Advances of Composite Right/Left Handed SfMi...

68
Advances of Composite Right/Left Handed S f Mi A li i Structures for Microwave Applications Tatsuo Itoh Electrical Engineering Department University of California, Los Angeles Microwave Electronics Lab

Transcript of Advances of Composite Right/Left Handed SfMi...

Page 1: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Advances of Composite Right/Left Handed

S f Mi A li iStructures for Microwave Applications

Tatsuo Itoh

Electrical Engineering DepartmentUniversity of California, Los Angeles

Microwave Electronics Lab

Page 2: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

INTRODUCTION

1. Left-Handed (LH) Metamaterials andTransmission Line ApproachTransmission Line Approach

2. Composite Right / Left-Handed (CRLH)Metamaterials

3. Passive Component Applications4. Antenna Applications5. Dielectric Resonator Based CRLH6. SIW based LHM7. Conclusions

Microwave Electronics Lab

Page 3: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

1. Left-Handed (LH) Metamaterialsand Transmission Line Approach

Microwave Electronics Lab

Page 4: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Different Approaches of LH MetamaterialsHistorical MilestonesHistorical Milestones

• 1968 : theoretical analysis of hypothetical LH materials by Veselago• 1996/9 : introduction of electric (ε<0) / magnetic (μ<0) plasmon by Pendry• 2000 : experimental demonstration of LH structure by Smith

LH definition: → materials with→ unit-cell << λ effective / macroscopic / homogeneous

0 and 0 0 and || p gn v vε μ< < ⇒ < −

R S A h T i i i A h

UCSD, 2D-LH ( )CjZ ′=′ ω1

Resonant Structure Approach Transmission Line Approach

high-pass( )LjY ′=′ ω1

h i l / i l i h T i i li l i

“BACKWARD WAVES”(e.g. Brillouin, Pierce)

• approach: no simple/rigorous analysis& no design method

• structures: RESONANTlossy & narrow bandwidth

• approach: Transmission line analysis& circuit design methods

• structures: NON-RESONANTlow loss & broad bandwidth

Microwave Electronics Lab

& highly dispersive & moderate dispersion

- L. Brillouin, “Wave Propagation in Periodic Structures”, Mc Graw Hill, 1946- J. R. Pierce, “Traveling-Wave Tubes”, D. Van Nostrand Company, 1950

Page 5: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Anti-parallel Phase / Group Velocities

an0 0dε μ< <• Definition of LHMs: ||p gv v=−or

0 0

,

,

Maxwell:

Plane Wave:

E j B H j Djk r jk rE E e H H e

ω ω∗ ∇× =− ∇× =− ⋅ − ⋅∗ = =

(dir. )k vϕ

0 0

, ,Then, the triad becomesE H k⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠

∗ H(dir. )grS v(RH)

, if 0 (RH),

, if ,0 (LH)

HB

Hk E

ω μ μω

ω μ μ

⎧⎪⎪⎪⎨⎪⎪

+ >= =

− <× E

(dir. )S v, if ,

, i

0 (LH

f 0 ( H)

)

,

H

E RDk H

ω μ

ω ε εω

μ⎪⎪⎩

− >= =

<

−×⎧⎪⎪⎪⎨ E

H( )gr

(LH)

, iEk ω

ω ε+

Poynting Vec

0 (L

tor: ( )

)

Hf .

S E H RH

ε⎨⎪⎪⎪⎩

∗ ∗= ×

< E(dir. )k vϕ

Microwave Electronics Lab

y g ( )

Page 6: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

General Classifications of Material Based on (ε,μ)

conventionalplasma

μplasma

wire structure (RH)

air air

0, 0n εμε μ> >

=+0, 0ε μ< >

εNo transmission

split rings structureferrites

LHMs

0, 0ε μ< <

ε(Permittivity)

split rings structure

0 0ε μ> <

0, 0ε μair air

0, 0ε μ> <No transmissionn εμ=−

Microwave Electronics Lab

Page 7: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Distributed Model of Transmission Line LH structure

kL∆z

v >0 v >0

β

C∆zvp>0, vg>0

β∆z→0

kC/∆z

L/∆zvp>0, vg<0

β∆z→0

Microwave Electronics Lab

β∆z→0

Page 8: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

LH TL Material Constitutive Parameters

′M i M ll t ′Zj

μω′

=• Mapping Maxwell toTelegrapher’s eqs :

Yj

εω′

=

• LH TL parameters: ( )1Y j Lω′ ′=( )1Z j Cω′ ′=lossless

j Z Yγ β ′ ′= =L′C ′ [ ]F m⋅

• Dispersive ε & μ:t

( )21 0 !Cμ ω ′= − < ( )21 0 !Lε ω ′= − <

jγ β[ ]H m⋅

non-resonant( )

• Dispersive n:

( )

0 0 0 0 !c c cZ Yn ε μ β′ ′

<• Dispersive n:

