Aero Gas Turbine Design

download Aero Gas Turbine Design

of 182

Transcript of Aero Gas Turbine Design

  • 7/21/2019 Aero Gas Turbine Design

    1/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    1

    Intensive Course on

    Aero Gas Turbine Design(Components & Sub Systems)

    2010 11

    Shri V.SundararajanEx-Director, GTRE

    ENGINE DIVISION, BANGALORE COMPLEX,

    HINDUSTAN AERONAUTICS LIMITED

    BANGALORE 560 093

  • 7/21/2019 Aero Gas Turbine Design

    2/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    2

    INDEX

    Sl.No. Particulars PageNo.

    1 GasTurbineEngineAnOverview 3

    2 Compressor 28

    3 TurboProp&TurboShaftEngines 41

    4 CombustionChambers 46

    5 Turbines 56

    6 ExhaustSystem 64

    7 Afterburning 70

    8 FuelSystem 78

    9 FullAuthorityDigitalEngineControlSystem 86

    10 StartingAndIgnitionSystem 107

    11 PerformanceDeduction&Prediction 113

    12 AltitudeTestingVisVisFlyingTestBedForGasTurbineEngineDevelopment 143

    13 Airframe EngineIntegration 149

    14

    GasTurbine

    Engine

    Manufacturing

    Techniques

    157

    15 PerformanceTestingAndAnalysis 174

    16 ClassificationofCriticalityofAeroEngineComponents 177

  • 7/21/2019 Aero Gas Turbine Design

    3/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    3

    GAS TURBINE ENGINE AN OVERVIEW

    Contents

    PrincipleofJetPropulsion

    ClassificationofGasTurbineEngines

    GasTurbineEnginesPrincipleofOperation

    GasTurbineEnginesComponentsandSubSystems

    EngineTesting

    Gasturbine

    materials

  • 7/21/2019 Aero Gas Turbine Design

    4/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    4

    HISTORYOFGASTURBINES

    Principleof

    Jet

    propulsion

    JetPropulsionisapracticalapplicationofNewtonsIIILawofmotion

    Foreveryforceactingonabodythereisanequalandoppositereaction

    Inthecaseofaircraftpropulsionthebodyisatmosphericairthatiscausedtoaccelerateasitpassesthroughtheengine

    APropulsionsystemisamachinethatproducesthrustorpowertopushanobjectforward

    TheGasortheworkingfluid isacceleratedbytheengineandreactiontothisaccelerationproducesa forceontheengine

    The

    Propulsion

    System

    Propulsion=pro+pellere

    pro:beforeorforwards

    pellere:meaningtodrive.

    Propulsionmeanstopushforwardordriveanobjectforward.

    Apropulsionsystemisamachinethatproducesthrusttopushanobjectforward.Agas,orworkingfluid,isacceleratedbytheengine,andthereactiontothisaccelerationproducesaforceontheengine.

  • 7/21/2019 Aero Gas Turbine Design

    5/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    5

    PurposeofThePropulsionSystem

    TheAirplanepropulsionsystemmustservetwopurposes.

    The thrust from the propulsion systemmust balance the drag of the airplanewhen theairplaneiscruising.

    Thethrustfromthepropulsionsystemmustexceedthedragoftheairplanefortheairplane

    toaccelerate,climbandmaneuver.ThisiscalledasexcessthrustoverdragknownasThrust

    Dragi.e. (TD)

    PurposeoftheJetPropulsion

    During straightand level flight called cruise, theenginemustproduce sufficient thrust tobalancetheaircraftdrag.

    For civil or commercial engines fuel economy or specific fuel consumption is of primeimportancetogetmaximumrangeandendurance.

    Specificfuelconsumptionisdefinedas:fuelflow/thrustoftheengine.

    Forfighteraircraftapplicationshorttakeoff,fastacceleration,fastrateof climbandgoodmaneuverperformanceareofprimeimportanceforwhichadditionalthrustisrequired.

    Excessthrust

    over

    drag

    i.e.

    (Thrust

    Drag

    )is

    used

    for

    climbing

    to

    higher

    altitudes

    or

    for

    accelerating fromonemachnumber toanothermachnumberandalso formaneuver formilitaryaircraft.

    MachNumber isdefined as the ratioof the velocityof theobject to the velocityof thesound.Itisnon dimensionalquantity.

    Thrust toWeight ratio (T/W) is one of the important figures ofmerit for fighter aircraftengines.

    AnadditionalfigureofmeritforaircraftisLift/Dragratioi.e.L/Dratio.

    AircraftCeiling

    The

    absolute

    ceiling

    of

    an

    aircraft

    is

    that

    altitude

    at

    which

    the

    rate

    of

    climb

    is

    zero.

    RateofClimbisdefiedas(ThrustDrag)/WeightxVelocityoftheaircraft:(T D)/WxV

    TheunitofRateofClimbisft/secormeters/sec

    TheaircraftcruisesataltitudesincetheS.F.C.decreaseswithaltitude

    ThemilitaryaircrafthasanincreasedRateofClimbcomparedtotheCivilaircraft

    ForobtainingincreasedRateofClimbafterburnerisemployedinMilitaryaircraft

    TheaircraftgenerallycruisesataRPMslightlylowerthanthemaximumRPMsay95to96%RPMforfuelefficiency

    AircraftControls Pitch,RollandYaw

  • 7/21/2019 Aero Gas Turbine Design

    6/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    6

    AeroGasTurbineEngine Technology

    Forthepast4to5decadestheaerogasturbineenginetechnologyhasgrowntremendouslyintermsofengineoverallpressure,TurbineentrytemperatureandThrust/Weightratio

    TheOverallpressureratiohasgoneupby~9to10times

    Turbine

    entry

    temperature

    (TET)

    has

    doubled

    ThrusttoWeightratiohasincreasedby~2.5times

    ThishasresultedinlesserengineAssembliesandSubassemblies,enginepartcounts,majorreductioninenginelengthanddiameter

    All these Technology improvements have been made possible by improvedAerothermodynamics, Computational Fluid Dynamics techniques, Advancement inmanufacturing and Fabrication technologies, Advanced Control Systems and Advancedmaterials

    ClassificationofGasturbineengine

    Theclassification

    can

    be

    made:

    BasedontheapplicationofGasturbineengine

    BasedonthefluidunderwhichtheGasturbineengineoperates

    PropulsionSystemClassification(Applicationbased)

    AeroEngines(foraircraftsandhelicopters)

    PowerGeneration (100KW 1000MW)

    Marineengines

    IndustrialApplications

    CombatVehicles,

    Automobiles

  • 7/21/2019 Aero Gas Turbine Design

    7/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    7

    PropulsionSystemClassification(Workingfluidbased)

    JetandPropellerEngines(Airbreathingengines)

    Jetenginegivesalargeaccelerationtoasmallweightofair

    Propellerenginegivesasmallaccelerationtoalargeweightofair

    GasTurbineEngines:Turbojet

    Theturbojet,thesimplestandearliesttypeofgasturbine,isusedprincipallyinhighspeedaircraftwhereitsrelativelysmallfrontalareaandhighjetvelocityareadvantageous.Theturbineextractsonlysufficientenergyfromthegasstreamtodrivethecompressor,leavingtheremainingenergytoprovidethethrust.

    ExamplesoftheturbojetaretheRollsRoyceOLYMPUS593intheConcordesupersonicairlinerandtheRollsRoyceVIPERwhichisusedinavarietyofmilitaryaircraft.

  • 7/21/2019 Aero Gas Turbine Design

    8/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    8

    GASTURBINEENGINES:TURBOFAN

    Theturbofanisthemostcommontypeofgasturbineusedforaircraftpropulsiontoday.Partoftheairenteringtheengineiscompressedfullyandpassedintothecombustionchamber,whiletheremainder,compressedtoalesserextent,bypassesthecombustionsection,toprovidecoldthrust.Thisbypassflow

    rejoinsthe

    hot

    flow

    downstream

    of

    the

    turbine,

    as

    in

    the

    AE

    3007

    engine.

    Examplesof the turbofanare theAE3007 in theCessnaCitationXandEmbraerEMB145, theRollsRoyceRB211intheBoeing747,theRollsRoyce535intheBoeing757,theRollsRoyceTAYintheGulfstreamIVandFokker100,theRollsRoyceADOURintheJaguarandHawk,andtheRollsRoyceRB199intheTornado.

    JetEnginewithhighbypassratio

    Bypassratioisdefinedastheratioofthebypassair(cold air)tothecoreair(Gasgeneratorair).

    ThisBypassratioisoftheorderof8to9inTurbofanenginesresultingingoodfuelefficiencynamelyGoodSpecificfuelconsumption(SFC).

    Theseareofunmixedtype

    TwotypesofthrustnamelyColdthrustandHotthrustareproducedandsumofthetwoisthetotalthrust

    Enginesize

    is

    big

    because

    of

    high

    bypass

    ratio

    and

    gives

    lower

    specific

    thrust

    and

    very

    low

    SFC

    SpecificthrustisdefinedasThrustperunitmassflowrate.

    http://me-serv.me.psu.ac.th/extra/allison/product/ae3007/home.htmlhttp://me-serv.me.psu.ac.th/extra/allison/product/ae3007/home.htmlhttp://me-serv.me.psu.ac.th/extra/allison/product/ae3007/home.htmlhttp://me-serv.me.psu.ac.th/extra/allison/product/ae3007/home.html
  • 7/21/2019 Aero Gas Turbine Design

    9/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    9

    TurbofanEngine

    BypassEngine

    Thiscanbeconsideredasaturbofanenginewithlow(small)bypassratiointherangeof0.2to1.

    This is quite suitable for military engines where both high thrust and moderate fuelefficiency(SFC)areofprimeimportance.

    Smallbypassratioresultsinsmallersize,highspecificthrustandmoderatelylowSFC.

    Theseareofmixedtypei.e.boththecoldandthehotstreamsaremixed.

