a ~ l a snc ao~spapa01 CSSL o ln GWU I G O I GD. R. J@ng,T. G . Keith, Jr.,and A.Aliakbark!~ansfj&University 01 Toledo

    D Q C Q ~ ~sr 3982

    Prspavsd forNATIONAL AERONAUTICS AND SPACE ADMINISTRATIONLewis Research CsnlsvUndsr Gonfrac"lN6 3-5forU.S. DEPARTMENT OF ENERGYConservation and Renewable EnergyWind Energy Technology Division

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    2/89

    DOEINASNOQOS-1NASA CR-168054

    Aerodynamic Analysis sf a HorizontalAxis Wind Turbine by use ofHelicalVortex Theory

    D. 8. Jeb'ng, T. G.Keith, Jr.,and A. AliakbarkhanafjehUniversity of ToledoToledo, Ohio 436'76

    December 1982

    Prepared forNational Aeronautics and Space AdministrationLewis ResearchCst-rterClsveland, Ohio 44135Under CsntrasMNCC 3-5fo rU.S. DEPARTMENT OF ENERGYConservation and Renewable EnergyWind Energy Technology DivisionWashiplgton, D.G. 20545Under Interagency Agreement DE-A101-76FT20320

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    3/89

    AERBBYP4AMIC ANALYS IS OF A IIBR I ZONTAL AX I SWIND TURBINE BY USE OF HELICAL VORTEX THEORY

    (VOLUME E TltEBRY)

    byB e R e Jeng T. G . Kei th , J r .and

    Report o f research conducted under aNASA Lewis Research Center CooperativeAgreement NCC 3-5NASA Technical Monitor: J. Savino

    Department o f Mechanical Engi ne er i ngUni v e r s i t y o f T o l e d oToledo, Ohio 43606

    December 1982

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    4/89

    CONTENTS

    PageSUb!t4ARY . . e a . a . a a e c e a o . a a a e a ~ a o a a o a 1. . . . . . . . . . . . . . . . . . . . . . . . . . .. INTRBDUGTIBN 2NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    2. ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10. . . . . . . . . . . . . . . ..1 I n t ro duc t ion t o Vor tex Theory 10. . . . . . . . . . . . . . . . .. 2 Vortex Theory of P r o p e l l e r s 10. . . . . . . . . . . . . . . . . . . . ..3 General Assumptions 112.4 Caleulat'ican o f I nduced V e loc i t y . . . . . . . . . . . . . . . 13

    . . . . . . . . . . . . . . . ..5 Appl i c a t i on of M or lya 's Theory 25. . . . . . . . . . . . . . . ..6 Governjng Equation Formulation 272.7 DeterrnJnation o f ' Induced Angle o f At tac k . . . . . . . . . . a 332.8 Power. Torq ue and Drag a on Wind Turbine . . . . . . . . . . . 35

    3 RESULTS AND DISCUSSION e a a o 363.2 Bsuble-51 aded. MACA 23024 A i r f s i . W ind Turb ne Cal culat4 ons . 383.2 Sfng'le Blad ed Wind "Turbine C a lc ul a ti on s . . . . . . . . . a . 51

    4. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63. . . . . . . . . . . . . . . . . . . . . . . . . . . .EFERENCES 64APPENDIX A: Revjew o f VarSous Methods s f Wind Turbine AerodynamJc. . . . . . . . . . . . . . .erformance Cal cul a t? n 66

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    5/89

    The theo rcst l ca l development o f a me thod o f ana lys4s f o r p r ed ic t i on o f th eaerodynamic performance o f h o r iz o n t a l a x i s wf nd tu rb ines i p re se nt ed i n t h i srep or t . The method i s based on th e assumpt ion th a t a h e l i c a l vortex emanatesfrom each blade element. C o l l e c t i v e l y t h e s e v s r t l c e s f o rm a v o r t e x s y s te mt h a t exte nd s i n f i n i t e l y f a r downstream o f t h e blade. V e l ~ c i t i e s nduced beyt h i s v o r t e x s ys te m a re f o u nd b y a p p l y i n g t h e B io t -S av a r t : w. Accord ing ly ,t h i s method avo ids th e use o f any in te r f er en ce fa c t or s ' t.tS1ich ar e used i n manyo f t h e momentum th eo ri es . What' : more, th e method can be used t o p re d i c t t hep er fo rma nc e o f w ind t u rb i n e s w i t h a small number o f b la des .

    The wind t u r b i ne pe r formance o f a two -b laded ro t o r i s de te rmined andcompared t o e x i%tig experimental data and t o corresponding value s computedfrom the widely used PROP code. I t was found that the present method com-pared favo rab ly w i th exper imen ta l da ta espec ia l y f o r l w wind ve l oe i ie s .

    The w ind t u r b i ne pe rfo rmance o f a s i ng l e- b la d e d r o t o r i s d e te rm in eds u b j e c t t o th e c o n d i t i o n t h a t t h e r e was no I i f t on th e counterwc4ght o rsuppor t span. Output power f o r a one-bladed wind t u r b i n e was compared t ot h a t o f a two-bl aded mach i neo

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    6/89

    2 . j PRODUCTBBOver tho past Pew years, i t er ss t i n t he rase o f w indmi l 1s t o produce power

    has grown s i g r ~ li a n t ly . I n s up p or t s f t t l l s i te res t , cons iderab l e researchhas been di r ec te d toward th e measurement and pr ed ic t ion o f w ind turb ineperformance. The m a j o r i t y o f t h e t h e o r e t i c a l e f f o r t employed t hu s P ar i sbased on a var ie ty o f me thods tha t have 1ong been used i n th e c al e ul a t i o n o fp rope l1e r performance; c l as si c a l momentum th eo ry a1 sng w i t h a number of b l ade-element theor ies have been u t il zed w i t h va ry9 ng r'egree:, sf PIUCC~SS.

    A computer code developed by W i :son and l.lay'~;ri e'5 %e ,a?$St*s~:eU I O ~6 r s I t yS&I],nd en t itl d PROP, i a t presr 8n"tws da3,t t~ - r:Lf:.r-:~i neth e aerodynamic performance o f ho r izo nta l ax is ~ . t l n d . ~ t - ~ \ B t ~ c s ~II c 4de wasdeveloped several years ago as a general purpose .I +a " I%l i ?~99r r ir2:tancecomputer program. Acc ordin gly, PROP has a certain anlbu .c af !?: 8 e- inf l e x i b i l i t y , Fo r example, th e code con ta ins fo u r b lade t i p - lo ss models(NASA, Prandt l , Geldste in , and no t i p - lo ss ) which can be incorporated in t oth e performance pre d ie t jon ; however, th e cho ice o f wkSck model t o use i s l e f tt o t h e u s e r 9 d dis cre tio n.

    The PROP code i s based on a modi f i ed b lade e lement ana lys i s ca l l e d th eGlauert Vortex Theory [I].n e s s en t ia l a ssum ptio n o f t h i s t h e o r y I s t h a tv o r t i c e s o r i g i n a t e Prom t h e r o t a t i n g b la de s t o form a k e l ical vortex systemthat passes downstream. O f fundamental importance, t h i s t r a f l i g vo r texsystem induces ve loc i t ies which a9 t e r the f l ow a round the h l ades and i n tu r na f f e c t t h e fo r c es a c t i n g on t i le blades. It should be noted t h a t because s fth e compl ex i y i vol ved th e induced vel oc it ies a re no t determ5 ned d t re c t l y i nt h e G l auer t Vor tex Theory. Ins tead, ax ia l and ra d i a l in ter f ere nce fac to rs areea lel t l ated from which .[;he induced ve lo ci ty o f t he vor tex system on any bladeelement can be evaluated. The ca lcu l a t i o n o f these jn te r fe ren ce fac to rs Ss

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    7/89

    sPmpl i f i e d by assuming t h a t t h e r o t o r has an i n f i n i t e number o f $1 ades. Th i sassumption removes th e c omp lex i ty a ssoc iated w i t h th e p e r 9o d ic i 3y o f t h eb lade f l o w and p ermi t s d i r e c t app l i c a t i o n o f momentum theory f o r t he eva lu -a t i on of t he i n t e r f e r enc e v e l oc i i es . However, f o r s9 ng1e and dou bl e-b l adedr o to r s , o f p r l n c ipa? i n t e r e s t here , t h i s assumpt ion i s que s t i onab lem

    Usars o f ;he PROP code have f requent ly encountered problems wi th thec;nvlrat*clait~:cp :)f th e numer ical procedure i n th e preogram. I t has been Poundt h a t ~ a d 2 ; e r t a i n o p e r a ti n g c o n d it io n s o f a wind t u r b ine , p a r t i c u l a r l y t hos ef o r I arge t I p speed r a t i o s [ gene r a l l y s ma ll w ind ve loc i t i e s ) , t he 1ocal va lueo f t h e a x i a l i n t e r f e r e n c e f a c t o r c an exceed a t h e o r e t i c a l l y 1 m i t i n g v al uef o r a i l t i p - l o s s models. When t he ax i a l i n t e r f e r enc e fa cto ? l i e s i n t herange 1/2 6 a 6 1, t h i s s t a t e i s known as a t u r bu lenc e wake o r v o r t ex r i n gs t a te . Under s uc h a c ond i ti on , t h e v e l o c i t y i n t he f u l l y dev eloped wakew i l l then revers e d i r e c t i o n and f lo w back toward th e rotop. Therefore, th emomentum-blade element th eo ry ceases t o be val id , and i t i s t hen nec es sa ryt o m o d if y th e a n a l y si s by us in g G la ue rt ' s empira"ca1 data. These empiricalco rre ct io ns have been developed f o r th e momentum-bl ade element th eo ry andd is c us s ed i n some de t a i l i n [2,41, however, th eo re t ic a l performance e s t i -mat jons i n the reg ion a re suspect even when cor re c te d by empirical methods.