( ) 1 0ωε⎧∂

0 0 02

0 !r rnj L C

ε μ βω ω ω

= = = = − <′ ′

• EntropyConditions:

( ) ( )( )

( )2 2

00

1 0

LW E Hωε ωμ ωω ω ωμ

= >⎪⎫∂ ∂ ⎪ ′∂= + > ⇒⎬ ⎨∂ ∂ ∂⎭ ⎪ = >⎪⎩Microwave Electronics Lab

0Cω

>⎪ ′∂⎩

Page 9: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Realization of 1D LH TLsLumped Element Implementationp p

Ideal Elements Chip Components

Distributed Implementation (Microstrip)

microstrip series shunt

Interdigital C & spiral / stub L Interdigital C & stub Lp

line interdigitalcapacitor

spiralinductor

T-junctionunit cell

shortedshorted

via toground

MIM-C

shortedstub

MIM-C

shortedstub

interdigitalcapacitors

h d b

GPGPMultilayer → LTCC

Microwave Electronics Lab

shorted stubinductors

Page 10: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Realization of 2D Metamaterials2D Lumped Element Structure: Meta-Circuit (“closed”)2D Lumped Element Structure: Meta-Circuit ( closed ) RH

2RL

LH

2 LC

2D interconnection Chip Implementation

yzRC2RL

2RL

2RL

LL

L

2 LC

2 LC2 LC

yz yy

x

y

x

y

x

2.5D Textured Structure: Meta-Surface (“open”) Enhanced Mushroom Structure Uniplanar Interdigital Structure

top patch

capspost

top patch

ground plane

post

Unit cell

sub-patches

ground plane

via

Microwave Electronics Lab

Page 11: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

2. Composite Right / Left-Handed (CRLH)Metamaterials

Microwave Electronics Lab

Page 12: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Ideal Composite Right / Left-Handed (CRLH) TL

0, ZβRL′ LC′ [ ]F m⋅

Infinitesimal Circuit Model Transmission Line Representation

RC′ LL′[ ]H m

[ ]F m[ ]H m⋅

d[ ]F m

0zΔ →

, wherej Z Yγ β ′ ′= =

Balanced CasePropagation Constant

Definition: R L L RL C L C L C′ ′ ′ ′ ′ ′= =

1 1,R RL L

Z j L Y j Cj C j L

ω ωω ω

′ ′ ′ ′= + = +′ ′

22

1 2R RL CL C

β ωω

′ ′= + −′ ′

( ) 22

1 R RR R

L Cs L CL C L C

β ω ωω

⎛ ⎞′ ′′ ′= + − +⎜ ⎟′ ′ ′ ′⎝ ⎠

1L L

R RL L

L C

L CL C

ω

ωω

′ ′= −′ ′

RL′

RC′LL′

LC′

Microwave Electronics Lab

L L L LL C L Cω ⎝ ⎠RH LHβ β= +

( ) 1 21 1 1 11 if min , and 1 if max ,R L L R R L L R

sL C L C L C L C

ω ω ω ω ωΓ Γ

⎛ ⎞ ⎛ ⎞= − < = + > =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

Page 13: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Phase/Group Velocities: No Physical Law ViolationPure LH TL Balanced CRLH TL Unbalanced CRLH TLPure LH TL

LC ′

Balanced CRLH TL Unbalanced CRLH TL

RL′ LC′

[ ]H m

[ ]F m⋅RL′ LC′

[ ]F m⋅[ ]H m

LL ′

0zΔ →

RC′ LL′[ ]F m

[ ]H m⋅

0zΔ →

RC′LL′ [ ]H m⋅

[ ]

[ ]F m

0zΔ →

2

1L C

βω

= −′ ′

0zΔ →

22

1LC

CL

ωβω

= −′

′′

′ 22 1

L L L L

R RR R L C L C

L CL Cω

ωβ⎛ ⎞

= + −′

′ ′′ ′

′+

′⎜⎝ ′ ⎟

⎠10 2 0 2 0

balanced: R L L RL C L C L C′ ′ ′ ′ ′ ′= =

CLω

2468

10

0.51.01.52.0

0.51.01.52.0

-8-6-4-20

vp/(nc0) vg/(nc0)

-1.5-1.0-0.50.0

vp/(nc0) vg/(nc0)

-1.5-1.0-0.50.0

vp/(nc0) vg/(nc0)

GAP0gnv c0pnv c

0gnv c0pnv c

0gnv c0pnv c

( ) : not physical!gv ω → ∞ = ∞( ) 0gv c nω → ∞ =

( ) ( )2( ) 0gv c nω → ∞ =

-10 ω -2.0ω

-2.0ω0ω 1ωΓ 2ωΓ

Microwave Electronics Lab

( )g ( ) ( )0 0 2gv c nω ω→ =( )g

Page 14: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Dispersion Diagram and Group Velocity (CRLH)