    GE90(Turbofan)Mostpowerfulengineinaviationforthrustproduction

    Thrust :115,300lbs

    SFC :0.25lb/lbt/hr

    Overallpressure

    ratio

    :42:1

    MaximumTurbineinlettemperature :1750K

    Bypassratio :9

    Airmassflow :3,000lb/sec

    Weight :18,260lbs

    Thrusttoweightratio :6.3:1

    Fuelburnduringtakeoff :3,750gallons/hr

    Singlestagefanfollowedby04stageaxialboosterand9stageaxialflowHPcompressor

    2stageaxialturbine

    HighbypassratiodualshaftTurbofan

    GASTURBINEENGINES:TURBOPROP

    The turboprop is a turbojetwith an additional turbinewhich uses the energy remaining in the gasstream,after sufficientenergyhasbeenabsorbed todrive the compressor, todriveapropeller.Theadditionalturbine,calledthepowerturbine,drivesthepropellerthroughashaftandareductiongear.Asmallamountofresidualthrustremainsintheexhaustgasesduringnormaloperation.

    Theturbopropisaveryefficientforrelativelylowspeed,lowaltitudeaircraft,

  • 7/21/2019 Aero Gas Turbine Design

    10/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    10

    Exampleofthe turbopropare theAE2100used in theSAAB2000and IPTNN250, theT56used inavarietyofmilitaryturboprops,theRollsRoyceDART intheBritishAerospace748and theFokkerF27,andtheRollsRoyceTYNEintheTransallC160andDassaultBreguetAtlantic.

    GasTurbineEngines:TurboShaft

    The turbo shaft is effectively a turbopropwithout a propeller, the power turbine in this case beingcoupledtoa reductiongearboxordirectly toanoutputshaft. In thesamewayastheturboprop,thepowerturbineabsorbsasmuchoftheremainingenergyaspossibleandtheresidualthrustisverylow.

    Themostcommonapplicationoftheturboshaftisthehelicopter, inwhichtheenginedrivesboththemainandtailrotors.Turboshaftsarealsowidelyusedfor industrialandmarine installations, includingpowerandpumpingstations,hovercraftandships.

    ExamplesoftheturboshaftaretheT406intheV22Osprey,theT800intheRAH66Comanche,the250used inapproximately75%oftheworld's lighthelicopters,theRollsRoyceGEM intheWestlandLynxandtheRollsRoyceGNOMEintheWestlandSeaKingHelicopters.

    Ramjet

    NoRotatingparts (i.e.no compressor& turbine) and consistsofaductwith adivergententry,combustionchamberandconvergentdivergentnozzleexit.

    Itcannotbestartedunderstaticconditionandairhastobeforcedintotheairintake

    Inotherwordsitisnotselfpropellingatzerovelocity

    To initiatetheoperationtheRamjetmustbeeither launched fromairplane in flightorbegivenaninitialvelocitybysomeauxiliarymeans.

    http://me-serv.me.psu.ac.th/extra/allison/product/ae2100/home.htmlhttp://me-serv.me.psu.ac.th/extra/allison/product/ae2100/home.htmlhttp://me-serv.me.psu.ac.th/extra/allison/product/ae2100/home.htmlhttp://me-serv.me.psu.ac.th/extra/allison/product/t56/home.htmlhttp://me-serv.me.psu.ac.th/extra/allison/product/t406/home.htmlhttp://me-serv.me.psu.ac.th/extra/allison/product/t800/home.htmlhttp://me-serv.me.psu.ac.th/extra/allison/product/250/home.htmlhttp://me-serv.me.psu.ac.th/extra/allison/product/250/home.htmlhttp://me-serv.me.psu.ac.th/extra/allison/product/t800/home.htmlhttp://me-serv.me.psu.ac.th/extra/allison/product/t406/home.htmlhttp://me-serv.me.psu.ac.th/extra/allison/product/t56/home.htmlhttp://me-serv.me.psu.ac.th/extra/allison/product/ae2100/home.html
  • 7/21/2019 Aero Gas Turbine Design

    11/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    11

    RocketEngines(NonAirbreathingEngine)

    DoesnotuseAtmosphericairasworkingfluid

    Producesitsownpropellingfluidbythecombustionofliquidorchemicallydecomposedfuelwithoxygenwhichitcarries,thusenablingittooperateoutsidetheearthsatmosphere.

    Hence

    it

    is

    suitable

    only

    for

    operation

    over

    short

    periods

    GasTurbineEnginesPrincipleofOperation

    GasTurbineEngineoperatesonathermodynamiccycleknownastheBraytoncycle

    Airisdrawnfromatmosphere

    Pressurerise(Compression)takesplaceinthecompressor

    Highpressureairismixedwithfineatomizedfuelsprayandignitedwithhighenergyspark.Combustiontakesplaceatconstantpressure

    Hotgasesarisingoutofcombustion impingeontheturbineandrotate itandhencecalledgasturbine.

    TheTurbine

    drives

    the

    compressor

    and

    Turbine

    compressor

    combination

    becomes

    self

    sustainingafterstart

    SelfsustainingRPMisthatRPMatwhichtheTurbineproducessufficientpowertodrivethecompressor

    Balancepressure energy is converted into velocity in the exhaustnozzle and the rateofchangeofmomentumproducesthe thrustwhich isequal totheMass flowratetimesthechangeinvelocityfromfronttotherearoftheengine.

    Fortakingtheengineuptoselfsustainingspeedanexternalstartingsystemisrequired.

    HowaJetEngineworks?

  • 7/21/2019 Aero Gas Turbine Design

    12/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    12

    During compression the work is done on the air which increases the pressure andtemperatureanddecreasesthevolumeoftheair

    During combustion fuel is added to the compressed air and burnt. This increases thetemperatureand thevolumeofairwhile thepressure remainsalmostconstant since theengineoperatesonaconstantpressurecycle.

    Duringexpansion

    when

    the

    work

    is

    taken

    from

    the

    gas

    stream

    by

    the

    turbine

    to

    drive

    the

    compressor,pressureandtemperaturedecreasewhilethevolumeincreases

    WorkingCycleofGasTurbineEngine

    Similartothatofa4strokepistonengine

    InGasturbineenginecombustionoccursatconstantpressurewhereas inpistonengine itoccursatconstantvolume.

    InBothcasesthecyclecomprisesofInduction,Compression,Combustionandexhaust.

    InPistonenginethecycleisintermittent,pistonbeingconcernedinall4strokes

    In Gas turbine engine the cycle is continuous with a separate compressor, combustor,

    Turbineand

    the

    exhaust

    system

    ComparisonofWorkingCycleofaPistonandTurbojetEngines

    Advantagesofgasturbineoverpistonengines

    TheContinuousCycleandabsenceofreciprocatingpartsgiveasmootherengineandenablemoreenergytobereleasedforagivensize

    Peakpressuresthatoccurinpistonengineareavoided

  • 7/21/2019 Aero Gas Turbine Design

    13/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    13

    GasTurbineengineComponentsandSubsystems

    GasTurbine

    Engine

    Components

    and

    Subsystems

    Thegasturbineenginecanbedividedintovariouscomponentsandsubsystems

    Thesecomponentsandsubsystemsarealsocalledasenginemoduleswhentheengine isbuiltinamodularfashion

    Generally those items which perform some thermodynamic process are called asComponentsandthose itemswhichaidthesecomponentstoperformthethermodynamicarecalledasSubSystems

    Theaboveisonlyagenericclassificationandtheycanbeinterchangedi.e.thesubsystemscanbecalledascomponentsandviceversa

    DefinitionsOf

    Component

    Efficiencies

    Isentropicefficiencyofcompressor:

    = Idealtemperaturerise/ActualTemperaturerise

    Isentropicefficiencyofturbine:

    =Actualtemperaturedrop/Idealtemperaturedrop

    Combustionefficiency:

    =Idealfueltoairratio/Actualfueltoairratio

  • 7/21/2019 Aero Gas Turbine Design

    14/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    14

    FunctionalConceptofSingleandTwinSpoolEngines

    Theolderengineswere single spoolengineshavinga largenumberof compressor stagesresultinginlargeenginelength,operationalcomplexityandincreasedcost

    Since thecompression isanadversepressuregradientprocess itwas felt that theengine

    compressorcan

    be

    split

    into

    low

    and

    high

    pressure

    compressors

    resulting

    in

    two

    spool

    engines

    There are a few three spool engines also mainly from Rolls Royce (RR Trent series ofengines,RB199,RB211engines)

    The advantage of multi spool ( two and three spool) engines is that it increases theoperationalflexibilityoftheaerogasturbineengines

    FunctionalConcept(TwinSpoolEngines)

    Inatwinspoolengine,typically

    Highpressureturbinegeneratespowertodrivehighpressurecompressor

    Lowpressureturbinegeneratespowertodrivelowpressurecompressor

    Thrustisobtainedbyexpandingthegasesthroughtheexhaustnozzle

    TheLowpressurecompressor,LPshaftandLowpressureturbineformstheLPspool

    Thehighpressurecompressor,HPshaftandHighPressureturbineformstheHPspool

    Multispooldesign

  • 7/21/2019 Aero Gas Turbine Design

    15/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    15

    PropulsiveEfficiency

    PropulsiveEfficiency=PropulsivePower/RateofproductionofKineticenergy

    IfVistheentryvelocityandVJistheexitvelocitythenPropulsiveEfficiencycanderivedas

    Propulsiveefficiency=2V/(V+VJ)

    whichcanbesimplifiedas

    2/(1+VJ/V)

    Itcan

    be

    seen

    that

    when

    the

    propulsive

    efficiency

    is

    maximum

    i.e.

    equal

    to

    1,

    the

    propulsive

    thrustiszero.HencetherelationshipbetweenVJandVisacompromisebetweenPropulsivethrustandPropulsiveefficiency