    Exper ience has a1so revea led f rom comparison s f PROP code pred ic t i onsw i t h experimental da ta t h a t f o r a1 1 b l ade t i p - l os s models, PROP r e s u l t s t e ndt o underest ima te measured power outp ut b oth near "cu t- in " and rate d windspeeds.

    Because o f t h e i n heren t 1 m i ta t i o ns w i h th e momentum-bl ade elemen ttheory and because o f t h e need t o develop an ana ly t Jc a l method f o r p r ed ic t i n gth e aerodynamic performance o f wf nd turb in es w i t h a small number o f blades,i t was decided th a t a di f fe re nt and more complete method o f anlys is was 4n

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    8/89

    order. The purpose of Lhi s report i s t o describ e the develoyxlient of themetf~od ?rtllcta Js t ~ r m b d v ~ t ~ ~ t o xake medel.

    I n t h e a n a l y 8 1 ~ ~ile *induced ve!ocity ' i s dl'reetly caleulatsd byintegration of t h e B i at-Savart Iav under* the assumption t i l a t a f i 1ament oft Eae tra'i -i g vortices P s he1 i ca l it1 form, extends -f nf i n'i tely downstream ofthe rotor, and has a constant diameter. I t i s also assumed th a t the he1 icalvartsx system produced a t the blade ' i s travelqingd~wnstream i t h n constantvelocl'ty. This velocity i s equal t o the value a t the roto r blade, tee. , theinflow velocity through ro to r' s plane of rota tion . This imp1 ie s t h a t thei nt erac tjo ns between wake elements are ignored. The 1 fti ng 1 ne theory 4 sused t o model th e blades.

    An analysls an d a computer program for predicting the aerodynamicperfornlance of a hcsr.e"zsntalwind turbine by using a vortex wake method hasalso been developed by R. He Miller, et a1 [3]. The difference between thatanalysis and the present one i s in the m~delingo f t h e circulation around th eblade and i n the vortex wake and J n the method of integrating the Biot-Savart1aw t o evaluate local induced ve locit ies . In [3], the bound circul at isn %orblade Js modeled as a step functl'on. Th f s means t h a t each blade i s divided1nlo a number s f spanwi se se ctions, wh-ich are, in general, of urequal l ength.Each blade se ction i s then represented by a bound line vortex sf constantstrength, Si nce jump d iscent5n u t ? es ex$s t t n eir cu l at is n between adjacentspanwi se blade sections, a t r a i l n g 1 ne vortex must be generated a t each ofthese points. These he1 i ~ d l ortlces a re furt her approxl'mated by $7. s~t.g.!r-:Ba?strajght line vertex segments, each spanning an ang le oP tQo o r 15* overwhich int eg ra tio n i s performed, En the current analysSs, a continuous vari-a t ion of ~ J r c u l a t t o n t1 th e spanwi se dJrectJon is used and the 4ntegratJon 4s

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    9/89

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    10/89

    NOMENCLATURE

    axia1 interference factorro ta ti onal i nlerferonce fac to r1 f t curve s lope + 3rnagntitude of vecto r ( s - ros f ne serfes coefficientsdr'stance shown 'i n Fig, A-5l i f t coeffier 'ent for zero -Incidencectiordm a t r i x defined by Eq. (2-68)drag ~ o s f f i$et? i1 f t coef f i c ien tpower coefficient [P/(? l?pv~%' ,3)1dragparameter def i ned i n Eq. [A-36)general funstionsaxial force or drag on w ind turbJne

    reducaf;9n f a s t a rfunction def ined i n Eq. (2-71)parameter defined as h = r tan$u n i t vector a7ong X a x i sinduetion factoru n i t vector a1sng Y ax i su n i t vector along Z axis

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    11/89

    ser4as Pndoxnon-dqmanst onal cr'rculats iondi str.il>utio nfunction1i f tmass f low r a t snumber o-f' bladespressuredownstream pressurepowerrated electrical powergenerated e l ec tri ca l powerpower produced by rotortorquenon-dimensi onal torquedista nc e a1 ang th e b l a deradius o f rotore f f ee t i ve rad iu sradius defined as R L = R cos$posftfsn vector from the origin t o a n element s f the

    trai l ing vortex f l amentgap width between vortex sheets shown S n Fig. A-5vel oe ity of airf low through rotorradial component of velocltycir cumterenti a1 cemponent of vel sc4 t ymean vel oei t yw i nd vel ocl t ydownst eam vel oci t yf tiduced vel oc i t y

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    12/89

    vel oeei2:yof rf g id he1 i co* idaI vortex sheetnormal csmpsnsnt s f S nduced vel sc i tytangential component of i ndue ed vel scltyeonrponent o f i n d u e s d vel oc'ity i oa X direc t?oncomponent o f 9 ndue ed valoci ty i n Y dirgetjoncomponent s f induced vel oei ty J n Z directionresultant vel oc i l yu n d i s t u r b e d vel ocit yX axisY ax i srearward distance from the rotor , Z a x i sangle s f a t t acke f f e c t i v e angle s f a t t ackgeomatrqc angle o f attackinduced angle o f attackblade anglevortex strength

    Jnlesval around a s i ngul a r i t yan g l e defined Jn Eq. (2-43)vector def ined i n Fjg. 2-2transformati on variab'le de fi ned in EQ, 2-74)pjt ch angle s f a he1 ix-ical vo rtax filam entazimut ha1 varS abl e of a he1 ica l vortex f i 1amentmeasured from 0kang le between the X - a x i s and t h e k th b lade

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    13/89

    vospeed r a t i o , ---RQrDspeed r a t i o , --vo~ l r 'speed r a t i o , ---VQ

    Dl?t i p speed r a t i o , ---\Ponon-dimens f onal d-istances a1ong th e b l ads

    parameter de f-ied by Fq.A-36)dens9 t yr o t ~ rol i d i t y [ N C / ( 2 m R ) ]1ocal sol id i t yparameters defined by Eq. (A-43) and Eq. (A-44)angle de f j ned by Eq. (2-26)vel ocPty potenti a l

    con9ng angler o ta t iona l speedrota t ional speed impar ted t o t h e a i r

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    14/89

    From *ideal flsw t h ~ o ~ ~ gt may bc recallad t h a t vorlletity $ 5 dcf jncd 3st w i c e th e anger1clr v ~ l o @ ~ ! t y% an ele l~~aatf fluxid. A regiesn eontainjlag aootacantrated amount s f v s v t l e i t y 'is gal3 Pcd a V @ P % ~ X 13d a v8r t~ i~s sa id to6aave a s t r ~ t ~ g t ! ~qual t o the ctrcu?atfsta aroua~ei he vortex at3@& F S B ' B ~ ! I D I ~ Zt ! i lssr~ns E7LB aro a set ~f ~ ~ r ~ p o s ~ t 0 ~ f a sh a t apply t o vorticas and vortexno@[email protected]. tkcooqenstates @laat t a an 'inv'isctid flow wl th jn whblch t h eforces a re ssnsarvat9vs and the p296ure is only a funct lon s f BansPty,rotatPsn sf Flu id par t ie l es, wh4cR travel a1sng stream j lnas, i s p e r ~ an a t ~ t ,Fson th-is thaoren, s f t en reforred %sns t h e vortex eantfnua!i;gr theorem, i tbewmss sv-ident g h a t a vor'ex aSa"1~montcan~ot nd abruptly, and, un lass thefflanent farms a elasad pa t h , &it ust sxtsnd oPthar t o f n f %n4 tyor t o t h eP-ield that. the fJ 1anent generates. This velseity 4 s commsnly referred t o ast acl l~aduecdvc."PscOty. The '8"ndkaeed vsl hacity can be ealcesl a"cd froon theCiot -Savar t l a w %83as

    -3. -Pwl-risve dw j J s th e *induced velseity due t o a vortex e l e m ~ n t ,o f l engtll ds-3.and strength y, and r i s the pos i tJon vector from the poin t a t which the

    induced VEIc'it.y i being ealcul ated t o the eleiwnt o f the vortex.2.2 Vortex Theory of: Propellers

    The vor tex @ ! ~ e ~ r yf propellers i s based on the concept t h a t eache l ~ m sn t f the bl ads can be treated a s a two-diinensirtnal airfoJ1 section