⎧ ⎫⎛ ⎞⎪ ⎪( )2 sina aβ

1

( ) 22

1 1cos 12

R RR R

L L L L

L Ca L CL C L C

β ωω

⎧ ⎫⎛ ⎞⎪ ⎪= − + − +⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

( )

3

sin1g

R RL L

a av

L CL C

β

ωω

= −⎛ ⎞

−⎜ ⎟⎝ ⎠

1 21 1: ,R L L RL C L C

ω ωΓ ΓΓ = =1

2 22 2 2 2 22 2 2 21 01 02 01 02R R 01 022

2

: 2 22 2

X

X

Xω ω ω ω ωω ω ω ωω

⎧ ⎫⎫ ⎛ ⎞+ +⎪ ⎪= + + −⎬ ⎨ ⎬⎜ ⎟⎝ ⎠⎭ ⎪ ⎪⎩ ⎭

1balanced: 1 0 !2R L L R g

R R

L C L C va L CΓ= → = ≠unbalanced: 0R L L R gL C L C v Γ≠ → =

ω ωmatching

2Xω 2XωRH/RH/

0R L

R L

L LZC C

= =

2ωΓ

2XωRH/+zRH/ z−

1 2 0ω ω ωΓ Γ= =

RH/+zRH/ z−

0aλ Γ

⎤ =⎥⎦homogeneous

,β α

1ωΓ

aπ+aπ− 0

1XωGAP

LH/+z LH/ z−,β α

1 2 0Γ Γ

1Xω

aπ+aπ− 0

LH/+z LH/ z−homogeneous

isotropic

Microwave Electronics Lab

aπ+aπ 0Γ XX

aπ+aπ 0Γ XX

Page 15: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Guided Wavelength along a CRLH-TLFull-wave simulations (HFSS)( )

LH RHGAP interdigitalcapacitors

24-cells prototype

2λ π β= = Characteristics

shorted stubinductors

( )2 1R Ra LC

β

π ω ω∝2

2 !L La L C

λ π β

πω ω

=

= ∝

Characteristics• LH / RH range: backward / forward

propagation verified• λg proportional ω in LH range and

1.0 1.35 1.70 2.05 2.20 2.70 3.402.30

g

to 1/ω in RH range verified

ff

Microwave Electronics Lab

0f∼LH ← RH→ fcf

Page 16: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

3. Passive Component Applications

Microwave Electronics Lab

Page 17: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Dual-Band Components, E.g.: Quadrature Hybrid( ) ( )31 21 (deg)S Sϕ ϕ ϕΔ = −

CRLH / CRLH hybrid

CRLH1 2270

360

( ) ( )31 21 (deg)S Sϕ ϕ ϕΔ

NB: Conventional quadrature:restricted to odd harmonics

CRLH

CRLH CRLH

34

( )2 1 90nϕ

°

Δ =

− + ⋅ 180

270 because only control on slope

1

Dispersion Engineering:

CRLH 34

0

90

1fCRLH

2f conv2 13f f=

f

DC offset

0f

01

2 R R L L

fL C L Cπ

=

p g g

• dual-band functionality for anarbitrary pair of frequencies f1, f2

0

90−

f

• principle: transition freq. (LH-RH)provides DC offset additional degreeof freedom with respect to the

h l ( ) ( )SS

180−

270− conv. RHphase slope

• BW does not become narrower!

• applications in multi-band systems

( ) ( )2131 SS ϕϕ −360−

CRLH

1L Cϕ ω⎛ ⎞

′ ′Δ = − +⎜ ⎟⎜ ⎟

RH R RL Cϕ ω ′ ′Δ = −

Microwave Electronics Lab

• can be extended to many components LH R RL L

L CL C

ϕ ωω

Δ = +⎜ ⎟⎜ ⎟′ ′⎝ ⎠

Page 18: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Optimal solutionBesides the consideration for minimal length of each

CRLH TL, what else needs to be considered? B d id hBandwidth

The final solution: #4The final solution: #4

Microwave Electronics Lab@ 2.4GHz (f1) @ 5.2GHz (f2)

Page 19: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Experiment

Microwave Electronics Lab

Page 20: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Summary of performance

55% size reduction compared to the conventional rat-race coupler at 2.4GHz

Σ−port Measurement Δ−port Measurement

Microwave Electronics Lab

Page 21: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Broadband Microstrip-to-CPS Transition and its Antenna Application

Microstrip line

CRLH-TL Using unique phase slope and phase control prosperities of CRLH TL. to

+90º0º

0f02 f

03 f

CRLH-TL

control prosperities of CRLH TL. to have broadband out of phase characteristic. (Dispersion Engg)85% back to back transition03 f

-90º

Mi t i

-180º-270º

85% back-to-back transition.65% bandwidth of Quasi-Yagiantenna (~15% enhancement)