    PropulsiveEfficiency

  • 7/21/2019 Aero Gas Turbine Design

    16/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    16

  • 7/21/2019 Aero Gas Turbine Design

    17/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    17

    Aircraftenginerequirements

    ATypicalCompressor

    ATypicalCompressor

  • 7/21/2019 Aero Gas Turbine Design

    18/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    18

    CompressorDesignRequirements

    Highstageandoverallpressureratio

    Lessnumberofstages

    Highrateofmassflowperunitfrontalarea

    Good

    surge

    margin

    Optimumpressureratiosplitbetweenlowandhighpressurecompressorstages

    Variablegeometry

    Goodefficiency

    Inletdistortiontolerancecapability

    TypicalCombustor

    TypicalCombustor 3Dsectionalview

  • 7/21/2019 Aero Gas Turbine Design

    19/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    19

    CombustorDesignRequirements

    Lowpressureloss

    Highheatreleaserateforagivenvolume

    Goodtemperaturedistributiontopreventlocaloverheatingofturbineblades

    Circumferential

    and

    Radial

    Pattern

    factors

    StableoperationfromidlingtomaxRPMoftheengine

    Goodrelightcharacteristics

    Combustorstabilityathighaltitudes

    Lessnoiseandpollutionlevel

    ATypicalTurbine

    TurbineDesignRequirements

    Highstagepressureratio

    Highstageloading

    Lessnumberofstages

    Minimumnumberofblades

    Highefficiency

    AfterBurning

    Afterburnerisoneofthethrustaugmentationdevices

    InthisprocesstheMomentumthrustisincreased

    Theafterburneroperation increases the thrustof theenginewithout increasing the inletsizeoftheenginei.e.withoutincreasingthemassflowrateoftheengine

  • 7/21/2019 Aero Gas Turbine Design

    20/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    20

    Inthemaincombustoronlyabout30%oftheoxygen intheair isusedandbalanceair isused forcooling thecombustor linerso that thecombustionexit temperature i.e. turbineinlettemperatureisbroughtwithinacceptablelimitskeepingtheturbinematerialinmind

    Thisbalanceoxygen /air canbemixedwith fuelagain (afterburning) in theafterburnercombustionchambertogetadditionalthrust.ThisisalsocalledasReheat.

    Thisadditional

    thrust

    can

    be

    used

    for

    faster

    takeoff,

    climb

    ,acceleration

    and

    maneuvers

    Afterburner combustion efficiency will be poorer compared to main combustor (sinceafterburner operation is at lower pressure levels) and hence less fuel efficient. In otherwords the SFCwithafterburnerwillbequitehigh and this restricts the timedurationofafterburnerusage.

    All military engines employ afterburning for short burst additional thrust application asmentionedabove.

    R&Deffortsareon to increase themaincombustorexit temperature itself toamaximumvalueoftheorderof2100Ksothattheusageofafterburnercanbedispensedwith.

    TypicalAfterburner

    PrincipleofAfterBurning

  • 7/21/2019 Aero Gas Turbine Design

    21/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    21

    AfterburnerDesignRequirements

    Lowpressureloss

    Highthrustboost

    Goodcombustionefficiency

    Good

    Flame

    Stabilisation

    using

    V

    Gutters

    EfficientFuelinjection

    Goodrelightcharacteristics

    Stablereheatoperation

    Reheatstaging

    SelectionofoptimumblockageratioandL/Dratio

    Linerdesigntoallowforthermalexpansion,Antiscreechandtoreducebucklingeffects

    GASTURBINESECTIONALVIEW(AEROENGINE)

    Inlet Guide vanes

    FanGuide vanes

    Fan CasingHP Turbine

    Annular combustor

    IP shaft

    Shaft Coupling

    Turbine Discs

    HP Compressor Discs

    Bleed Air Cooling

    HP Compressor

    LP Turbine

    LP Compressor Blades

    FuelSystem FunctionsoftheFuelsystem

    Toprovidetheenginewithfuelinaformsuitableforcombustion

    To control the flow to the requiredquantitynecessary foreasystarting,accelerationandstablerunningatallengineoperatingconditions

    Theturndownratiobetweenlightupfuelflowandmaximumfuelflowcouldbeabout50

  • 7/21/2019 Aero Gas Turbine Design

    22/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    22

    Inotherwords the fuel control system should cater for awide rangeof fuel flows fromenginelightuptomaximumRPM/Maximumfuelflow

    Fuelisfedtothespraynozzlesoratomizersofthecombustorswhichinjectthefuelintothecombustionchamberintheformofanatomizedspray

    The flow rate must very according to the amount of air passing through the engine to

    maintainthe

    selected

    engine

    speed

    To achieve this the controlling devices are fully automatic with the exception of enginepowerselectionwhichisachievedbyamanualthrottleorpowerlever

    Ashutoffcockisusedtostoptheengine(alsotostarttheengine)

    It is also necessary to have automatic safety controls to prevent the exhaust gastemperature(EGT),compressordeliverypressureandtheengineRPMfromexceedingtheirmaximumlimits

    TheseareintheformofRPMlimiters,EGTlimiter,CompressordeliverypressurelimiterandPressureRatioLimiter(PRL)

    Typical

    Fuel

    Control

    System

    FullAuthorityDigitalEngineControl(FADEC)system

    Overthepast20to25yearsuseofFADECsystemhasbecomeastandardfeature

    FADECsystemhasmajorbenefitsintermsof:

    Engineperformance

    Reducedpilotworkload

    Easeofmaintenance

    Improvedenginehandling

    Improvedfaultdetection

    EvolutionofGasTurbineControls

    Fullauthorityhydromechanicalorpneumaticcontrolregulatingspeed

    Fullauthority analog electronic controls regulating speed and temperature andprovidingsomeBIT

  • 7/21/2019 Aero Gas Turbine Design

    23/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    23

    Hybrid controls (fullauthority hydro mechanical or pneumatic controls with supervisoryanalogordigitalelectroniccontrolsforfinetuning

    Hybridcontrols (fullauthorityanalogordigitalelectroniccontrolwith fullauthorityhydromechanicalbackup)

    SinglechannelFADECs

    Dualchannel

    FADECs

    Diagrammaticarrangementofenginecontrolandinstrumentation

    Startingsystem Necessity

    Two separate systems are required to ensure that a gas turbine engine will startsatisfactorily

    First,provisionmustbemadeforthecompressorandtheturbineassemblytoberotateduptoaspeedatwhichadequateairpasses intothecombustionsystemtomixwiththe fuelfromthefuelspraynozzles

    Secondly,provisionmustbemadeforIgnitionofthefuelairmixtureinthecombustor.

    Duringenginestarting,thetwosystemsmustoperatesimultaneously.

    ThereareoccasionswhentheStartingandIgnitionSystemsmayoperateindependently

  • 7/21/2019 Aero Gas Turbine Design

    24/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    24

    The Starter alone will have to operate when the engine is undergoing motoring runsespeciallyforenginesunderdevelopment.DuringmotoringrunsIgnitionsystemisisolated

    Themotoringrun(withoutignition)consistsofthefollowing:

    Dryrun

    Wetrun

    Duringrun

    the

    engine

    is

    allowed

    to

    to

    rotate

    up

    to

    aparticular

    RPM

    say

    about

    30

    to

    32%

    onlywiththeStarteron(withtheshutoffcockclosed;i.e.theenginethrottleisshut)

    Thisrunisgiventocheckthefreenessoftherotorsandalsotochecktheswingbackoftheengine

    Thewetrunisgiventocheckthelightupfuelflowbeforetheactualpowerrunisgivenwiththeignitionon

    TheIgnitionsystemaloneoperateswhentheenginerelightattemptismadebythepilotataltitudesi.e.windmillstartsoftheengine

    TypesofStarters

    ElectricstarterSectionalview

  • 7/21/2019 Aero Gas Turbine Design

    25/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    25

    IgnitionSystem

    HighEnergyIgnitionsystemisusedforstartingallenginesandadualsystemisalwaysfitted.

    Eachsystemhasanignitionunitconnectedtoitsownigniterplugs.

    TwoPlugsarelocatedindifferentpositionsinthecombustionchamber

    Each

    Ignition

    Unit

    receives

    alow

    voltage

    supply

    from

    the

    aircraft

    electrical

    systems

    The Electrical energy is stored in the unit until a predetermined value the energy isdissipatedasahighvoltage,highamperagedischargeacrosstheigniterplug

    DCIgnitionUnit

    PerformanceTestingandAnalysis Preamble

    Capabilitiesofanaircraftsystemsaredefinedbytheprescribedneedthattheaircraftmustmeet

    Acceptable

    levels

    of

    these

    capabilities

    are

    substantiated,

    demonstrated

    and

    qualified

    Thisisthroughacomprehensivedevelopmentprocessencompassing:

    Design,Testinganddevelopment

    Deployment

    Maintenance&Logisticssupportplans

    Propulsionsystemisoneofthemajorsubsystemsoftheaircraft.

    Normallyenginedesignprecedestheaircraftdesign.

    Thedevelopmentaircraftisnotflownwithadevelopmentengine.

  • 7/21/2019 Aero Gas Turbine Design

    26/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    26

    Normallythedevelopmentaircraft isflownwithaprovenengineandaircraftperformanceandhandlingcapabilitiesareestablished.

    Thenthedevelopmentengineistestedinthedevelopmentaircraft.

    EngineTesting

    Twotypesofenginetestingnamelyproductionenginetestinganddevelopment/prototypeenginetesting

    Productionenginetestinginvolvesonlylimitedmeasurementsandengineacceptance

    Important parameters are RPM, Thrust, Fuel flow, Compressor delivery pressure, Typicalvibration,engineexhausttemperature

    Development/Prototype engine testing involves detailed instrumentation and dataprocessing

    About800parameterslikepressures,temperatures,vibration,strainsignals,coolingflows,secondaryflowsetcaremeasured.