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    15/89

    s~b je6 t@aa GQB I )%C ? J ~86a? resul t a n t velocity W and t h a t the Iocdl 1 f t sf'th(? l ado olemetat, QL, (S s as8068ated wit11 the efreul a l l on r around thecontour o f the c?9r3f0'i'D. Tho ~ Q E ; Q ' B resul tant veloc'ity ' i s found from thevector sun o f "9aa f r e e stream v b ' P ~ ~ $ t y ,h e clrcufifsrsnt-!a? veloeIty 0s thes ~ c t 4on nd the t nduced 41sw vel oef ty. Tha Kutta-Jsukowski tt~eoremg93, f o reach blade elemsnd, may be written

    where a 4s the Iscal dsns i ty of the a i r and d r 9s the elemental bladeI cagth. In general, th$circul ation r around a blade wi l l vary a1ong the

    dl'blade sljara. A the cireulatiepn changes tlv the amount - r between thed rpoints s and r + d r along t ho blade length, i t f s l lows, frrsm t k a vortexeontinu-ity princi p9 e, t h a t a t r a i l i n g vortex f i 1ament o f the same strengthcrnanatss f rsm the b l a d e el emsnt and extends i f inttely Par downstream of theblade. Because LraP 1f r ~gvo rt t ees emanate from every po int al ong th e ro ta t ingblade, they form a vortex sheet o f approximately helical shape. The number ofsuch sheets i s equal t o t h e number s f blades, Due t o t he t ra i l ing vor texsheets there 'Is an fndueed velocity dist~*!bution, w i , i n tile plane s f rotor.ThSs induced velscity can be used to obtain the loca l r esu l tan t ve l~cf tyth a t ilnay i n turn b e used 9n th e Kratta-JoukovrskJ theorem t o determine the l i f ton a bl ads element.2.3 General Assumptions

    The princfple assumptions on which th e present analysis of theaerodynamjc performance sf a horizontal axis wind turbine is based may bes ta ted a s follows:

    I ) t h a t the a i r ?low -Is incompressoibleand invtscid,

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    16/89

    2) t h a t th e Tree stream vs l scq i t y Ps al~vayapara1 a1 t o th o rstot* shaf tcelater%*iincnd un.iforn a long the span,

    33 t h a t t h e r s l a t i v e ve%oeJty0F a b la d e e l ~ m a n t o the a i rs t ream i si snl$h=a?do the ve loc-ity Lhat t h e blade el oment wouf d ttavs were *itplaced Pn a tws-d9merns9anal stream w i t h an - i den t i ca l r e la t iveve loc i t y ,

    4) Lhat t h e t r a i l 3 ~ gor tex system i s ne l:eo ida l w i th constan t p i chand diameter, ex tend ing in f in i te ly fa r downs t ream o f th e blade, andmavf ng wS t h a cons tan t ve l oc i t y determined a t t he r o t o r (semi-r i i dwake), and

    5) t h a t the hub bas n@e f f e c t on th e rotor Flow.Unl ike sther vor tex t ! ieor iss & , g o , Golds te in 6101 and Theodorson 6113

    theor ies, t h e present method of a na lys f s , wh4eR WP 11 b% termed th e he1 calvor tex method, does not r e s t s f s t t h e e i r c u l a t i a n along t h e b la de t o t h a t s fan optimum dl'str'e'butfon co r ~espond ig t o a r i g i d he1 ca l vo r tex system movingbackward from the blade w i t h con stan t ve loc ity, However, l lee other vor texmethods, th e cur ven t ~ e t h s d oes assume t h a t sl ipstream expansion i s s fsecondary impotatance and thus may be neglected. S1i stream expansi on 5 s duet o the gradual decrease o f ax ia l v e l oc i t y beh%nd be r o to r \ v l~ ieh s caused byt h e decrease r"as pressure benind the ro tor . The decrease i n a i r p ressurebehind a w5nd turb ain e and th e Sncrease i n aPr pressure Immediately i n f r o n ts f r o t o r i s a d i r e c t r e a c t i o n o f t h e a x i a l force on the wind t u r b i n e , Ltshould be noted t h a t th e fi r s t , second and thS rd assumptions i n the preceding1Sst of assurnpljons a r e i d e n t i c a l t o those used i n G olds tein and Fheodersqntheor ies. Further, no hub . i s permissJb9e i n e ?t he r 05: these thear iss; a1 3i l e g r a t f s n s must begin a t t h e o rb i g i n and no t a t t he hub radjus.

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    17/89

    The physsica'9 avrangemen'c o f t h e problein a t hand i s -i l l tnst ratsd i n F i9.2-2. Tho cssrd' inate systems f o r t h e a~ a l ys ' i a re shown *in Fig. 2-2. The@av*tes*ian oosd-i t~atos , Y, and Z a r e f i x e d i3 a space and were chosen suchel la t the It-Y axes form a p la n e o f r o t a t i o n and t he Z-axis i s t i ~ s x?"% fr o t a t ion. Moreover, t h e Z coordinate i s t he d i s tance measured From th e r o t o rt o a segment o f t r a i l n g v o r te x p ara 1 s 1 t o t h e a x i s o f r o t a t i o n o f t he ro to r .The second coordinate system used i s a c y l n d r i c a l c oo rd in a te system (r*, ssz )which i s f i x e d t o th e r o ta t i ng blade. The r - a x i s i s d i r ec ted a long t he b ladespan, the 0-axis measures the azimuthal angle measured f r o m th e kt11 blad e andt h e z - ax i s i s t h e a x j s o f r o t at i on . To f a c i l t a t e t h e a n al ys is , t h e $ la d ewhose induced v e l oc i t y i s t o be calculated, i s assumed t o be cor'nc4dent withth e x - a x J s as shown I n Fig. 2-2.2.4 Ca lcu la t i on s f Induced Ve lo c i t y

    As has been mentioned, i t s assumed th a t the vor tex P i ament L raJ I lngf rom a b l ade e lement extends i n f i n i t e l y f a r downstream o f t h e rotor .Assec .ia ted w i th t h i s vor tex i s a v e l o c i t y field, commonly re fe rr ed t o as t k ei duced vel ec1 y. Th i s ve l oc i y f i e l d can be s a l cul ated f rom th e Biot -Sa var tlw 31.e., equat ion (2 -1). Th is law i s s ta te d i n vec tor d i f fe re n t ia l fo rma s

    +I n t h i s equat ion, dwj i s th e d f f fe re n t i a l ve1ocit;y induced a t a p o f n t r ' on3th e b lade due t o a segment, do , s f t h e t r a t l n g v o rt ex f i l am e n t w hich had

    d rcsrl'ginated a t a p o i n t r on t h e k t h blade, Also dl?, o r -dr, i s the change i nd r

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    18/89

    Fig. 2 4 Physical model of the problem

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    19/89

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    20/89

    @Prsur'Bat'ionbetween t h e points r and r -1- dr along t h o blade, w91-ieb-r s aqua1t o thc cjrcul a l i on o f ttae t r a i l Jng vor tex f ram the b l ad s element dr.

    " +Vectors s , , nd tlae d iQfarent i 1 vortex f.i 1anent 3 ength , n, a r estlawn J I I Fig. 2-2, and may be expressed as

    I n tiaesa expressions 0 9 s t h e azimuthal angul ar var iable o f th e he1 i x measuredfrom the I:th blade and f s t h e p i t c h o f the helix. B o t h a r e shown i n Fig.2 t e t t j n g h = r tan$ f o r sfmp lie i ty and not ing th at @ i s r e la te d t o th ei n f l o w ve loc i ty U and t h e r o t a t i o n a l veloci ty s f ro tor , Q, by

    i t follaws t h a t

    Thus, equations (2-5) an d (2-6) may be wri t ten

    Using these equations, t he cross product in the numerator o f equation (2-3)

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    21/89

    can be evaluated as follows

    A 1so,

    +L e t t i n g A = I f - I for simp1 icity, no t i ng that d r j can be expressed interms s f 4 ts components as

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    22/89

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    23/89

    Fig. 2-3 V2ba2Bty diagram sho~vlargnduced ve i~c i ty nd its components

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    24/89

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    25/89

    Lr2 rr' cos(o + o k ) ] u 8 + h Lr cos(o + ok) +dwn =-5i I:-1 A3(1 ,112)?/2I f the coning angle Y , shown in Fig. 2-4, is taken J n t s account, t h ecomponants o f t h e indanced velocity may be expressed as

    d r 00z7 dr [rz - rr' cos(0 + e,)] u' + h [ r cos(0 + ~ 1 ~ )dwn =-l ~ b = 6 6Y A3(1+ v ' 2 ) 1 / P

    re sin(0 + 0 k ) - r ' ]d0

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    26/89

    Fig. 2-4 Effect of coning angle onMade element forces

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    27/89

    Nsn-d~imensfsnalCzit ig he $*!stanceparamstsrs by t h e r o t o r r ad iu s R

    and combbi i ng w i th equat i on (2 -19) y i e l ds

    A1 so,

    where Xo, t he speed ra t i o , i s def i ned as

    By ap pl yin g equatfons (2-33) through (2-38) to equatfans (2-31) and (2-32),t h e d i f f e r e n t i a l components of induced ve l oc i t y can be r ew r i t t en as

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    28/89

    Phs t o t a l csmponak~tso f induced vel o e i t i e s can be obtained by i t e g r a t i n gequat ions (2-39) and (2-40) along th e blade span from t h e non-dimcnsSsna1hub radius, QheDb, o t he non-dimsnsional t i p ra diu s, I. Ilowevar, M ~ r i y aproved t h a t wt i s always zero a t any point on t h e blads. I-lence, t h e t o t a lfndueed v e l o c f ty a t p a j n t re o f th e blade due Lo a l l t r a j l ng v o r t i c e so r - i g i na t f ng Prom t h e bl adc i s ,

    E t can bs seen t h a t d i f f i c u l t y a r i s e s when t h e j n t e g r a l i n eq u at io n (2-41) 5savaluated a t the p sOn t 6 = 5 ' when Q ok = 8, In th is case, th e i n t e g r a lbecsriles *if i t s i t e l y l a rge , and because o f t h i s sJ n gu l a r i y , t h e .lurtegral i 11equat ion (2-39) can not be accurately determined i n the ne ighborhood o f t h i spa r t i cu?ar po int . However, t h e probl em can be res o l ved by app ly ing Moviya' sTheory 663 which i s d es cri be d i n th e next section.