Microstrip270

1W3L3Lpower divider

10L 11L4/gλ

1W

1W

2W

2L

3L

4L6L

7L8L

5L

4/gλ

1W

1W

2W3W1L

2L 4L

5L

7L 8LC

CPS

1W6L

1W3W

Lump Elements

1L

via12LLumped

Elements

2 7

1WLC

LL

via

Microwave Electronics Lab

CRLH Transmission line

Microstrip ground

Page 22: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Broadband BSF Measured Results

3dB insertion loss BW : 130% (2GHz~9.6GHz)

10dB signal rejection BW : 78% (3GHz~8GHz)

Next passband at higher frequency end with minimum insertion loss

of -1.7dB @ 9.8GHz

10 2 10

0|S11|

|S21|

d

εr=10.2

h=1.27mm -20

-10

21| (

dB)

|S21|

port 1 port 2d1

d2 -40

-30

S 11|

& |S

2

measurement

lumped element1 2 3 4 5 6 7 8 9 10

-60

-50

|S

simulation

Microwave Electronics Lab

microstrip ground frequency (GHz)

Page 23: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

CRLH Harmonic Tuning Approach

90 deg @f0

600

800

))+72

03)

))

+180 deg @f0 -90 deg

CRLH-TL90 deg @f0

600

800

))+72

03)

))

+180 deg @f0 -90 deg

CRLH-TL

0

200

400

hase

(S(2

,1))

p(ph

ase(

S(4

,

-270 deg @3f0

@2f0

0

200

400

hase

(S(2

,1))

p(ph

ase(

S(4

,

-270 deg @3f0

@2f0

+180 deg @f0-90 deg @2f0 2 3 4 5 6 71 8

-200

0

-400unw

rap(

phun

wra

p

+180 deg @f0-90 deg @2f0 2 3 4 5 6 71 8

-200

0

-400unw

rap(

phun

wra

p

-90 deg @2f0-270 deg @3f0

2 3 4 5 6 71 8

freq, GHzRH-TL

-90 deg @2f0-270 deg @3f0

2 3 4 5 6 71 8

freq, GHzRH-TL

• Single CRLH-TL for two harmonics (Dispersion Engineering)

• Reduced number of stubs leads to: Compact circuit size, Reduced associated loss

• Single CRLH-TL for two harmonics (Dispersion Engineering)

• Reduced number of stubs leads to: Compact circuit size, Reduced associated loss

f=2.4 GHz P1dB P.A.E

Class F 24 dBm 63%

lossloss

Microwave Electronics Lab

Class F 24 dBm 63%

Page 24: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

ZeroZerothth Order CRLH ResonatorOrder CRLH ResonatorDispersion diagram 7 cell CRLH resonatorspe s o d ag a

ω

ωXωN – 1

7 cell CRLH resonator

ω

ωΓ2

ω0

ω1

ω2

ω3

ω−1ω−2ω 3 2 n = 013

0–1

1 2 3 4 5 6n = 02

0–1

1 2 3 4 5 6n = 02

Resonance characteristicsField distribution

ωc

βk− k 0

ωΓ1ω−3

ω−N +1

π π2π… …

–2 n = 0–1 –3–20

–40

21| (

dB) |S21|

|S11|

6–2–3

–4

–5

–20

–40

21| (

dB) |S21|

|S11|

6–2–3

–4

–5

Resonant modesβ0 = 0 ω0

kc− kc 0Nπ

Nπ2

−… …

–60

|S2

80

Survives with increasing loss!!–6

10 Ω1 Ω

R = 0 Ω–60

|S2

80

Survives with increasing loss!!–6

10 Ω1 Ω

R = 0 Ω

10 Ω1 Ω

R = 0 Ω

β±1 = kc / (N – 1)

β0 0

ω1,ω−1

ω2, ω−2

0

β±2 = 2 kc/ (N – 1) • n=0: no dependence on physical size

2 4Frequency (GHz)

1 5–80

32 4Frequency (GHz)

1 5–80

3

ωΝ, ω−Νβ±N = kc

supercompact resonator• Initial prototype: more than 2x sizereduction and experimental Q0 = 290 !

Microwave Electronics Lab

Page 25: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

N-Port In-Phase Series Divider Based on Infinite Wavelength

2 3 4 5 6

f∞=2.37 GHz1

13 Cells, 5 Output Ports

Experimental ResultsExperimental Results

Microwave Electronics Lab

Page 26: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Power Dividing (APMC 2005)

~P1

-20

-10

Bc]

PN@10 KHz offsetPN@100 KHz offsetPN@1 MHz offset

Single

Phase noise measurement

10.33dBm

0 67

P2 P3 P4

-40

-30

-20

nois

e po

wer

[d

S g eosc.

5 dBm

4.83 dBm

4.83 dBm

0.67 dBm loss

-70

-60

-50

Rel

ativ

e ph

ase

n

-20

Harmonic measurement

1 2 3 4Port number

-80

R

-30

pow

er [d

Bc]

Single osc.