    Engine testing is conducted in a test cell fully equipped to measure all the desired

    parameters.

    New facilitieshavebeenbuilt tosimulateconditionsencounteredathighMACHnumbersandhighaltitudesintheflightspectrum.

    Engineperformanceisgenerallydefinedintermsofthrust,fuelflowandairmassflow.

    Gasturbineengineperformanceisconsiderablyinfluencedbychangesinambientpressureandtemperature

    Increaseininletpressureisadvantageoustotheenginewhileincreaseininlettemperatureisdisadvantageoustotheengine.

    In order to compare the performance of the engine on different dates and at differentplacesitisnecessarytocorrecttheperformanceofagivenenginetostandarddaycondition

    knownas

    International

    Standard

    Atmosphere

    Sea

    Level

    Static

    Conditions(ISA

    SLS

    ).

    ThisCorrectionisessentialforcomparingtheperformanceofdifferentengines

    Inorder to correct theengineperformance to ISASLSconditions thereare two importantcorrection factors known as Pressure correction factor delta and temperature correctionfactorknownastheta

    Delta=AmbientPressure(absolute)underenginetest/ISASLSreferencepressure

    Theta=AmbienttemperatureinKelvin/ISASLSreferencepressurenamely288K

    The testperformanceof the engine is corrected to ISA SLS conditions and the engine isacceptedbasedonthecorrectedperformance;thisiscarriedoutforallproductionengines

    ISASLScorrectionhastobecarriedoutfordevelopmentenginesalso

  • 7/21/2019 Aero Gas Turbine Design

    27/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    27

    EngineDevelopmentProcess Anoverview

    GasTurbineMaterials

  • 7/21/2019 Aero Gas Turbine Design

    28/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    28

    AdvantagesandDisadvantagesofGasTurbines

    AdditionalReferences

    TheJetEngine RollsRoyceplc

    Aircraft

    Gas

    Turbine

    Engine

    Technology

    by

    Irwin

    E.

    Treager

  • 7/21/2019 Aero Gas Turbine Design

    29/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    29

    COMPRESSOR

    CONTENTS

    Typesofcompressors.

    Advantagesanddisadvantagesofdifferenttypesofcompressors.

    Application.

    Principleofoperation(centrifugalandaxialtypes).

    Flowcontrolandsurgephenomenon.

    DesignconsiderationsandTradeoff

    Balancing

  • 7/21/2019 Aero Gas Turbine Design

    30/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    30

    Reviewofbasicprinciples

    System:Afixedidentitywithanarbitrarycollectionofmatterisknownasasystem

    Boundary: The boundary is an imaginary surface which separates the system from itssurroundings

    Surroundingsare

    those

    which

    are

    outside

    the

    system

    Systemcanbeclassifiedaseitheranopensystemoraclosedsystem

    Opensystem:Whenthereisacontinuousflowofmatteritiscalledanopensystem.Suchasystem isusuallydepictedbyacontrolvolume. Ithasa fixed spacebutdoesnot containfixedmassofmatter;insteadthereiscontinuousflowofmassthroughit.Thepropertiesofmatter occupying the control volume can vary with time. The surface which encloses acontrolvolumeiscalledcontrolsurface.

    Closedsystem:Whenthere isa fixedquantityofmatter (fluidorgas), it iscalledaclosedsystem.However,aclosedsystemcaninteractwithitssurroundingsthroughworkandheattransfer.Theboundariesofaclosedsystemcontainingthefixedmassofmattercanchange.

    State:Condition

    of

    asystem,

    defined

    by

    its

    properties,

    is

    known

    as

    the

    state

    of

    asystem.

    Process:Achangeoraseriesofchangesinthestateofasystemisknownasaprocess.

    Pressure: It is the force per unit area, that is pressure at a point surrounded by aninfinitesimal area. Pressure is usually designated by Pascal I SI units. It may also beexpressedinN/m2orbar.

    Density:Thedensityofamediumismassofthematter(gas)perunitvolume.

    Temperature: When two systems are in contact with each other and are in thermalequilibrium, the property common to both the systems having the same value is calledtemperature.Thustemperatureisameasureofthethermalpotentialofasystem

    COMPRESSORS

    Compressioniseffectedbyoneortwotypesofcompressors.

    One gives centrifugal flowand theotheraxial flow knownas centrifugal compressorandaxialcompressorrespectively.

    Bothtypesaredrivenbytheengineturbine.

    Compressorisdirectlycoupledtotheturbineshaft.

    In thecompressorwork isdoneon theairwhich increases thepressureand temperatureanddecreasesthevolumeoftheair.

    Centrifugalcompressoremploysan impellertoacceleratetheairandadiffusertoprovidetherequiredpressurerise.

    Theaxial

    compressor

    is

    amulti

    stage

    unit

    employing

    alternate

    rows

    of

    rotating

    (rotor)

    blades and stationary (stator) vanes to accelerate and diffuse the air until the requiredpressureriseisobtained.

    Insomesmallengineapplicationsanaxialcompressorisusedtoboosttheinletpressuretothecentrifugalcompressor.

    ADVANTAGES AND DISADVANTAGES OF CENTRIFUGAL AND AXIAL

    COMPRESSORS

    Centrifugalcompressorisusuallymorerobustthantheaxialcompressorandisalsoeasiertomanufacture.

  • 7/21/2019 Aero Gas Turbine Design

    31/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    31

    Axialcompressorhoweverconsumesfarmoreairthanacentrifugalcompressorofthesamefrontalarea.

    Axial compressor can be designed to attain much higher pressure ratio compared tocentrifugalcompressor.

    Axial compressorwillgivemore thrust for the same frontalarea. Inotherworlds specific

    thrust(thrust

    per

    unit

    frontal

    area)

    will

    be

    much

    higher

    in

    the

    case

    of

    axial

    compressor.

    COMPRESSORAPPLICATION

    Because of the ability to increase the pressure ratio by addition of extra stages, axialcompressorsareemployedinmostoftheengineapplications.

    The trend to high pressure ratiowhich has favored the addition of axial compressors isbecauseoftheimprovedefficiencythatresultswhichinturnleadstoimprovedspecificfuelconsumptionforagiventhrust.

    Howevercentrifugalcompressorisstillfavoredforsmallerengineswhereitssimplicityandruggednessoutweighanyotherdisadvantages.

    Specificfuelconsumptionandpressureratio

    CENTRIFUGALCOMPRESSOR(PRINCIPLEOFOPERATION)

    TheCentrifugalCompressorconsistsessentiallyofastationarycasingcontainingarotatingimpellerwhichimpartsahighvelocitytotheairandanumberoffixeddivergingpassagesinwhichtheairisdeceleratedwithaconsequentriseinstaticpressure.

    Thelatterprocessisoneofdiffusion(increaseinpressure)andconsequentlythepartofthecompressorcontainingthedivergingpassagesisknownasdiffuser.

    Impeller is rotated athigh speedby the turbineandair is continuously induced into thecenteroftheimpeller.

    Centrifugalactioncausestoflowradiallyoutwardsalongwiththevanestotheimpellertipthusacceleratingtheairandalsocausingariseinpressuretooccur.

    Atanypointintheflowofairthroughtheimpeller,thecentripetalaccelerationisobtainedbyapressurehead,sothatthestaticpressureoftheairincreasesfromtheeyetothetipoftheimpeller.

    Airleavingthe impellerpasses intothediffusersectionwherethepassagesformdivergentnozzlesthatconvertmostofthekineticenergyintopressureenergy.

    Theremainderofthepressureriseisobtainedinthediffuser,wherethehighvelocityoftheairleavingtheimpellertipisreducedtosomewhereintheregionofthevelocitywithwhichtheairenterstheimpellereye

    Thenormalpracticeistodesignthecompressorsothathalfthepressureriseoccursintheimpellerandtheotherhalfinthediffuser

  • 7/21/2019 Aero Gas Turbine Design

    32/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    32

    Inordertomaximizetheairflowandpressureratiothecentrifugalcompressorrequirestoberotatedathighspeedandhencetheimpellersaredesignedtooperateattipspeedsupto1,600ft.persecondandthecorrespondingRPMcouldrangefrom60,000to1,00,000plus.

    Byoperatingatsuchhightipspeeds/RPMstheairvelocityfromtheimpellerisincreasedso

    that

    greater

    energy

    is

    available

    for

    conversion

    to

    pressure.

    Inordertomaintaintheefficiencyofthecompressor,itisnecessarytopreventexcessiveairleakagebetweentheimpellerandthecasing.

    Thisisachievedbykeepingtheclearancesassmallaspossible.

    ConstructionFeatures(CentrifugalCompressor)

    Theconstructionofthecentrifugalcompressorcentresaroundtheimpeller,diffuserandairintakesystem.

    The impeller shaft rotates inballand rollerbearingsand iseithercommon to the turbineshaftorsplitinthecentreandconnectedbyacoupling,whichisusuallydesignedforeaseof

    detachment.

    Theimpellerconsistsofaforgeddiscwithintegral,radiallydisposedvanesononeorbothsidesformingconvergentpassagesinconjunctionwiththecompressorcasing.

    Inorder toease theair fromaxial flow in theentryducton to the rotating impeller, thevanesarecurvedinthedirectionofrotation.

    Thecurvedsectionsmaybe integralwith the radialvanesor formedseparately foreasierandmoreaccuratemanufacture.

    Diffuser:

    The diffuser assemblymay be an integral part of the compressor casing or a separatelyattachedassembly.

    Ineachcaseitconsistsofanumberofvanesformedtangentialtotheimpeller.

    The vane passages aredivergent to convert kinetic energy intopressure energy and theinner edges of the vanes are in line with the direction of the resultant flow from theimpeller.

    Theclearancebetweenthe impellerandthediffuser isan importantfactor,astoosmallaclearance will set up aerodynamic buffeting impulses that could be transferred to theimpellerandcreateanunsteadyflowandassociatedvibration.