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    29/89

    Woriya g43 has developad a simple method for determining thedsv~nwash~ 1 aeOty. Thi s was aecompl ished by in tr od uc in g an a dd it io na lparametea" t o t h ~nalys9s. Tl~ l ' s a c t o r * i s defined as t he r a t i o o f t he fnducedve loc i t y , due t o a he l f ca l vor tex, t o th e induced veloc. i ty , due t o a s t r a i g h tvortex, o f the same strength iae,

    where dwn and dwn1 are i nduced ve loc i t i es c rea ted by he1 cal and st ra ightvo r t l c s s r sspsc tl ve l y . The f ac to r I s app rop r ja te l y termed an i nduc t i onf a c t o r and may be considered t o be a continuous function.

    I nduced ve loc i t y a t p o i n t in ' o f the b lade due t o a he1 cal vor tex sheetemanatf ng from p o i n t r o f t he blade can be obtained from equation (2-39).The ve loc i t y i nduced a t po i n t r ' of th e b lade due t o a s t ra igh t vor tex sheetemanating f rom p o in t r of t h e b lad@ and ex ten din g i f i n i e l y f a r downstreamo f th e $1 ade can be obta ined by app ly ing the B io t -Savar t 1 w. The f o l s w in gapply f o r a s t r a i g h t v o r t e x l i n e

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    30/89

    =I= =>I n theso rslat-ions, G 9.3 tias angle Eaotr5sen t h e vec to r (s - r ' ) and ttx-I=normal t o dq. Introduc.ing equations (2-43), (2-44) nod (2-45) .into equation

    'ii(2-2) ratad .ikat@grattiflgrom 8 o t h e 4nQucad vel oc i y a t t h e p s ist an'2'~f t h e blade due t o a s t r a i g h t vs~tsx One t h a t emanates frsa po4nt r om?h eblade and LraJIs 9nfJnjGely f a r dawnstseam s f t h e b l ade can be expressed as

    I n terms of non-dimens-ional ze d radial d i st a nc e s t h i s e q u a ti on may bew r i t a n

    I f t he b lade I s r o t a t e d by a coning angle I#,equat ion (3-47) becomes

    By csnbtn ing equat ions (2-42) and (2-431, t h e element o f t h e normal 4nducedvelocity due t o a helical vortex sheet orjgJnatSng a t p o i n t r on t h e blademay be written as

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    31/89

    An fnductPon f a c t o r wk4ch * is a f u n e t h n sf 6 , 5 ' and A, only i s d eriv ed ,usPng aquations (2-39) and (2-4-91, s

    I t should be p o i n te d ou t t h a t the i n te gr a l i n t h e above equat ion becomesi n f i n i t e l y l a rg e as % approaches 5 ' and at 0 -- '3k 0. Thus, i t wou ld appeart h a t t h e j n d u c t io n f a c t o r ca n n o t be determined wi th any accuracy f o r a smal lsegment i n t h e neighborhood o f 6 ' . However, s in c e th e i n du c ti o n fa c t o r i s acont inuous func~Son, by v i r t u e o f i t s def - i r i t io i l , -it ecn be apprsximated byi n t e r p o l a t i o n i n the neighborhosd of 6 = E ' , Numerical va lues f o r thei duc t ion Pactor were detsrmi ned by us in g Laguerre-Gaussi an quadratures.D e t a i l s o f t h a t i n t e g r a t i o n may be found i n vo lume I 1 o f t h i s r ep o rt . Havingdets rm8ined he d4s t r i bu t i on o f t he i n duc t i on f ac t o r a l ong t he b lade , t hei nduc ed v e l oc i t y a t any po i n t 6' on th e b lade can be obta ined by i n t e g r a t i n gequat ion (2-49) rom t h e hub t o th e blade t i p , i.e.,

    YhS s i n t e g r a l c an be numer i c a ll y ev a lua ted p r ov i d irig an appro pr iate Punct i onf o r c i r c u l a t i s n s i s 'in hand. Th i s s t ep w i l l be per fo rmed i n t h e nex t twosect.isns.

    2.6 Gsvern4ng Egu ati n Formul a t is nThe govern ing equat ion can be fo rmula ted f rom the fac t t ha t i f t h e b l ad e

    s e c t i o n i s p o s i t i o n e d a t a g e om etric a n gle o f a t ta c k , ag, r e l a t i v e t o t heu n d is t ur b e d in co min g f l u i d v e l o c i t y W ' , t s s e t t i n g r e1a t i ve t o t h e r e s u l t a n t

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    32/89

    vc loc r ' t y U, 'is ng dSmineisbed the downwash angle, Fig (2-5). Thus, t h i ssqeaation may be \we i t tan as

    ag (x e - a j (2-52)where ae i s e f f e c t i v e angle o f a t t a c k a nd ai, t h e induced angle of at tack.The i nduced angle o f a t t ac k may be ob2;a.i ned Prom Ff g. (2 - 5 ) as

    -1 rJn".I = t a n -The f a c t t h a t t h e i nd uc ed velocfty, and therefore t h e induced ang le o f a t tack ,-i ftsel a negative rauint~eraccounts f o r t h e negat ive sei n J n equat ion(2-52). The geomstr ic angle o f at ta ck can be obtained from Fig. (2-5) as

    -1 Aag = Can (-1 - 6E

    where M i s the p i t c h a ng le s f the blade element.The induced angle 04 attack may be expanded i n a power ser ies i n terms

    wn *ns f - nd, since t he va lue o f - "s usua l l y small, t h e series may be\I ' W 't runca ted a f te r one te rm i m e e 3

    Comb-inf rmg equatl'sns (2-51) and (2-551, t h e +induced angle o f a t t a c k at pol'nt

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    33/89

    Fig. :2-5 WePocity diagram ah~wing he effect of induced veiocity

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    34/89

    Oa6ceYe66C-@i+0QJPms(90>*Pi,wPPaGI20Qsaow.%QC0aeaCC0OF--@0%0Lti

    s

    ta

    *=

    3=0w

    a3

    skP1'U

    IhALPVk

    mIswI4

    w

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    35/89

    Now i n t rodue i t i g (2-61) n t o (2-56) y-ields

    From equat ions (2-591, (2-60) and (2-61), and approximat ing the re1a t ivev e l o c i t y y , W, by t h e und is tu rbed ve loc i t y W ' ( i n f i r s t i te r a t io n ) , t hef o l l owf ng equat ion may be w r i t t e n for any point 5 ' a l sng the b lade

    D5 - Chubf b s i nL (ae) 50 1 - chubm-1

    v 0a ~ ~ d n- P S ~ ~ s e do r t h e F i r s t jterats'caw.SEC!al s cquat i on can be regarded as a re1at io n between ae and the unknown circu-l a t i on caaPP-ieients Am. Thus, by s u b s t i u t l ng equat ion (2-63) i n t o equat ion(2-62) Tcsu. aey,and making use o f equation (2-62) f o r a i , a single elrpressiona"sobtniroed vilafch alllows the unknown Am t o ba datern~inad. f.loweverr, i t st ~ o t c?lwl?ysp o s s ib l e t o o b t a i n an expl-iea't equa t ion f o r the see t ion l i f tcac.FF-licden-;; i n terms s f t h e ssc t i o n ang le o f a t t ack 4von two-dimawsionalair-70.21d a t a o I n t h a t event, t h e scs%ut-is~~ust be obtained numerical ly.