• Equal amplitude

-50

-40

ve h

arm

onic

p • Equal amplitude distribution observed

• Harmonic suppression b d

1 2 3 4-70

-60

Rel

ativ 2nd Harmonic

3rd Harmonic4th Harmonic

observed

• Reduction in phase noise

Microwave Electronics Lab

Port number

Page 27: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Free Space Power Combining Using Metamaterial Coupler

0Endfire antennas

Oscillators Non uniformly spaced power divider

5

0

e [d

B]

osc. arraypassive array

-5

ve a

mpl

itude

-10

Rel

ativ

Osc. locking port

Output Array locking port

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90Angle [degrees]

-15

• Spacing is dense and non-uniform

Antenna spacing: 0.18λo (23mm), 0.46 λo (58mm),

• Measured array EIRP= 18 dBm• Measured array EIRP= 18 dBm

• Estimated Posc. = 11.5 dBm based on passive array gain of 6.5 dBi

• Estimated combining efficiency of 78%

Microwave Electronics Lab

Estimated combining efficiency of 78%

Page 28: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

N = 2 caseCMOS Application

N-Single-Ended-CRLH-Unit-Cell Ring Resonator

N x βd=2nπ n=0 ‐1 ‐2 … ‐N/2

Dispersion

RFIC 2009 RTU3A 2 A D l B d W CMOS O ill t ith L ft H d d R t

Microwave Electronics Lab

RFIC 2009 RTU3A.2: A Dual Band mm-Wave CMOS Oscillator with Left-Handed Resonator

Page 29: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Chip Micro-PhotographComplete Circuit

W/L=10/0.08um

C 50f

Measurement Summary

Schematic

W/L=16/0 08um

C=50f

L=200p

Process IBM 90-nm Digital CMOS Process

Frequency Band 21 GHz and 55 GHz

Measurement SummaryOutput Spectrum and Phase Noise

/0.08um

Frequency Switching Range (GHz) 34.3 GHz

Frequency Switching Range (%) 62% of highest oscillation frequency

Running at 21 GHz Phase Noise @ 1 MHz offset (dBC/Hz) -100.8

Running at 55 GHz Phase Noise @ 1 MHz offset (dBC/Hz) -86.7

VCO-Core Power (mW) 14

VCO-Core Area 150 µm × 60 µm

Switch On

Oscillation freq: 21.3GHz

Phase Noise -100.8 dBC/Hz

at 1MHz offset

Switch Off

Oscillation freq: 55.6GHz

Phase Noise -86.67 dBC/Hz

at 1MHz offsetRFIC 2009 RTU3A 2 A D l B d W CMOS O ill t ith L ft H d d R t

Microwave Electronics Lab

at 1MHz offset at 1MHz offsetRFIC 2009 RTU3A.2: A Dual Band mm-Wave CMOS Oscillator with Left-Handed Resonator

Page 30: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

4. Antenna Applications

4a. Leaky Wave Antennas

Microwave Electronics Lab

Page 31: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Composite Right/Left-Handed MetamaterialsRegion (I):Region (I):

Left-handed Guided mode

0<pgvv

R i (II)

0cωβ −<(II)LH

Radiation

(III)RH

Radiation

β=+ω

C 0

ω

β=-ωC

0

Unbalanced

Dispersion Diagram

0cωβ −>

Region (II):Left-handed

Radiating mode0<pgvv

R i (III)

Radiation Radiation

(I)LH

Guided (IV)ω

ω2ω0

UnbalancedBalanced

Region (III):Right-handed

Radiating mode0>pgvv

R i (IV)0cωβ <

( )RH

Guided

βd

ω1

Region (IV):Right-handed

Guided mode0>pgvv

0cωβ >lC ws

β

lsg

wCLR CL

dvCR LL

Microstrip Model Circuit Model

Microwave Electronics Lab

Page 32: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Backfire-to-Endfire Leaky-Wave AntennaAntenna Configuration CRLH dispersion diagramMain Beam RadiationAntenna Configuration

y

bwd broadside

CRLH dispersion diagramω0cβω −=

IILH

IIIRH

0cβω +=( )rad 0asin kθ β=

Main Beam Radiation

x

ysource

fwd

θ

longitudinalI

LHIVRH

LHRAD.

RHRAD.

0kθ 2 2

0k k β⊥ = −

z

fwdlongitudinalpolarization

β

LHGUIDANCE

RHGUIDANCE

0ωβ0 β⊥

Main beam θ versus ω (meas.)

90

III.

0f0 2c β π maxf0

α / β diagram (meas.)

2 0.120f0 2c β π maxf0 60

90120

Radiation Patterns (meas.)