  • 7/21/2019 Aero Gas Turbine Design

    33/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    33

    Atypicalcentrifugalcompressor

    Typicalimpellersforcentrifugalcompressors

    AirflowatentrytodiffuserCentrifugalcompressor

  • 7/21/2019 Aero Gas Turbine Design

    34/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    34

    AXIALFLOWCOMPRESSOR(PRINCIPLEOFOPERATION)

    Inaxialflowcompressor,astageconsistsofarowofrotatingblades(rotor)followedbyarowofstator(stationary)vanes.

    Rotor is turnedathigh speedby the turbine so thatair is continuously induced into thecompressorwhichisthenacceleratedbytherotatingbladesandsweptrearwardsontotheadjacent

    row

    of

    stator

    vanes.

    Pressureriseresultsfromtheenergyimpartedtotheairintherotorwhichincreasestheairvelocity.

    Theairisthendecelerated(diffused)inthefollowingstatorpassageandthekineticenergytranslatedintopressure.

    Theprocess is repeated inasmany stagesasarenecessary to yield the requiredoverallpressureratio.

    Inthecompressionprocesstheflow isalwayssubjecttoanadversepressuregradientandthehigherthepressureratiothemoredifficultbecomesthedesignofthecompressor.

    Theprocessconsistsofaseriesofdiffusionbothintherotorandstatorbladepassages.

    Asingle

    spool

    compressor

    consists

    of

    one

    rotor

    assembly

    and

    stators

    with

    as

    many

    stages

    as

    necessary toachieve thedesiredpressure ratioandall theairflow from the intakepassesthroughthecompressor.

    Multispoolcompressorconsistsoftwoormoreassemblies,eachdrivenbyitsownturbineat an optimum speed to achieve higher pressure ratios and to give better operatingflexibility.

    Atwinspoolcompressor ismoresuitable forabypasstypeenginethanapurejetenginewherethefrontorlowpressurecompressorisdesignedtohandlealargerairflowthanthehighpressurecompressor.

    Onlyapercentageoftheairfromthelowpressurecompressorpassesintothehighpressure

    compressor,

    the

    reminder

    of

    the

    air,

    the

    by

    pass

    flow

    is

    ducted

    around

    the

    high

    pressure

    compressor.

    Both flowsmix in theexhaust system (lowbypass ratioengines)beforepassing into thepropellingnozzle.

    Thisarrangementmatches thevelocityof thejetnearer to theoptimum requirementsoftheaircraftandresultsinhigherpropulsiveefficiencyandhencelowerfuelconsumption.

    Forthisreason,thepurejetenginewherethebypassratio iszero isnowobsolete forallaircraftbutforthehighestspeedaircraft.

    ConstructionFeaturesAxialCompressor

    The

    construction

    of

    the

    compressor

    centers

    around

    the

    rotor

    assembly

    and

    casings.

    Therotorshaftissupportedinballandrollerbearingsandcoupledtotheturbineshaftinamannerthatallowsforanyslightvariationofalignment.

    Incompressordesigns the rotational speeds is such thatadisc is required to support thecentrifugalbladeload.

    Where a number of discs are fitted onto one shaft they may be coupled and securedtogetherbyamechanicalfixingbutgenerallythediscsareassembledandweldedtogether,closetotheirperiphery,thusforminganintegraldrum.

    Therotorbladesareofairfoilsectionandusuallydesignedtogiveapressuregradientalongtheirlengthtoensurethattheairmaintainsareasonablyuniformaxialvelocity.

  • 7/21/2019 Aero Gas Turbine Design

    35/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    35

    Thehigherpressuretowardsthetipbalancesoutthecentrifugalactionoftherotorontheairstream.Inordertoobtainthisitisnecessarytotwistthebladefromroottotiptogivethecorrectangleateachpoint.

    Thestatorvanesareagainofairfoilsectionandaresecuredintothecompressororintothestatorvaneretainingringswhicharethemselvessecuredtothecasing.

    Thevanes

    are

    often

    assembled

    in

    segments

    in

    the

    front

    stages

    and

    may

    be

    shrouded

    at

    their

    innerendstominimizethevibrationaleffectofflowvariationsonthelongervanes.

    Itisalsonecessarytolockthestatorvanesinsuchamannerthattheywillnotrotatearoundthecasing.

    Methodofsecuringbladestodisc

    Atypicalrotorbladeshowingtwistedcontour

  • 7/21/2019 Aero Gas Turbine Design

    36/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    36

    Methodsofsecuringvanestocompressorcasing

    Singlespool

    compressor

    Twinspoolcompressor

  • 7/21/2019 Aero Gas Turbine Design

    37/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    37

    AIRFLOWCONTROL

    Wherehighpressureratiosonasinglespoolisrequired,itbecomesnecessarytointroduceairflowcontrolintothecompressordesign.

    Thismay take the formofvariable inletguidevanes for the first stageplusanumberofstages incorporatingvariablestatorvanes for thesucceedingstagesas thespoolpressureratio

    is

    increased.

    As the compressor speed is reduced from its design value these static vanes areprogressivelyclosed inorder tomaintainanacceptableairanglevalueonto the followingrotorblades.

    Also interstagebleedmaybeprovidedbut itsuse indesign isnowusually limited to theprovisionofextramarginwhile theengine isbeingacceleratedbecauseuseof interstagebleedatsteadyoperatingconditionsisinefficientandwastefuloffuel.

    Typicalvariablestatorvanes

    EffectofVariablegeometryoperationonCompressorCharacteristics

    SURGE

    Surging isassociatedwithasuddendrop indeliverypressureof thecompressorandwithviolentaerodynamicpulsationwhichistransmittedthroughoutthemachine.

    Unstable flow inaxialcompressorscouldbedue totheseparationof flow fromthebladesurfacescalledstalling.

  • 7/21/2019 Aero Gas Turbine Design

    38/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    38

    Unstable flow could also be due to complete breakdown of steady through flow calledsurging.

    SurgeMarginisdefinedas:

    (SurgePressureRatio/OperatingPressureRatio)1x100

    CentrifugalCompressorswillhavemoresurgemarginthantheaxialcompressors.s

    Surgingincompressors

    N3curveoperatingpointA(PA,mdotA)

    PointB(PBmdotB)andPointC(PCmdotC)

    Increasedpressureandreducedmassflowresultinginveslopeindicatingstableoperation

    ForpointsB&C, (abovemdots) thepressuredeveloped by the compressor matches withtheincreaseddeliverypressureinthepipe.

    For points D & E (below mdots) lowerpressures are developed by the compressor.

    Butthe

    pipe

    pressure

    will

    be

    higher

    than

    these;+veslopeindicatingunstableoperation

    EBCSDE is the surge cycle that is repeatedagainandagain

    Surging leads to vibrationof the engine thatcanultimatelyleadtomechanicalfailure

    Compressor operation to the left of S isinjurioustotheengineandshouldbeavoided(+vesloperegion)

    StableoperationofthecompressoristotherightofpointS(vesloperegion)

    DesignConsiderations

    CentrifugalcompressorswereusedinearlyBritishandAmericanfighteraircraftandalsointheoriginalCometairlineswhichwerethefirstgasturbinepoweredcivilaircraft inregularservice.

    Aspowerrequirementsgrew,however,itbecameclearthattheaxialflowcompressorwasmoresuitableforlargerengines.

    Hencetheresultwasthataveryhighproportionofdevelopment fundingwasdivertedtothe axial type, leading to theavailabilityofaxial compressorswithanappreciablyhigherisentropicefficiencythanthatcouldbeachievedbytheircentrifugalcounterparts.

    Later

    it

    became

    clear

    that

    smaller

    gas

    turbines

    would

    have

    to

    use

    centrifugal

    compressors

    andseriousresearchanddevelopmentworkstartedagain.

    Small turboprops, turboshafts andAuxiliary PowerUnits (APUs) havebeenmade in verylargenumbersandhavenearlyallusedcentrifugalcompressors.

    NotableexamplesareP&W,CanadaPT6enginesandHoneywellsmallenginesanda largenumberofAPUs.

    CentrifugalCompressorsarealsousedforhighpressurespoolsinsmallturbofanengines.

    Centrifugal compressorsareprimarilyused for their suitability forhandling small volumeflowswithhighstagepressureratio.

  • 7/21/2019 Aero Gas Turbine Design

    39/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    39

    Other advantages include a shorter length than an equivalent axial compressor, betterresistance to ForeignObjectDamage (FOD), less susceptibility to lossofperformance bybuildupofdepositsonthebladesurfacesandtheabilitytooperateoverawiderrangeofmassflowatahighparticularrotationalspeed

    Bettersurgemarginthanitsaxialcounterpart.

    Centrifugalcompressors

    are

    widely

    used

    on

    natural

    gas

    pipe

    lines,

    directly

    driven

    by

    the

    free

    powerturbineofthepromemover.

    Thesamedesignmethodsareapplicablebutthesemachineswouldnormallyoperateatlowpressureratiosandatveryhighinletpressures.

    Multistagecentrifugalcompressorsmayalsobeusedinhighpressureratioprocessesuptofive stages with intercooling between stages. This will not be suitable for aircraftapplications.

    Thesemayfindapplications inairseparationplantsandthecompressormaybedrivenbysteamturbinesorelectricmotorsviaaspeedincreasinggearboxes

    DesignConsiderations(Centrifugal)

    CentrifugalCompressorsarealsousedforhighpressurespoolsinsmallturbofanengines.

    Centrifugal compressorsareprimarilyused for their suitability forhandling small volumeflowswithhighstagepressureratio.

    Other advantages include a shorter length than an equivalent axial compressor, betterresistance to ForeignObjectDamage (FOD), less susceptibility to lossofperformance bybuildupofdepositsonthebladesurfacesandtheabilitytooperateoverawiderrangeofmassflowatahighparticularrotationalspeed

    Bettersurgemarginthanitsaxialcounterpart.