    A P f r s t appraximat fon s f t h e %olut*isn o r ae m a y be obtained by assuminga l d near re1a t i on betwee11 section l i t c o e f f icf ent and th e s e e t ion e f f e c t i v eangle o f a t tack ie.,

    CL - aoae + bs

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    36/89

    By introducing GCI "; qux2.lr 2 4nto seqeoaLPon (2-59) and rearrang9ng, t h esec t iona l s.l.'.Tccp vvoe c~s s : ^~ o f a t tack *isTound t o be

    Combf n4ng cquati ons [2-521, (2-54) and (2-65) y i e l d s

    T:JW u~3.i$-Ig ~q~c? ' ; i ~ S 2-61) and (2-62) w i t h equation (2-66) rcsul t s 9 n

    Equation (2-67) Is app l i sd a t M l o ca t i o n s of 5 ' . T h u s , a system of Mequat ions a re abtatned which may be s ol v ed f o r t h e Am. S u b s t i t u t i n g t h e Ami n t o equat ion (2-61) 'and introducing the results into equatlon (2-65),produces an approximate value o f ae a1ong the blade.

    A bet ter approximation than the above l inear form may be obtained by usingtwo-d4mensPonal a i r f o i l da ta and empl oy4ng the f o l l m i ng i t e ra t ion p rocess :1) Use l o ca l ae obtained from equation (2-65) f o r M loca t ions a long the b lade

    t o e al cu ?a t e t h e s e ct i on a l CL f r o m two-dimensional af rfsil data.12 ) C al cu l a t e the 1ocal c i r e u ? a t i o n r : r =- cGICL.2

    3 ) Using equat ion (2-61) and values of r obtained in the second s tep , thePol lowi ng m at ri x eq ua tio n may be e s t a bl i s h ed t h a t can be used t o determine

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    37/89

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    38/89

    The second integral on r-i ht hand sf cRe 0s" equat jon (2-761, s t4 11conta ins th e s f ngu l a r i ty ; however, i t may be given an approximatetreatment as fol lowc,. The * ;nduction Pastor i n equat ion (2-50) i s suinnledover a1I blades. Thus, t h a Pastor may be w r i t t e n

    I - Ip-I ;?+=., (2-72)where t he subs cr ip ts denote th e cor responding klades. ConsJderirig t h ep a r t cul ar case s f twe-b l aded r o t o r , -1 ,e., N=2, and us ing equat ion (2-71))t h e s econd i n t e g r a l i n e q ua t io n (2-70) can be r e w r i t t e n as

    I t should be noted on l y t h a t t he f i r s t i n te g ra l i n th e above con ta ins t h es i n g u l a r f t y , The reason f o r t h i s i s th a t t h e 1 s t b l a de co inc ides wi th theX a x i s and c o n t a i n s t h e p o i n t 6 = 6' and 8 = 01: = 0. Making a change o fv a r i a b l e

    11 = E - E la l l o w s th Ps i n t e g r a l t o b e r e w r i t t e n as

    The in teg ra l now can be expanded as f o l l o w s

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    39/89

    By sxpanding s i n e and cosine tei-i: ": a power ser ies and drspplng terms o fo r d e r n2 and la rg er and no t i ng C,'. 2 6 1 can be approximated as unf ty (*in t h er e g io n o f t h e s f ngul a r i t y the !;>I .Sea%vsrbort appears t o b e stra"rgkt , thus byd e f i n i t i o n (9~1) in t h e fntpi i3~;17Z Tcstsgratisn, i t ca n lac shown t h a t

    5 ' 9 rl - %ub I 5' - Ehubfim) ( s i n (mn)(--1 - &hub 2 - thub 1 - chub 1-6 (2-76)The second integral i n equa9t*isn(2-73) i n wE~i.eh = x can be d i r e c t l ycalc ulat ed, and hence, the induced ang le 0-C' a t tack may be determined,

    2.8 Power, T o q u e and Drag On a Wind Turb ineOnce t h e i e r a t i o n ! successful ly conc luded and the e f f e c t i v e ang le

    o f a t t ac k c a l c u l ated, r o t o r fo rc es and momentums and potvQr can be ca l eu l atedby app ly ! ng the f o l 1owi ng equ ation s

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    40/89

    Equations (2-771, (2-78) and (2-79) can eas i ly be obtained from the geometryof Fig. 2-6 and noting t h a t CL and CB, the section 1i f t and drag toe-FPicl"entsresp&et*ively, re defined as f 9 j

    dl-CL =1 2p~Zcdr

    3. RESULTS AND DISCUSSION--A dl'gital computer program was wrjtten t o perform the analysis of the

    precedfng section. The flow diagram and the algorithm of performing t h ejteratf on procedures described in the previous section and a 1i st of thecomputer programs will be presented in Volume I1 of this report. Resultsfrom several numerical investi g a t i ons usb!ig the program w 11 be presentedfor bo th single and double bladed machi nes. Computed performance da t a willbe compared, where possible, t o existing experimental da t a and t o resultsobtained from the PROP code Tor the same operating conditionso

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    41/89

    Fig. 2-6 Force components on a blade element

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    42/89

    8,1, Dstsbl eaCil a d a t , VACA 23024 A t \-Pot!1 WB nd Teaa9Eslne C n l eul a t onsI n tEaOs s e ~ t i ~ n ,lao power outpt~t f a dduble=b4 aded r o t o r winti t u r b i n e

    w i l l be presented far four p i t c h angles and tw o d 4 f f e ~ e n t otat*isnal speeds.Tho ada p r ~ f fP E? U S O ~ba a11 CQ ' ~ ~ 1t4 on6 9 s ~n NhCA 23024 a*!r f P 1. Sh J spi l r t ' i~ t41k blade se@t!8n was ef1086n baeauso *it1s the blade soet.ion used .int h e e a r l y NASA, 1args, w e ind turbines. PerqtP cnt bl ad c .infsrmat on a'sd* ispl yed t-i Table I. The dimens.iont3 o f t h e $1ado are g ivan %in 4 g. 3-1,and the aerodynamic blada data, 9 . em, t h e 11 f t and drag coef f IcBentcurves, are shown i n Figs. 3-2 and 3-3. These curves ware taken from [12%.Furth er, because port'rons 04 t h e wind t u r b i n e blades may o pe ra te i n t h eon sta l le d eg ion, " whfck occur at b lada angles s f a t tack app~oxPrnately 13' andl arger, %heaJrfof1 data had t o be supplemented wi th ad di t ion al in format ion,Th is high angle o f at tack info rma t ion was taken f rom C a l m HL w i l l be s h w n'8 a te r i n t h f s sec t* ion th a t be t t e r understand ing o f t h i s oper a t i ig regiovr Psu r g e n t l y t ~ ~ a d e df improvements i n performance p r e d i c t i o n are t o be real ized.'Ed: shsuld also be ment ionad that suv*fa~e Q U ~ ~ ~ ~ S Sas been accounted for" JnFigs. 3-2 and 3-3, and th a t t he curves correspond t o a "half rough" (averagebetween rough and smooth cu rve s) values. The Reynolds number i s t h a tc a l c u l a t e d a t t h e wid span s f the blade, hanee, no account o f the Reynoldsnumber var iat ion a long the b lade Js included. Subsequent ev al ua tio ns can,however, s a s i l y account f o r bo th b l ads surface roughness and Reynolds numbereffects sdmply by i n c l ud i n g t h i s data as p a r t o f th e computer inpu t. A t t h epresent t ime, these ef fe ct s were cons4 dered secondary and t h e r e f s re no e f f o r twas expended t o imp1 ement them i n th e computer program.

    C i rcul a t ion d i str4b u t ion a1sng the b la d e must f i r s t be deterwi ied i no r d er t o eal cu l a te w i nd turbine performance. T h i z i vol ves eva l uat f on o f theassumed ser je s f o r th e c i r c u l a t i o n as descr ibed i n t h e previous sect ion.

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    43/89

    A sampla of @6aevar3atJori o f t h S s parametar aga ins t nsn-d*imenseiona9 adius 'isp l olted , in F.1 go 3-4 for the opcrati ng cond i t ions sp~e~ iied.

    Figure 3-5 was constructed i n order t o compare predicted wind turbinepower output t o exSst+ingaxper.imenta1 data. The experimental d a t a was takenProm NASA Mod-0 t e s t r e su l t s described f m 643, 651 and &12]. Predicted pswaroutput values were computed for a b lade f i x e d a t a pitch angle of 0.Experimental outgvt d a t a were obtained for a blade pftch angle of 0" for windspeeds below 13 mph; a t wind speeds larger t h a n 18 mph, the blades werep.itched i n order t o ma4ntajn the ratad power level of the machine.

    I t should be mentioned t h a t t h e pswar output i n Fig. 3-5 i s not rotorpower. Enstead, an em pirjca l re la tion , taken from 653, relat ing the rotorpower t o the a l t e rna to r power has been used. This r e la t i~ n s h l p. e c e u ~ ts ~ rtfae losses in th e power trananiss*ion (gearing, fric tl's n, etc.) and, of course,i s neat appl !cable t o al 1 wind turbins a'nstallatisns. The relat ion is given by

    p~ c2 0.95 (PR - 0.075P~) (3-1 1wherePG = generated electrical porrer, kWPK = power produced by the rotor, kWPE = rated electrical pswer, kW

    From FJg. 3-5, lit can bee seen t h a t i n general there *isexcel le nt agree-mcnt between pr~djcted nd mean values of o u t p u t power. FurEhern~re, hepresent method p red i c t s a "cut-in" wind speed o f 8 mph which agrees very wellw i t h the actual value reported i n &43.