0

30

60

g A

ngle

(deg

) II.LW-LH

LW-RH

z

I.Guided

-LH

30

60

90-1

0

1 β / k0 α / k0

/ k0

0.06

0.08

0.10

k 0

III. LW-RH

I. Guided

-LH-30

-20

-10

0

30150

180-30

ωω

2 3 4 5 6 7-90

-60

-30

Sca

nnin

g

x y

θ120

150

1802 3 4 5 6 7

-4

-3

-2β /

0.00

0.02

0.04 α /

II.LW-LH

210

240270

300

330

-20

-10

0

3.4 GHz 3.9 GHz 4.3 GHz

Microwave Electronics Lab

Frequency (GHz)2 3 4 5 6 7

Frequency (GHz)270

Page 33: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Electronically Scanned LW Antennaω

( )

( )

0

2

asin

1 1cos 1 R R

k

L Ca L C

θ β

β ω

=

⎫⎧ ⎛ ⎞⎪+ +⎨ ⎬⎜ ⎟

cω β=

ω

( ) 2

0

cos 12

R RR R

L L L L

R L

a L CL C L C

L LZC C

β ωω

= − + − +⎨ ⎬⎜ ⎟⎪⎩ ⎝ ⎠⎭

′ ′= =

′ ′0ω

3VR LC C 3V

2VV

shuntvaractor via Vb (-)

2

0V

β =1

0RHV

β >3

0LHV

β <1V

β

varactor

seriesvaractors

Vb ( )

900 V

0°900 V

Z

varactors

Pin

DC feed 5

0

30

60120

150

0 V 5 V 15 V

-30° +30°

-60° +60°5

0

30

60120

150

0 V 5 V 15 V

-30° +30°

-60° +60°

bias

ZLDC feedvia

-10

-5

0180-10 +90°dB-10

-5

0180-10 +90°dB

Microwave Electronics Lab

biaswiresVb (+)

10 01801010 018010

Page 34: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

capacitoralinterdigit:A B′

Unit-Cell Implementationcapacitor alinterdigit :A

A B

+

+

BGND

Z Z

L2CL2CRL 2 RL 2

Z Z

A′ B′varactor

stub (via) shorted :BLL RC

Y

var,RL var,LC var,LC var,RL

1,RL 1,LC 1,LC 1,RL

Reverse biasing to VaractorsAnodes of varactors : GND Cathodes of varactors: Biasing

1,LL

var,RC 1,RC 2,LLDCL

DCV

YA′

Cathodes of varactors: BiasingThe cathodes of three varactors in the same direction

Only one bias circuitry in unit cellSeries and Shunt Varactors

Fairly constant characteristic impedance

YGND inductor

Bias Configuration

Fairly constant characteristic impedanceAdditional degree of freedom for wider scanning range

Back to back configuration of two series varactorsFundamental signals : in phase and add upHarmonic signals: out of phase and cancel

Microwave Electronics Lab

Harmonic signals: out of phase and cancel

[1] S. Lim, C. Caloz and T. Itoh, “Electronically-Controlled Metamaterial-Based Transmission Line asa Continuous-Scanning Leaky-Wave Antenna.” IEEE-MTT Int’l Symp., Fort Worth, TX, Jun. 2004.

Page 35: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Beamwidth Control Capability: PrincipleBeamwidth Control Capability: Principle

Beamwidth Beamwidth

U U U U U U U U U U U U1U 2U 3U 4U 5U 6U

0V 0V 0V 0V 0V 0V

1U 2U 3U 4U 5U 6U

1V 2V 3V 4V 5V 6V

Uniform biasing Non-uniform biasing

Uniformly biased periodic TLEach unit cell radiates toward the same angleHigh directivityHigh directivity

Non-Uniformly biased periodic TLEach unit cell radiates toward different angles

Microwave Electronics Lab

Beamwidth is determined by the superposition of each cellBroader beamwidth

Page 36: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Conformal Leaky-Wave Metamaterial Antenna:

C f i ti l l0I0 0I0

ξ 2ξ 3ξ 4ξ 5ξp

d

Co

• Conforming a conventional planar LWA results in radiated beam dispersion and decreased gainnt

iona

l

1θ− 2θ

onformation

dispersion and decreased gain

• CRLH metamaterial unit-cells can conv

en

Section 1

Section 2Section 3

I00

Mo

be adjusted to compensate radiation (beam dispersion)

1θ 2θ−odification

• Implemented static solution for broadside beam (3 sections)fie

d

Modified section 1

Modified section 2

Modified section 3

I00mod

i

Microwave Electronics Lab

Page 37: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Static 3-section conformal prototype implementation:

• Similar concept can be implemented in dynamic fashion with tunable components (varactors, t )etc.)