    Centrifugalcompressorsarewidelyusedonnaturalgaspipelines,directlydrivenbythefreepowerturbineofthepromemover.

    Thesamedesignmethodsareapplicablebutthesemachineswouldnormallyoperateatlowpressureratiosandatveryhighinletpressures.

    Multistagecentrifugalcompressorsmayalsobeusedinhighpressureratioprocessesuptofive stages with intercooling between stages. This will not be suitable for aircraftapplications.

    Thesemay findapplications inairseparationplantsandthecompressormaybedrivenbysteamturbinesorelectricmotorsviaaspeedincreasinggearboxes

    With increase in overall pressure the specific fuel consumption reduces and in aircraftapplicationstheendeavouristogetashighapressureratioaspossible.

    Butthemechanicalcomplexitiesassociatedwithahighnumberofaxialcompressorstages

    mayrestrict

    the

    pressure

    ratio

    to

    about

    40

    with

    amutispool

    compressor.

    Itisdifficulttogethighpressureratiowithacentrifugalcompressor.

    Axialcompressorhasthepotentialforhigherpressureratioandhigherisentropicefficiencythan thecentrifugalcompressor.But thesurgemargin is lesscompared to thecentrifugalcompressor.

    Anothermajoradvantageofanaxialcompressor is thehighmass flow ratepossible foragivenfrontalarea.Inotherwordstheaxialcompressorcanswallowmuchhighermassflowforagivenfrontalareathanitscentrifugalcounterpartofthesamefrontalarea.

    Hencetheaxialcompressorsarebestsuitedfor largecivilengineswhichrequirehighmassflowandhighpressureratio.

  • 7/21/2019 Aero Gas Turbine Design

    40/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    40

    Thesepotentialgainshavenowbeen fullyrealizedasthe resultof intensiveresearch intotheaerodynamicsofaxialcompressors.

    Theaxialflowcompressordominatesthefieldforlargethrust/powerrequirementsandthecentrifugalcompressor isrestrictedtothe lowerendofthethrust/powerspectrumwheretheflowistoosmalltobehandledefficientlybyaxialbalding.

    Inthe

    early

    days

    the

    pressure

    ratio

    of

    the

    axial

    compressor

    was

    5:1

    and

    this

    required

    about

    10stages.

    Over the years the overall pressure ratios have risen dramatically and some turbofanengineshavepressureratiosexceeding40:1.

    Continued aerodynamic developmenthas resulted in a steady increase in stagepressureratiowiththeresultthatthenumberofstagesrequiredforagivenpressureratiohasbeengreatlyreduced.

    As a consequence there has been a reduction in engine weight for a specified level ofperformance,whichisparticularlyimportantforaircraftengines.

    However itshouldbenotedthathighstagepressureratios implyhighMachnumbersandlargedeflectionsinthebladingwhichwouldnotgenerallybejustifiable inan industrialgasturbineenginewhereweightisnotcritical.

    Industrialunitsbuiltonmuchmorerestrictedbudgetthananaircraftenginewillinvariablyusemoreconservativedesigntechniquesresultinginmorestages.

    DesignTradeoff

    LargeCivilengines:TradeoffbetweenverylowSFCandlow/mediumSpecificThrust:

    Axialcompressorswithlargemassflowsandveryhighpressureratios

    Multispool(LPandHP)andlargenumberofstages

    Highbypassratio(resultinginverylowSFCandlow/mediumspecificthrust)

    HighThrust

    Goodsurgemargin

    Longrangeandendurance

    Longlife

    BusinessJets:TradeoffbetweenmoderateSFCandlow/mediumspecificthrust

    Axialcompressors followedbyCentrifugalboostercompressors;Normalconfiguration isaFanstagefollowedbyaxialcompressorandacentrifugalcompressor.Theaxialcompressorprecedes the centrifugal compressor since the mass flow per unit frontal area of axialcompressorishighcomparedtocentrifugalcompressorresultinginhighpressureratiowithmediummassflowwhichischaracteristicofBusinessjets(Smallpassengeraircraft)

    Multispoolconfiguration

    Highbypassratio(resultinginlowSFCandlow/mediumspecificthrust)

    Mediumthrustlevel

    Goodsurgemargin

    Mediumrangeandendurance

    Reasonablelife

    MilitaryEngines:Tradeoffmedium/highSFCandhighspecificthrust

    Axialcompressorswithmedium/highSFCandhighSpecificthrust

    Multispoolwithlargenumberofstages

  • 7/21/2019 Aero Gas Turbine Design

    41/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    41

    Lowbypassratiooftheorderof0.3to0.5resultinginhighspecificthrustandmediumSFC

    Sincethemassflowsarecomparatively lowcomparedtothe largecivilenginesthethrustlevelsarebetweenBusinessjetsandlargecivilengines

    Shortradiusofaction(Twicetherange)

    Shortendurance

    Reasonablelife

    SmallGasTurbineEngine

    Small Gas Turbine Engines invariably employ Centrifugal Compressors with high stagepressureratio

    MainlyintendedforUAVsandGasTurbineStarter(JetFuelStarter)

    Lowmassflows

    MediumSFC

    Mainly straightjets and some small engines will have axial compressor in front of theCentrifugalcompressorandmayalsohavebypassconfigurationforfuelefficiency(LowSFC)

    Shortlife

    BALANCING

    Thebalancingofacompressorrotoror impeller isanextremely importantoperation in itsmanufacturing.

    Inviewofthehighrotationalspeedsandthemassofmaterialsanyunbalancewouldaffecttherotatingassemblybearingsandengineoperation.

    Balancingofthesepartsiseffectedonaspecialbalancingmachine.

  • 7/21/2019 Aero Gas Turbine Design

    42/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    42

    TURBO PROP & TURBO SHAFT ENGINES

  • 7/21/2019 Aero Gas Turbine Design

    43/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    43

    Turbopropengine

    Aswithallgasturbineengines,thebasicpowerproductionintheturbopropisaccomplishedin thegas generatoror coreof theengine,wherea steady streamofairdrawn into theengineinletiscompressedbyaturbocompressor.Thehighpressureairisnextheatedinacombustionchamberbyburninga steady streamofhydrocarbon fuel injected insprayor

    vaporform.

    The

    hot,

    high

    pressure

    air

    is

    then

    expanded

    in

    aturbine

    that

    is

    mounted

    on

    the

    samerotatingshaftasthecompressorandsuppliestheenergytodrivethecompressor.Byvirtueoftheairhavingbeenheatedathigherpressure,there isasurplusofenergy intheturbinethatmaybeextractedinadditionalturbinestagestodriveausefulload,inthiscaseapropeller.

    VariationsinTurbopropengines

    Alargevarietyofdetailedvariationsarepossiblewithinthecore.Thecompressormaybeanaxialflow type,acentrifugal (that is,radialflow) type,oracombinationofstagesofbothtypes(thatis,anaxicentrifugalcompressor).Inmodernmachines,thecompressormaybe

    split

    in

    two

    sections

    (a

    low

    pressure

    unit

    followed

    by

    a

    high

    pressure

    unit),

    each

    driven

    by

    its own turbine through concentric shafting, in order to achieve very high compressionratiosotherwiseimpossibleinasinglespool.

    Hybridenginethatprovidesjetthrustandalsodrivesapropeller.Itissimilartotheturbojetexceptthatanaddedturbine,behindthecombustionchamber,worksthroughashaftandspeedreducing gears to turn a propeller at the front of the engine. Because ofimprovements inturbojetdesign,theturboprop,which is lessefficientathighspeeds, lostmuchofitsimportanceinthe1960s,thoughitisstillusedforrelativelyshortrangeaircraft.

    TypicalDiagram

    ShaftHorsePower

    A turbopropengine isa typeofgas turbineengineused inaircraft.Mostofa turbopropengine'spower isusedtodriveapropeller,andthepropellersusedareverysimilartothepropellers used in piston or reciprocating enginedriven aircraft (with the exception thatturbopropsusuallyuseaconstantvelocitypropeller).

    http://www.answers.com/topic/turbinehttp://www.answers.com/topic/hydrocarbonhttp://www.answers.com/topic/sprayhttp://www.answers.com/topic/compressorhttp://www.answers.com/topic/centrifugalhttp://www.answers.com/topic/spoolhttp://www.answers.com/topic/turbojethttp://www.answers.com/topic/turbinehttp://www.answers.com/topic/gas-turbinehttp://www.answers.com/topic/gas-turbinehttp://www.answers.com/topic/gas-turbinehttp://www.answers.com/topic/gas-turbinehttp://www.answers.com/topic/gas-turbinehttp://www.answers.com/topic/propellerhttp://www.answers.com/topic/pistonhttp://www.answers.com/topic/reciprocating-enginehttp://www.answers.com/topic/reciprocating-enginehttp://www.answers.com/topic/reciprocating-enginehttp://www.answers.com/topic/reciprocating-enginehttp://www.answers.com/topic/pistonhttp://www.answers.com/topic/propellerhttp://www.answers.com/topic/gas-turbinehttp://www.answers.com/topic/turbinehttp://www.answers.com/topic/turbojethttp://www.answers.com/library/Britannica%20Concise%20Encyclopedia-cid-2241919http://www.answers.com/topic/spoolhttp://www.answers.com/topic/centrifugalhttp://www.answers.com/topic/compressorhttp://www.answers.com/topic/sprayhttp://www.answers.com/topic/hydrocarbonhttp://www.answers.com/topic/turbine
  • 7/21/2019 Aero Gas Turbine Design

    44/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    44

    Applications

    A turboprop engine is similar to a turbojet, but has additional stages in the turbine torecovermorepowerfromtheenginetoturnthepropeller.Turbopropenginesaregenerallyusedon smallor slow subsonicaircraft,but someaircraftoutfittedwith turbopropshavecruisingspeedsinexcessof500km(926km/h,575mph).