    EJgurs 3-6 was drawn so as t o compare predicted alternator power valuessf the present method to corresponding values found by using the PROP computercode. AS may be seen, four models of the PROP code have been used: t h ePra nd tl model, tile Goldster'n model, th e no-tip-loss model an d th e NASA model.The theoretfeal background for both the Prandtl and Goldstein models i s

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    44/89

    T a b l e 2 O p a ~ a t i n gCondit ion s f t h e Ut98 t y Pole

    I Bl ade Geometry---ercent Root Cut-But

    I ---Blade Radiuss ft.Coning Angle, Deg.

    _Sol j d f t y- - - p l y

    Th f ckness t o Chord h t f o- 7 p - W

    IA?rf0.i NACA 230-24

    PJtsh Angle, Deg* I - 1 , 0 , + 1 , + 3I

    M rfof 1 SurfaceOpera%$g, RPM.LIBI.- ---Blade 7w-ist

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    45/89

    Fig. 3-1 Chord distribution along th e blade

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    46/89

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    47/89

    Fig. 3-3 SECTION DRAG CBEFFTCIENT US . SECTION RNGLE OF ATTACK

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    48/89

    WPWDwEtwrav @.B68TI? SPEED

    - - -Fig. 3-4 CfRCULATXON DISTRIBU"l'0N ALONG THE BLADE

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    49/89

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    50/89

    bdacelle Wind S p e e d h p h jpig. 3-6 Alternator Power V.S. Wind Speed ;Zero Pitch Angle

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    51/89

    b r i e f y treated in Appendix A; the no49 p-loss rradel i s s el T descsipti ve as i tdoas not account for any blade end effects; the NASA model exploits thesimp1 9city o f the no-tip-loss model by accounting for blado end effects solelyby a reduclfsn (3%) o f t h e blade radius -- t h i s met1108 i s als o call ed theeffective radius model.

    Reference t o Fig. 3-6 shows t h a t results determPned by the present methoda r e anywhere from 10 t o 15% higher t h a n those predicted by the PROP code Porwind speeds ranging from 8 t o 28 mph. These results when combined with thoseof Fig. 3-5 reveal that PROP code methods underestinate the power o u t p u t ofwin d turbines in the wind speed range of in te re st : 'qcut-in " t o rated,Comparison o f PROP predictions w i t h expei8irnental d a t a was also performed in

    and $510 I t was found t h a t th e PRQP code methods underpredicted poweroutput: and overpredicted "'cut-in" wind speeds. Cl ~ a r l y ,hese Pi ndings arei n tstal agreement w i t h the current findings.

    When exfsting experimental d a t a For blade pitch angles other than 0" werecompared to predicted results from both current and PROP models, i t was Poundt h a t agreement i s not as good as t h a t displayed -in Fig. 3-5. A t present,questions have been raised as t o the re1 iab il it y of the experimental dataE133. Thus, those comparisons w i 9 9 not be shown* However, i t was be1 ievedt h a t cofi~ parison etween PROP prediction an d currlent method eslculations ford i f f e r en t b la d e pitch angles may be of some value. This comparison i spresented !n the form o f Tables I I , 111 and I V where cornputed power output i nkw i s shown against wind speeds for the five methods of prediction a t bladeangles o f - l o s91' and respec tiv ely . I t must a1 so be noted t h a t the powerva% es presented are ro to r power values i *e ., they have not been corrected byu s f n g equatlon (3-1). Moreover, the d a t a are presented in tabular formbecause of the difficulty in graphing results t h a t are relat ively closetogether over various portions of the wind spectrum.

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    52/89

    Tab l e I I . Rotor Power Vs . W4nd SpeedP i t ch Angle: -1'

    PRANDTMODEL-.Jk&--1.76.3

    1% 832. 361.992.3116.7133.4141.0135.9123.4100.468,728.4-18.0-67. 3-119.2

    -O TI lP-LOSSMQDEtA!kw)-

    150 kw Rated Power33 RPM2 Blades= 3.8"23024 Airfoil

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    53/89

    Table 111. Rotor Psvrer Vs . nd SpeedPitch Angle: +lo

    150 kw Rated Power33 RPM2 Blades$ = 3 . 8 O

    23024 A i r f o i l

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    54/89

    Tab la IV. Rotor Power Vs. Wind SpeedPi tch Angle: 9.3'

    150 kw Rated Power33 RPM2 Blades

    = 3.8'23024 A i r f o i l

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    55/89

    Comparing data contained 4n Tables I I do % V r e v e a l s t h a t ths pred ic tedmaximum power output ificreases as the p i t c h a n g le i s i nc re as ed f ro m -I0 t o4-3'. F igure 3-7 was drawn i n o r d e r t o b e t t e r u nd er st an d t h s distinctionbetween p i tc h angle set t ings . I t can be seen that the largest va lues o f t h ee f f e c t i v e a n g l e sF at tack, ne, occur fo r nega t i ve ly p i t ched w ind tu rb in eblades and tha.t the smal lest a, occurDs a t p o s i t i v e p i c h angles. To o bt a in ani d e a as t o how t h e e f f e c t i v e a n gl e o f a t t a c k i s d i s t r i b u t e d a lo ng t h e b la de ,a s calculated by the present method, ore was p l o t t e d f o r f i v e l o c a t io n s a lo ngthe blade (3/8 span, k/2 span, 5/8 span, 3/4 span and 7/8 span) against windv e l o c i t y i n F ig s. 3-8 t o 3-11, Each f i g u r e co rresponds t o a p a r t t cu la r b ladep i t c h ang le . Re fe rence t o the fou r f i gu res revea ls tha t a t any b lade1ocat ion, a i n e ~ e a s e s s th e wind ve lo c i t y i nc reases and th a t the inc rease i sp r a c t i c a l l y l i n e a r . !4oreover, i t can be seen hy cornparison that at a givenblade I oeation and wind speed, ore decreases as th e p i t c h angle i s changed f rom-1' t o +3". Thus, b lades w i th nega t i ve p i te h angles a re " s ta l l e d " a t lowerw in d v e l o c i t i e s t h a n a r e p o s i t i v e ly p i t c h e d b l ades.

    Un fo r tuna te ly the na tu re s f t h i s s t a l l c o n d i t i o n on r o t a t i n g bla de s i snot we11 u nd er sto od a t p r es en t. I n p a r t i c u l a r,th e e f f e c t s o f t h e c e n t r i f u g a lf o r c e on t he boundary layer near t he t i p o f t h e b lade may, i n fac t , de lay thepresence of s ta l l . It should be n o t e d t h a t t h e s t a l l c o n d i t i o n c o u l d b eavoided, i n th e oper at ing wind speed range o f t he wind turb ine, by appropr i -a t e l y t w i s t i n g t h e b l a d e a l sng i t s span. B l ade tw is t ang les may be found byap pl yin g the computat ional scheme developed i n the preceding section.3.2 S i ngle-51 aded Wind Turb ine Ca lcu la tio ns

    C u r r e n t l y a l a r g e 5MW h o r i z o n t a l a x i s w in d t u r b i n e i s b e in g de sig ne d f o ruse Jn Germany. What makes t h i s w s ~ k o tab le i s th a t the machine has on lyone b l a d e t h a t i s b al an ce d by a la rg e counterwejght on a stubby arm as

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    56/89

    a ) Positive pitch

    6 Negative pitch

    Fig. 3-7 Diagram s51owing the flow and brade angles at a blade elenwit

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    57/89

    F ig * 3-8 PLOT OF SECTION BtbGLE OF CiTTCICK U S* MIND WELQCITV Rt DIFFERENT&O@hf%ONS Q t O KG THE BLADE

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    58/89

    Fig. 4-9 PLOT OF SECTPOW ANGLE OF 6TTACK USo WIND VELOCITY AT DIFFERENTLOCfiTIQNS ALONG THE BthDS

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    59/89

    f i g * 3-30 PLOT OF SECTfON ANGkE OF ATThCK US. WfND VELOCITY AT DIFFERENTLOCATIONS hLBMG THE BLfiDE

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    60/89

    Fig* 3-11 PLOWOF SECTfQN ANGLE OF 8TTCICK US. WIND VELOCITY AT DPFFERENTLQCRTIONS ALONG THE B t UDE

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    61/89

    d e p ic t e d i n F ig. 3-12. It i s be1 eved th a t f o r ve ry l a r ge w ind turb. ines theuse o f a s i n g l e blade reduces ca p i ta l co sts w i thout muck redu ct ion i naarodynamic e f f i c i e n c y .