30°

45°60°

75°90°105°120°

135°

150°

PlanerOrig. ConformMod. Conform 30°

45°60°

75°90°105°120°

135°

150°

PlanerOrig. ConformMod. Conform 30°

45°60°

75°90°105°120°

135°

150°

PlanerOrig. Conform

30°

45°60°

75°90°105°120°

135°

150°

PlanerOrig. Conform

15°

30150

165°

±180° -20-15-10-50

Mod. Conform

15°

30150

165°

±180° -20-15-10-50

Mod. Conform

15°

30°150°

165°

±180° -20-15-10-50

gMod. Conform

15°

30°150°

165°

±180° -20-15-10-50

gMod. Conform• Modified beamwidth due

to 3-section design is narrow, comparable to

-165°

-150°

-135°-120° -60°

-45°

-30°

-15°

GHzf 7.3=

-165°

-150°

-135°-120° -60°

-45°

-30°

-15°

GHzf 7.3=

-165°

-150°

-135°-120° -60°

-45°

-30°

-15°

GHzf 4.3=

-165°

-150°

-135°-120° -60°

-45°

-30°

-15°

GHzf 4.3=

non-conformal antenna

Microwave Electronics Lab

120-105°-90° -75°

60120-105°-90° -75°

60 120-105°-90° -75°

60120-105°-90° -75°

60

Page 38: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Balanced symmetric unit-cell implementation:

p 4Symmetric unit-cell equivalent circuit Unit-cell Dispersion Diagram

l

wRL RCLC

LL

3

cy (G

Hz) Leaky-RH

SwSl

Cl

LL

RCRLLC

2Freq

uenc

Leaky-LH

Common modeDifferential modeAir line

0 40 80 120 160 200Phase constnat (rad/m)

1

Differential mode operation due to symmetric unit-cell Even mode suppression in LH regionBalanced CRLH based leaky wave antenna provides continuous scanningBalanced CRLH-based leaky-wave antenna provides continuous scanning

Microwave Electronics Lab

30-cell differential mode CRLH antenna

Page 39: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Metamaterial-based Antenna System Application:

+ +

- -

Integrated mixer system schematic

Balanced mixer integrated with CRLH differential mode antenna:Differential mode leaky-wave operationEven mode suppression – low LO leakageBalanced CRLH-based leaky-wave antenna provides continuous scanningHigh RF-LO isolation

Microwave Electronics Lab

High RF LO isolation

Page 40: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Measured Results:

IF1 0

B)

Radiated patterns

IF1

LO

-20

-10

tive

Pow

er L

evel

(dB

Integrated system hardware:Mixer board

IF1

-60 -40 -20 0 20 40Angles (degree)

-30

Rel

at

2100MHz2300MHz2400MHz

1.96 GHz – 2.40 GHz operation

-20

-15

(dB)

LO leakage patterns

Measured S-parameters:

p21 dB avg. conversion loss-21o – 0o scanning in LH region

-20

-10

0

(dB

)

Leaky-LH

-10

0

(dB

) -35

-30

-25

elat

ive

Pow

er L

evel

(

-40

-30

S11,

S21

S11_commonS21_common

-30

-20

S11,

S21

S11_differentialS21 differential

Leaky-LH -60 -40 -20 0 20 40Angles (degree)

-45

-40Re 2100MHz

2300MHz2400MHzStop band

characteristic in even mode excitation

Microwave Electronics Lab

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4Frequency (GHz)

-50_

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4Frequency (GHz)

-40_excitation

Page 41: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Distributed Amplifier with CRLH-TL LWA

Conventional DA with FET DA using CRLH and MS TLsConventional DA with FET DA using CRLH and MS TLs

A 5 unit-cell distributed amplifier with MS-TL and

Equivalent circuit of FET

CRLH-TL leaky wave antenna.

Equivalent circuit of CRLH section

Tuned

Microwave Electronics Lab[6] K. Mori and T. Itoh, “Distributed Amplifier with CRLH-Transmission Line Leaky Wave Antenna,”

European Microwave Conference, Amsterdam, October 2008.

Page 42: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Radiation Pattern

inP

0

10

1.8GHz 60

90

[deg

LH

Rad.

RHRad.

0

102.0GHz

0

102.2GHz

0

10

2.4GHz0

10

2 6GHz0

10

0

10

0

103.2GHz

0

10

0

10

-10

0

[dB

i]

-30

0

30

dire

ctio

n

-10

0

[dB

i]

-10

0

[dB

i]

-10

0

[dB

i]

-10

0

[dB

i]

2.6GHz

-10

0

[dB

i] 2.8GHz

-10

0

[dB

i] 3.0GHz

-10

0

[dB

i]

-10

0

[dB

i]

3.4GHz

-10

0

[dB

i]

-20 -90

-60

30

Max

imum

-20-20-20-20-20-20-20-20-20

-90 -45 0 45 90Angle [deg]

1.8GHz

1 2 3 4Frequency[GHz]

M

Maximum direction

-90 -45 0 45 90Angle [deg]

2GHz

-90 -45 0 45 90Angle [deg]

2.2GHz

-90 -45 0 45 90Angle [deg]