    TypicalComponents

    Initssimplestform,aturbopropconsistsofanintake,compressor,combustor,turbineandapropellingnozzle.Airisdrawnintotheintakeandcompressedbythecompressor.Fuelisthen added to the compressed air in the combustor. The hot combustion gases expandthrough the turbine. Part of the power generated by the turbine is used to drive thecompressor. The rest goes through the reduction gearing to the propeller. Furtherexpansion of the gases occurs in the propelling nozzle, where the gases exhaust toatmosphericpressure. Thepropellingnozzleprovides a relatively smallproportionof thethrustgeneratedbyaturboprop,theremaindercomesfromtheconversionofshaftpowertothrustinthepropeller.

    Businessjets

    Turboprops are very efficient atmodest flight speeds (below 450mph), because thejetvelocityofthepropeller(andexhaust) isrelatively low.Duetothehighpriceofturbopropengines, theyaremostlyusedwherehighperformance ShortTakeoffandLanding (STOL)capabilityandefficiencyatmodest flight speeds is required. Inacivilianaviationcontext,themostcommonapplicationofturbopropenginesaresmallcommuteraircraft.

    Technologicalaspects

    Inaturbopropmuchofthejetthrustissacrificedinfavorofshaftpower,whichisobtained

    byextracting

    additional

    power

    (to

    that

    necessary

    to

    drive

    the

    compressor)

    from

    the

    turbine

    expansionprocess.Whilethepowerturbinemaybeintegralwiththegasgeneratorsection,many turboprops today feature a Free Power Turbine, on a separate coaxial shaft. Thisenables the propeller to rotate freely, independent of compressor speed. Owing to theadditionalexpansion in the turbinesystem, the residualenergy in theexhaustjet is fairlylow.Consequently, theexhaustjetproduces (typically) less than10%of the total thrust,includingthatfromthepropeller.

    Turbopropengine

    Theactualpercentageofthrustwillvarywithahostoffactorssuchasspeed,altitude,andtemperature.

    The turbopropwilldelivermore thrust,up tomediumspeeds, thaneither the turbojetorturbofan.

    Also,astheturbopropclimbstohigheraltitudes,themassofairbeingacceleratedbythepropellerdecreasesduetothedecreaseinairdensity.

    Components

    PropellerAssembly

    Majorityofthrust(90%)isaresultofthelargemassbeingacceleratedbythepropeller

    Bladesareinstalledintothehub

    http://www.answers.com/topic/turbojet-1http://www.answers.com/topic/turbinehttp://www.answers.com/topic/knot-speedhttp://www.answers.com/topic/miles-per-hour-1http://www.answers.com/topic/air-compressor-2http://www.answers.com/topic/combustorhttp://www.answers.com/topic/turbinehttp://www.answers.com/topic/air-propulsionhttp://www.answers.com/topic/nozzlehttp://www.answers.com/topic/stolhttp://www.answers.com/topic/stolhttp://www.answers.com/topic/nozzlehttp://www.answers.com/topic/air-propulsionhttp://www.answers.com/topic/turbinehttp://www.answers.com/topic/combustorhttp://www.answers.com/topic/air-compressor-2http://www.answers.com/topic/miles-per-hour-1http://www.answers.com/topic/knot-speedhttp://www.answers.com/topic/turbinehttp://www.answers.com/topic/turbojet-1
  • 7/21/2019 Aero Gas Turbine Design

    45/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    45

    Thehub(barrelassembly)isthenattachedtothepropellershaft

    Thepitch change/dome assembly is themechanism that changes the blade angle of thepropeller

    Turboshaftengine

    Itis

    aGas

    turbine

    engine

    which

    powers

    arotating

    acylindrical

    shaft

    to

    rotate

    the

    Helicopter

    rotor

    A turbo shaftengine isa formofgas turbinewhich isoptimized toproduce shaftpower,ratherthanjetthrust.

    In principle a turbo shaft engine is similar to a turbojet, except the former featuresadditional turbineexpansion toextractheatenergy from theexhaustand convert it intooutputshaftpower.

    Ideally there shouldbe little residual thrustenergy in theexhaustand thepower turbineshouldbefreetorunatwhateverspeedtheloaddemands.

    The general layoutofa turbo shaft is similar to thatofa turboprop, themaindifference

    beingthe

    latter

    produces

    some

    residual

    propulsion

    thrust

    to

    supplement

    that

    produced

    by

    theshaftdrivenpropeller.

    Anotherdifference isthatwithaturboshaftthemaingearbox ispartofthevehicle (e.g.helicopterrotorreductiongearbox),nottheengine.

    Virtuallyallturboshaftshavea"free"powerturbine,althoughthisisalsogenerallytrueformodern turbopropengines.Ata givenpoweroutput, compared to theequivalentpistonengine,aturboshaftisextremelycompactand,consequently,lightweight.

    Thenameturboshaftismostcommonlyappliedtoenginesdrivingships,helicopters,tanks,locomotivesandhovercraftorthoseusedasstationarypowersources

    Todayalmostallenginesarebuiltso thatpowertakeoff is independentofenginespeed,usingthefreeturbinestage.Thishastwoadvantages:

    Itallowsahelicopterrotororpropellertospinatanyspeedinsteadofbeinggeareddirectlytothecompressorturbine.

    Itallowstheenginetobesplitintotwosections,the"hotsection"containingthemajorityoftheengine,and the separatepowertakeoff,allowing thehotsection tobe removed foreasiermaintenance.

    This leadstoslightly largerengines,butforthespeedrangesservedbytheseengines it isconsideredtobeunimportant.

    Today practically all smaller turbine engines come in both turboprop and turbo shaftversions,differingprimarilyintheiraccessorysystems.

    http://www.answers.com/topic/gas-turbinehttp://www.answers.com/topic/gas-turbinehttp://www.answers.com/topic/gas-turbinehttp://www.answers.com/topic/jet-aircrafthttp://www.answers.com/topic/jet-aircrafthttp://www.answers.com/topic/jet-aircrafthttp://www.answers.com/topic/turbojet-1http://www.answers.com/topic/turboprophttp://www.answers.com/topic/ticonderoga-class-cruiserhttp://www.answers.com/topic/uh-1-iroquoishttp://www.answers.com/topic/m1-abramshttp://www.answers.com/topic/gas-turbine-electric-locomotivehttp://www.answers.com/topic/hovercrafthttp://www.answers.com/main/Record2?a=NR&url=http%3A%2F%2Fcommons.wikimedia.org%2Fwiki%2FImage%3ACommons-logo.svghttp://www.answers.com/topic/hovercrafthttp://www.answers.com/topic/gas-turbine-electric-locomotivehttp://www.answers.com/topic/m1-abramshttp://www.answers.com/topic/uh-1-iroquoishttp://www.answers.com/topic/ticonderoga-class-cruiserhttp://www.answers.com/topic/turboprophttp://www.answers.com/topic/turbojet-1http://www.answers.com/topic/jet-aircrafthttp://www.answers.com/topic/gas-turbine
  • 7/21/2019 Aero Gas Turbine Design

    46/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    46

    SchematicDiagram

    Thecompressorspoolisshowningreenandthefree/powerspoolisinblue.

    GearedFan

    Asbypassratioincreases,themeanradiusratioofthefanandLPturbineincreases.

    Consequently, ifthefanistorotateat itsoptimumbladespeedtheLPturbinebladingwillrunslow,soadditionalLPTstageswillberequired,toextractsufficientenergytodrivethefan.

    Introducinga reductiongearbox,withasuitablegear ratio,between theLP shaftand thefan,enablesboththefanandLPturbinetooperateattheiroptimumspeeds.Typicalofthisconfigurationare the longestablishedHoneywellTFE731and the recentPratt&WhitneyAdvancedTechnologyFanIntegrator(ATFI)demonstratorengine(nowtheGearedTurbofan

    http://www.answers.com/topic/honeywell-tfe731http://www.answers.com/topic/honeywell-tfe731http://www.answers.com/topic/honeywell-tfe731http://www.answers.com/topic/pratt-whitneyhttp://www.answers.com/topic/pratt-whitneyhttp://www.answers.com/topic/pratt-whitneyhttp://www.answers.com/topic/pratt-whitneyhttp://www.answers.com/topic/pratt-whitneyhttp://www.answers.com/topic/pratt-whitneyhttp://www.answers.com/topic/honeywell-tfe731
  • 7/21/2019 Aero Gas Turbine Design

    47/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    47

    COMBUSTION CHAMBERS

    CONTENTS

    INTRODUCTION

    COMBUSTIONPROCESS

    FUELSUPPLY

    VARIOUSTYPESOFCOMBUSTIONCHAMBERS

    COMBUSTIONCHAMBERPERFORMANCE

    EFFECTOFOPERATINGVARIABLESONCOMBUSTORPERFORMANCE

    MATERIALS

    COMBUSTORCFD

    RIGTESTINGOFTHECOMBUSTOR

  • 7/21/2019 Aero Gas Turbine Design

    48/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    48

    COMBUSTIONCHAMBER

    Has thedifficult task ofburning large quantities of fuel, supplied through the fuel spraynozzles,withtheextensivevolumesofairsuppliedbythecompressor.

    Releasetheheatinsuchamannerthattheairisexpandedandacceleratedtogivesmooth

    streamof

    uniformly

    heated

    gas

    at

    all

    conditions

    required

    by

    the

    turbine.

    Thistaskshouldbeaccomplishedwiththeminimumpressure lossandwiththemaximumheatreleaseforthelimitedspaceavailable

    Amount of fuel added in the combustion chamber depends on the temperature riserequiredacrossthecombustionchamber.

    However maximum temperature is limited by the materials of turbine rotor and nozzleguidevanes.

    Airhasalreadybeenheatedbytheworkdoneduringcompression.

    A temperature rise across the combustion chamber is required since the thrust or shaftpowerproducedbytheengine isafunctionofturbineentrytemperature.Thecombustion

    chambershould

    also

    be

    capable

    of

    maintaining

    stable

    and

    efficient

    combustion

    over

    awide

    rangeofengineoperatingconditions.