    To t e s t t h i s premise, th e computer program was used t o compute th eaerodynamfc performance OF a p a r t icu l a r one-bl aded machf ne. I n th e ana lyses,t h e counterweight was taken t o be 2400 l b s and l o c a t e d a t a r a d i a l p o s i t i o n25 f e e t f r o m t he t u r b i n e r o t a t i o n a l axis . The counte rwel'ght and cyl ndr-icalsupport spar are shown i n Fig. 3-13. C a l c u l a ti o n o f c o u nt er we ig h t e f f e c t onthe performance was based on th e assumptions :hat the re i s no c i r c u l a t i s naround th e counterweight o r support spar and th a t t he drag eoeff*ie- ients f o rthese parts a re 1 and 0,s respect ive ly .

    Perfornrance o f a one-bladed and a two-bladed rotor are compared i r r Figs.3-14 and 3-15. It can be seen tha t a t 22 mph bo th machines p r~ du ee h e i rmax*imum power. However, the one-bladed machine produces le ss tha n h a l f asmuch power as t h e two-$1 aded maehine. Furthermore, Fig. 3-15 reveal s th a tt h e Lluo-bladed machine i s also more e f f i c i en t . C lea rl y , ro to r power o f aone-bladed rotor can be increased, as shewn i n Fig. 3-96, by opera t ing a th igher ro ta t i on a l ve loc i t y . Th is , o f cou rse, would be accompl ished a t th ecost o f h igher s ta r t -up o r "cu t - i n " speed.

    I n s p e c t i o n o f Figs. 3-14, 3-15, and 3-16 r e v ea l s t h a t t he y a r e n o ts u f f i c i e n t t o d e c i de whe the r a s i n g l e- b l aded r o t o r w in d t u r b i n e i s p r a c t i c a lor not. The Teas; b i l t y o f t h i s concep t s t r ong ly depends on t h e I ocal annualw ind d f s t r i b u t io n . W i k such w in d s t a t i s t i c a l d ata , l cal annual poweroutput of a one-bladed r o t o r cou ld be estimated. It should be mentfoned thatthe same annual power sf a two-bladed wind turbine may be o b t a i n e d f o r aone-b laded turb ine if i amete r sf t h i s tu rb in e i s approp r ia te l y i nc reased .

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    62/89

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    63/89

    Fig. 8-13 Counter-weight and support spar f o r one bladed rotor

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    64/89

    --Z- TU0 WADES891.D -8- WE PLFlBE UITM NOCOW7ER-WOCHT

    -0- ORE ELRDE U1?#EMBER-UEICHf

    FQ. 2-84 ROTOR BOWER us. UIND VELOCITY eoa A FIXED PSTGWROTOR

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    65/89

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    66/89

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    67/89

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    68/89

    iaCcac0s6

    *.-3mE0PCH#aU*CsL2P(DE=0OF-+cZdCfLQc3c0.fl-aE.wLa0aa

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    69/89

    wc>m2%8asCI.zcYQsCc0E8or-.@bac6mfB---3rQ1*eZ8Q19wrnF3a0LP

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    70/89

    APPENDIX AReview o f Varjsus Methods of Mf nd Turbine Aerael,vnanic Performance

    Ca?cul at ion

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    71/89

    [email protected](3-9c0rm'-L2&c0aCdraELQELa0OFEa2=%

    730fw59-4w6*FwaLC

    mw054aEa90YL5ra.SZe%0M9OF-f*FrCa6'"+fdme0as@wCGPUXaL2-uI1msor&(B.KeQ9-3G3

    8-2rdLPae*2fzmC2a

    anQPa3Q

    w2'3as+'z9raE

    0Em

    YarC

    QY0

    eCv

    NC*m*?5Ca32:l4

    aW

    Zs0"30sc4E3P0>F0b43c0eas60Cwas.PEC5d2OP-ECL0'3.cCI54sEaek

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    72/89

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    73/89

    I f Ap 4s the d$seotillnusus decrease fn the s t a t i c pressure across ther o t o r d t s k , than the ar ia1 f o r ce on r o t o r may be expressed as

    F = AapAn expressl'sn f o r Ap can be obtaqt~bdby apply'ing Bsrnoanll s equatjan l 'nf r o t i t 05: and behind the r o t o r dJsk

    Subtsactisn and rearrangement brings

    Therefore, the a x i a l fo rce on the wind tu rb ine i s

    U n i t i n g t h i s squat9011 with equation QA-1) r e s u lt s i n

    Thus, t h e v e l o c i t y o f f low through the disk i s the arith me t ic average o f theupstrgarn and d~wnstreamvel sci 9es.

    An axia l in te r fe ren ce fac tor, a, i s def ined as the f ra ct i on al change i nt h e freestream ve1ecSty that occurs ahead o f t h e disk, iee ,

    V - Ua s -Hence, th e v e l o c i t y o f f l o w through the d isk may be w r i t t e n

    bB = Vo(9 - a)

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    74/89

    Equatf ng squa t ions (A-2 9 and (A-3 1 and rearranging revea ls t h a t

    And i t may be seen t h a t when the r o to r absorbs a l l t he energy o f the f l o w(V2 = O), t he Sn te r fe rence fac to r w i l l have a value o f 1/2.

    The power absorbed by t he r o t o r i s equal t o the mass Plow ra te t imes thechange i n k f n d t i c energy o f t h e i nc om in g f l u i d , i . e . ,

    Combtn4ng equat! ons (A-2) , (A-4 ) and (A-51, yields

    I t can be seen t h a t f o r a g i ven w ind speed, ro to r s i ze and a i r dens i t y , thepower absorbed depends o n ly on t h e In te rf e re n c e fa ct or . Hence, maxjrnurn power

    dPi s produced when- -- 0. It i s easy t o show t h a t t h i s c o n d i t i o n occurs f o rda1an a x i a l interference v a lu e s f - . Thus, from (A-6)3

    and a power coef f ic ient , def ined as

    has a maximum value o f 0.593.I f t h e r o t a t i o n i mp ar te d t o f l o w i s in clu de d, i n t h e a na ly si s, t h e t o t a l

    reduc t ion J n trans1a t j sn a l k i n e t i c e n e r w o f t h e f l o w i sAK.E . = Power Ext rac ted 9 RotatSon K.E.

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    75/89

    Thcrcfore, in order t o obtain the maximum pswar Prom the stream, 4 t 4snecessary to keep th e rotational kinetic energy as small as possible.Mcareovsr, the oleinent of torque is equal t o th e angular momentum .imparted tot h e blade clement i n untt time. This equation fo r a blade element a t radialdistance r, *if QW 5 5 the rotational velocfty ~f the a ir , can be written as

    dQ = 2n$,~~~ddr (A-9 9An angul ar i nterference facto r 9 s de fined as

    where SJ i s t h e rotational v@loeityof the blade. Introducing equation(A-10) into equation (A-9) y9alds

    dQ = 4 ~ 3 ~ ~8 Qd r (A-8 1

    Usf ng t h i s equation a9ong with the previsf~sheory, a11ows the incrementalaxia l force, torque an d power t o be written respectively as

    I t should be inenti~ned h a t momentum theory provides a goad indicatjon ofthe power coefficient, b u t f a i l s t o furnish the required design d a t a for therotor blades except for the 1imiting case o f an infinite number o f blades.

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    76/89

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    77/89

    Fig. A-2 Force and velocity diagram for blade eiemet theory

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    78/89

    I f the section 1 i f t and drag eaeff icients are known, the axial force andtorque can be determined by i ntegrat ing equations (A-16) and (A-17) a?eng theblade. It should be mentioned t h a t the blade characteristics are those of ana i r f o i l OF the same cro ss- sect i on i n a two-dimensional airflowo

    The unsatisfactory feature of blade element theory i s t h a t i t re1 ies once rta in aSrfoil ch ar ac te ris tic s wh'l'ch vary w i t h aspect ratio an d which dependon the interference between th e adjacent blades of a rotor. Further, thistheory u~4iqgai rfo il data c~rsesponding o a moderate blade aspect ratio, hasbeen found t o properly represent observed behavior of a propeller, b u t f a i l st o p r~ v id e ccurate numerical res ult s [9Q. To improve th e accuracy o f bladeelement theory i t has been suggested, 693, t h a t the resultant velocity of theblade should be estimated i n terms of modified velocities such as those t h a twere determined by the momentum theory. The combined momentum- bl ade el ementtheory equations are similar to those of the Glauert Vortex theory, f161which will be discussed in the fol l owing section.