    COMBUSTIONPROCESS

    Air from the engine compressor enters the combustion chamber at a typical velocity ofabout150meters/sec.

    Since the velocity [orMach number] is too high for combustion, there is a necessity todiffusetheairi.etodecelerateitandraiseitsstaticpressure.

    Ifthevelocityisnotreducedanyfuellitwillbeblownaway.

    Hencea regionof lowvelocityhas tobecreated in thecombustionchamber,so that the

    flamewill

    remain

    alight

    throughout

    the

    range

    of

    engine

    operating

    conditions.

    Innormaloperationtheoverallfuel/airratioofacombustionchambervariesfrom0.01to0.025.

    Howeverthefuel(aviationturbinefuel,aparticularformofkerosene)willburneffectivelyatfuel/airratioofabout0.067(Stoichiometricratio).

    Hencethereisarequirementofintroducingtheairinthecombustionchamberinstages.

    Threestagescanbedistinguished.

    Around20%ofthecompressedairisintroducedaroundthejetoffuelknownastheprimaryzonetoprovidethenecessaryhightemperatureforrapidcombustion.

    About30%ofthecompressedairisintroducedthroughtheholes intheflametubeinthe

    secondary

    zone

    to

    complete

    the

    combustion

    process.

    Finally inthe tertiaryor thedilutionzone the remainingair ismixedwith theproductsofcombustiontocoolthemdowntothetemperaturerequiredatinlettotheturbine(turbineinlet temperature).Thistemperatureacceptable to theturbineNozzleGuideVanes (NGV)dependsontheturbinematerialaswellasthebladecoolingtechnique.

    Sufficient turbulencemustbepromoted so that thehotand cold streamsare thoroughlymixedtogivethedesiredoutlettemperaturedistributionwithnohotstreakswhichwoulddamagetheturbineblades.

    An electric spark from an igniter plug initiates combustion and the flame is then selfsustained.

  • 7/21/2019 Aero Gas Turbine Design

    49/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    49

    Combustionoccurspracticallyatconstantpressureexcept forasmallpressure loss(about5% 6%).

    Though thedesignof combustion chamber and themethodofadding the fuelmay varyconsiderably the airflow distribution used to effect and maintain combustion is alwayssimilartowhatisdescribedabove

    Anearlycombustionchamber

    Flamestabilizingandgeneralairflowpattern

    FUELSUPPLY

    Fuelsupplytothecompressedairstream isthroughthe injectionofafineatomizedsprayintotherecirculatingstreamthroughspraynozzles

    Fuelnozzledesignplaysamajorpartincombustionchamberperformance.

    Notonlymust the fuelnozzleatomizeanddistribute the fuel,but itmustalsobeable tohandleawiderangeoffuelflows.

    Therearetwotypesoffuelatomizersnamelypressurejetatomizerandairblastatomizer.

  • 7/21/2019 Aero Gas Turbine Design

    50/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    50

    In a pressure jet atomizer there are two stages of fuel injection namely primary andsecondary.

    Primary stage is used for light up and up to reaching idling speed. Then at a particularpressureknownasthecrackingpressure,thesecondarystagecracksopenwhichtakescareof the requirementofwide rangeof fuel flowsdependingon the engineRPMand flight

    condition.

    Alloftheoperatinganddesignvariablesmustbetaken intoaccountwhentheatomizer isdesignedandmanufactured.

    Final configuration of the combustion chamber at best is a compromise to achieve thedesiredoperating characteristics since it is impossible todesignandmanufactureagivencombustion chamber that will have 100% combustion efficiency, zero pressure loss,maximumlife,minimumweight,minimumfrontalarea,allatthesametime

    TYPESOFCOMBUSTIONCHAMBERS

    CANNULARCOMBUSTOR

    CAN

    ANNULAR

    COMBUSTOR

    ANNULARCOMBUSTOR

    Multiplecombustionchamber

    Chambersaredisposedaroundtheengineandcompresseddeliveryairisdirectedbyductstopassintotheindividualchambers.

    Eachchamberhasaninnerflametubearoundwhichthereisanaircasing.

    Separate flame tubes are interconnected to allow each tube to operate at the samepressureandallowcombustiontopropagate.

  • 7/21/2019 Aero Gas Turbine Design

    51/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    51

    Can annularcombustionchamber

    Bridges the gapbetween cannularandannularcombustionchamber.

    Anumberofflametubesarefittedinsideacommonaircasing.

    Annularcombustionchamber

    Consist of a single flametube completely annular inform which is contained inaninnerandoutercasing.

    Widely used combustionchamber.

    Main advantage is that forthe samepoweroutput the

    lengthis

    short

    (only

    75%

    of

    canannular).

    Verygoodheat release ratewithcompactsize.

    Minimumpressureloss.

    Elimination of combustionpropagation problems fromchambertochamber.

    Results in considerablesaving of weight andproductioncost.

    Advantagesanddisadvantagesofdifferenttypesofcombustionchambers

    Inthecantype,individualcansaremountedinacirclearoundtheengineaxis

    Oneofthemaindisadvantagesofcannularcombustoristhattheydonotmakethebestuseoftheavailablespaceandthisresultsinalargediameterengine

    Ontheotherhandtheburnersareindividuallyremovableforinspectionandfuel/airratiosareeasiertocontrolthaninannulardesigns

    The annular combustor is essentially a single chamber made up of concentric cylindersmountedcoaxiallyabouttheengineaxis

  • 7/21/2019 Aero Gas Turbine Design

    52/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    52

    Thelatestcombustorscombinethebestfeaturesofannularandcanannularconfigurations

    Annular combustors have less surfacetovolume ratio than comparable cannularcombustorsandhencelesscoolingairisrequired

    Annular combustor weight is less, while at the same time there is an improvement incombustorperformance

    Thisarrangement

    makes

    more

    complete

    use

    of

    available

    space,

    has

    low

    pressure

    loss,

    fits

    wellwiththeaxialcompressorandturbineandfromatechnicalviewpointhasthehighestefficiency

    Theannularcombustorhasadisadvantagebecause structuralproblemsmayarisedue tothelargediameter,thinwallcylinderrequiredwiththistypeofcombustor

    Theproblemismoresevereforlargerengines

    There isalsosomedisadvantage in that theentirecombustormustbe removed from theengineforinspectionandrepair

    The canannulardesignalsomakes gooduseofavailable spacebutemploysanumberofindividually replaceablecylindrical inner liners that receiveair throughacommonannular

    housing

    for

    good

    control

    of

    fuel

    and

    airflow

    patterns

    The canannulararrangementhas theaddedadvantageofgreater structural stabilityandlowerpressurelossthanthatofthecantype

    COMBUSTIONCHAMBERPERFORMANCE

    Should be capable of allowing fuel to burn efficiently over a wide range of operatingconditionswithoutincurringalargepressureloss.

    Incaseofflameextinctionitshouldbepossibletorelight.

    The flame tube and fuel spray nozzles should be mechanically reliable and have goodstructuralintegrity.

    Shouldhave

    low

    pressure

    loss

    of

    the

    order

    of

    5%

    6%.

    Shouldhavehighheatintensityrateforagivenvolume.

    IMPORTANTFACTORSAFFECTINGCOMBUSTORDESIGN

    Acceptablecombustoroutlettemperaturetotheturbinenozzleguidevanes.

    Goodtemperaturedistributionsoastopreventlocaloverheatingofturbineblades.

    Stableoperationoverawiderangefuel/airratiosfromfullloadtoidlingconditions.

    Formationofcarbondeposits(coking)shouldbeavoided.

    Avoidanceofsmokeintheexhaustisofmajorimportance.

    Lesspollution levelnamelyproductionofoxidesofnitrogen (NOx)carbonmonoxide (CO)and

    unburnt

    hydrocarbons

    (UHC).

    Effectofoperatingvariablesoncombustorperformance

    Theoperatingvariablesare:

    Pressure

    Inletairtemperature

    Fuel/airratio

    Flowvelocity/Machnumber

  • 7/21/2019 Aero Gas Turbine Design

    53/182

    E N G I N E I V I S I O N H R C R E A T I N G A N E N V I R O N M E N T O F C O N T I N U O U S L E A R N I N G

    HA LE NG I N E

    D I V I S I ON

    R E S T R I C T E D

    U S AGE

    &

    FOR

    I N T E RNA L

    C I R CU L A T I ON

    ON L Y

    53

    Combustionefficiency

    Asthepressureoftheairenteringthecombustorincreasesthecombustionefficiencyrisesandlevelsofftoarelativelyconstantvalue

    Thepressureatwhichthislevelingoffoccursisusuallyabout1atmosphere(atm),butthismayvarysomewhatwithdifferentcombustorconfigurations

    Astheinlettemperatureisincreased,combustionefficiencyrisesuntilitreachesavalueofsubstantially100percent

    Withincreaseinfuel/airratiocombustionefficiencyfirstincreases,thenlevelsoffwhenthemixtureinthecombustionzoneisclosetotheidealvalueandthendecreasesasthefuel/airratiobecomestoorich

    Anincreaseinfuel/airratiowillresultinincreasedpressurelossbecauseincreasingfuel/airratioscausehighertemperatureswithacorrespondingdecreaseingasdensity

    In order to maintain continuous flow the gasesmust travel at higher velocities and theenergyneededtocreatehighervelocitiesmustcomefromanincreaseinpressureloss

    Increasingtheflowvelocitybeyondacertainpointreducescombustionefficiencybecause

    itreduces

    the

    time

    available

    for

    mixing

    and

    burning

    Stableoperatingrange

    Thestableoperatingrangeofacombustoralsochangeswithvariationsinpressureandflowvelocity

    As thepressuredecreases, the stableoperating rangebecomesnarroweruntilapoint isreachedbelowwhichburningwillno