    111. Gl auert Vortex TheoryGlauert Vortex Theory i s based on the assumption t h a t t r ai l ing

    vortices emanate from the trai l ing edge s f rotating blades and form helicalvortex sheet s th a t pass downstream. The int erf eren ce velo city experienced bythe blades i s calculated as the induced velocity of t h i s vortex system on anyblade element. The ca lcul at io n of these induced velocities i s simplified byassuming t h a t the rotor has an Jn f in ite number of blades. This assumptionremoves the complexity associated w i t h the periodicity of rhe flow andpermits the momentum theory t o be dir ec tl y used t o evaluate the interferencevelocities. Fo r an element of blade shown i n Fig. A-3

    W sin@= V o ( l a)W cosq = n r ( l + a ' )

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    79/89

    Fig. A - 3 Force and velocity diagram for GIlauert vortex theory

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    80/89

    Thus, the speed r a t i o i syo r 1 9 8 '

    XO = - --a R l - awhere a and a' a r e a x i a l and r o t a t i o n a l i n t e r f e r e n c e f a c t o r s r e s p e c ti v e ly .The incrementa l a x i d l fo rc e and torque i n non-dimensiona l form can bewrJtten, usin g equat ions (8-16) and (A-17), as

    where

    and B, s o l i d i t y r a t i o , i s de fi ne d as

    I n o r d e r t o s o l v e e q ua ti on s (A-21) and (A-22), +, and the jn te r fe rence f a c t o r smust f i r s t be determined. As an a i d t o t h i s pr80cess, i t may be assumed thatt h e r e i s an i n f i n i t e number o f b l ad es , thus, momentum theory equations can bed i r e c t l y a pp lie d. Tn add i t i on , i f t h e r o t a t i o n f n the s l i p s tr e a m i s n e g l ec t edt h e f o l l s w i n g r e l a t i o n s h i p is obtafned f r om (A-121, (A-21) and (A-23)

    a ~ L ( C L C Q S ~ CD s i n4). = Llw- *l - a 4 s in2+

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    81/89

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    82/89

    Fig. A-4 Idealized vortex system

    Fig. 64.- 5 Transformation representation

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    83/89

    regular gap S and extending i n f i n - i t e l y t o 'i;he left as s f io~nDn Fig. A-5, "Phag ap S rcpr~ssnts he normal d.istanee, a t th e boundary of th e sJ ipstrsam,bctwsen the successive vor tex sheets and can be wrf t ten as

    whereA =-

    Rsz

    Prandtl showed that if : the rigid vortex system moves downward w i t h aT'velec i ty wa, the mean d~t:nf.sard v ~ l o c J t y n the 1 ins P P a a t a distance b from

    t h e edge o f the 1 ines [ F l g. A-5) becomes

    - 2 -1 -nb/SV =- g CO S (e7T 9LettingF g can be in terpreted as the fra@t%omf veloefty wo which i s imparted t o th ef 1ow o f s e et ion vfl. P m "ce a@orrespondr'ng ropel Per anal egy then F' i sdefined as

    where

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    84/89

    ,34 bus, F ' Ps a rcductlon f a c t o r wh4ck aust be app8 i e d t o the momentum @quationf o r tho flow a t radOus r, 5-issee i t represents t h e f a c t t h a t ofiilly a fbaactlosa,B\ of the f 1 44d between suseess4vc sheets o f t h e sl 9 pstream rccsJves theful l e f fect o f tl~eaa she9ts [93, AppPyJ t ~ g h i s c ~ r r e e t i s n o th e earliesa n a l y s is o f manenturn theory .i e., equations (A -22 ) and (A-13) produces

    Nov cor W n i n g these equations wr'tla those obtajned i n the blade a1ement theory4 e ~ a , equateions (A-16) and (A-17) r e s u l t s i n

    Furthermore, duo t o the radial f l o w near the boundary of t h e slipstreasn,t h e r e Os a d r ~ p f cOreul a t i s n which can be represented by an ecguiivalentrotor with inf.jnPte number o f blades bu t hav ing the same drag. Th isequivalent radius o f tkJs rotor 4s given i n 191 as

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    85/89

    Go'ldstcrin 6101 solved t he problem of potential fhw past a bodyeonsistirag o f a f in i te number of eoaceial he1 ic oid s s f in f i t i i t a I sngth , butf i n i t e r ad ius , moving th rough an inv ise jd f l u i d w f t h cons tan t velocity.Further, the f lu id mot ion is assumed t o be f r r o t a t i o n a l . The rssul t s a r eapp l ied t o th e cas e o f an ideal ai rscrew hav4ng a f i n i t e number of blades anda par l ieu1 ar disLr ibutOon of circ ul at ion al sng the blade fo r smal l va lueso f th rus t . Golds te in 9903 s p ec i f i cz l %yconsidered Getz's optimum condition[18] csrrespondit-rg t o a r igid kelicasid. The e s s e n t i a l result of' Goldsta*in'sc a lc u l a t i s n is th e de terminat ion sf th e s t r en g tk o f t h e he1 ic al vortex systemas a funct ion OP radius. I-? r is t h e c i r eu i a t i s n a ro und 5 c l o s e d c i r c u i tcut t ! ng a Rel icoi d a t radi us r and encl os i ng the p a r t o f t ie sur faee outs idet h a t r ad iu s , then r is equal t o t h e d i s co n t i n u i t y o f t h e v e lo c i t y p o t en t i a l

    dracross t h e he1 ico ida l su r face a t r ad ius r, [9]. A1 so, -- s equal t~ thed rs t r en g th o f t h e vor tex sheet or equal t o the discontinuity i n the r a d i a lcomponent v e lo c i t y ur through the f lu id . The airscrew su rfa ce whl"ch wasconsidered by Goldstein f s def ined as

    0 - Q z / V = O o r , 0 < r < R.. m (8-34)where r, 0 and s a r e cy l tndr ica l coord inates . The a x l s Z i s a1sny the ax$sof ' the airscrev surTace* Usi ng t he fol lowing coordinate t ransformation

    and

    Lap1 ace's equation, namely v2@ = 0, - in cy l indr ical cooimdinatescan be

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    86/89

    In reference [19], i t i s shown t h a t the velocity sf the a i r r e l a t i v e t o freestream velocity betweeti suecessPve sheets at a large distance behJnd therotor 3s normal t o the vortex sheets. NOW, if uZ and ue are th e axial andc rcumferent i a1 esmponents QP ve l oci t y, k e i vectsr ia1 sum CP sse t o thesurface f s equal t o the component velocity of the surface normal to i tself

    where w0 -is th e vel aej y o? the surface and 4 is t he he1 x angle.Noting t h a t

    and usaing t h i s equation together wf th equations (A -35 ) an d (A-361, i t can be

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    87/89

    shown that

    I n a d d it io n t o s a t i s f y i n g equat ion (A-39), must bs a s ing le-va luedf u n c t j o n of p o s i t i o n a nd i t s d e r i v a t i v e m ust vanish when r i s i n f i n i t e .Furthermore, 0 m s t be continuous everywhere except a t the screw surface.Goldste in has solved t h i s prob'lern and the so lu t ion f o r t h e c l 'r c u l a t i o nd i s t r i b u t j o n along t h e b l a d e for any number o f b l a d e s i s g ive n i n

    where I u n c t i o n s are t h e m o d i f ie d Bessel f unc t ions and t h e F f u n c t i o n s a r scomputed from

    The T f u n c t i o n s appear ing i n e q u a l ion (A-41) can be calculated f r om

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    88/89

    so thatT p = 4$(1 - $1 1 (1 + ,12)4 (A-45)~4 = 16,2 t I - 1 4 ~ 2 21.~4 4,6 3 (I + ,217 (A-4 6Goldste in def ined a non-d imensional c i r cu la t f sn fa ct or as

    Th is fac to r was ca lcu la ted and p l o t t e d CIQ].bock [%9% pp l ie d Go1 ds te in ' s soluta'on w i thou t r es t r Je t i on t o ana r b f ts a r y c i r c u l a t f on d i s t r i b u t io n i n o rd er t o o b ta in t h e i n te r fe renceveO sea"t9es i ns te a d o f f s l ming the standard form1a o f t he 61auert Vortextheory [f 61, He showed t h a t the a x i a l and eire um fe ren tia l components o f th ef nter ferenee velocity a t the r o t o r pP ane d i f fe rs f r om those sf GIauer t vor texcos29theory by a f a c t o r -, i f th e he l i x ang le i n bo th cases i s assumed t o beKt he sane. ApplyS ng t h t s fac to r , Lock modi f ied th e G l au ert V ortex method f o rt h e case s f a smal l number o f $1sdes.

  • 8/8/2019 Aerodynamic Analysis of HAWT by Use of Helical Vortex Theory

    89/89

    P. Tiate and S~9blilEo

    Volksma 1 - Tk i a~ t y

    - -O. Ferlomlng Qlf@anfza%nnmoand AddressUniversity o f Tsl edoDept. o f Mechani cal EngineeringToledo, Ohio 43686

    Cleveland, Q h i s 44135.The theoretical development of a method of analysas for predict-ion of the aero-dynmic performance o-f' horizontal axis wing 4 t u ~ b i n e s s presented i n tha"s report.The method i s based on the assumption that a k~eliealvertex emanates Prom eachblade element. Collectively these vortices f vnm a vnrtsx system that extendsinf i n $ e ly far downstream of the blade. We1sclc2ies induced by t h i s vortex systemare found by app ly jng the Biot-Savart law. W c s ~ ~ d t n ~ l y ,his method avoids theuse o f any interference factors which are used i n many of the momentum theories.What's more, the method can be used to predict t h e performance of wind turbineswith a small number of blad es. The wlnd turbine performance o f a two-bladed rotoris determined and compared t o existing experlmantal data and Lo correspondingvalues computed from the widely used PROP code. I t was found th a t the presentmethod compared favorably w i t h experimental data especially for low wind veloci-t i es . The wind turblne perf~rmanceof a single-bladed rotor 3s determined subject