2.4GHz

-90 -45 0 45 90Angle [deg]

2.6GHz

-90 -45 0 45 90Angle [deg]

2.8GHz

-90 -45 0 45 90Angle [deg]

3GHz

-90 -45 0 45 90Angle [deg]

3.2GHz

-90 -45 0 45 90Angle [deg]

3.4GHz

-90 -45 0 45 90Angle [deg]

1.8GHz 2GHz 2.2GHz2.4GHz 2.6GHz 2.8GHzLH

Microwave Electronics Lab42

1.8GHz

Measured radiation pattern

Maximum direction2GHz2.2GHz2.4GHz2.6GHz2.8GHz3GHz3.2GHz 3.4GHz2.4GHz 2.6GHz 2.8GHz3GHz 3.2GHz 3.4GHz RH

Page 43: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

4. Antenna Applications

4b. Resonant Antennas

Microwave Electronics Lab

Page 44: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Small Antenna – Mushroom Type

topMIM capacitance

RT/Duroid 6010LM

RT/D id 880RT/Duroid 5880

1/14λ x 1/14λ x 1/39λ vias

18.2 mm 18.2 mm

1/14λ0 x 1/14λ0 x 1/39λ0

80.254mm6.32mm

Sub2

Sub1 microstrip ground

Microwave Electronics Lab

Sub1 p g

Page 45: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Small Antenna – Mushroom Type (Exp. Results)

Max gain : 0.6dBi

Highest efficiency:

5 9dB ~ 26 %

0 2

5.9dB 26 %

gain

10

-5

0

s (d

B)

-2

0

ncy

(dB

) gain

-15

-10

etur

n Lo

ss

-6

-4&

Effi

cien

f =1 17GHzefficiency

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-25

-20Re

1.17 1.1725 1.175 1.1775 1.18 1.1825 1.185-10

-8

Gai

n f-1=1.17GHz

Microwave Electronics Lab

Frequency (GHz) Frequency (GHz)

Page 46: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Compact Dual-Band Antenna (PCS/Bluetooth)

• Based on anisotropic metamaterial.

• Half-wavelength distribution• Half-wavelength distribution.

• 96% size reduction.

x-directionDispersion Diagram

x-direction

y-direction

Microwave Electronics Lab

Page 47: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Compact Dual-Band Antenna (PCS/Bluetooth)

1/17λox1/17λox1/19λo @ 2.37 GHz

~ 96% size reduction

PCS (1.96 GHz) Bluetooth (2.37 GHz)

Gain: -3.0 dBi Gain: -2.3 dBi

Efficiency: 29% Efficiency: 25%

Microwave Electronics Lab

Page 48: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

CRLH Infinite Wavelength Patch Antenna

Constant Field Distribution for Monopolar Radiation• Similar to TM01 mode of circular patch antenna.

Monopolar radiation pattern is achieved• Monopolar radiation pattern is achieved.

• Size of patch can be arbitrary.

z

CRLH Square Patch Antenna(infinite wavelength)

z

y MS

x

Microwave Electronics Lab

x

Page 49: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Backward Wave Dual-Mode Antenna (APMC 2005)

f =4 015 GHz f 1 =3.560 GHzf0=4.015 GHzgain=2.3 dBiefficiency=75.0%

f-1 3.560 GHzgain=-2.5 dBiefficiency=22.5%size: λ /5 7 x λ /5 7 x λ /54

0

size: λo/5 x λo/5 x λo/50 size: λo/5.7 x λo/5.7 x λo/54

-10

0

030

60300

330

20

-10

0

030

60300

330

-30

-20

90270-30

-20

-30

-20

90270-30

-20

120

150180

210

240-10

0 Phi=0° Phi=90°

120

150180

210

240-10

0 Phi=0° Phi=90°

Microwave Electronics Lab

Page 50: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Broadband Small Antenna

h1=3.16, h2=0.254, L1=L2=40, D1=4, D2=0.1, D3=14, D4=1.2, D5=1.75. d1=7.8, d2=24, d3=8, h2εr2

εr1=2.2 εr2=10.2

L1

d

d4=18.1, d5=2, d6=12.1, d7=0.2, d8=0.24, h1εr1

d1 d2Unit: mm d3

antenna groundD1

D

D2D5

L2d4

D1d845°

2

y ddmatching groundD2

D2

D5

groundmicrostrip groundx

y d5

d6

d7ground

D3 D4

D5

Microwave Electronics Lab

Page 51: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

A Power Amplifier Integrated with a CRLH MM Antenna

Implementation microwave electronics labImplementation

“A power amplifier integrated with a composite right/left-handed metamaterial antenna,” Asia-Pacific Microwave

Microwave Electronics Lab

p p g p g ,Conference 2009, December 7 -10, 2009, Singapore, Paper TU4F-4, (C. M. Schmid, T. Itoh and A. Stelzer).

Page 52: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

A Power Amplifier Integrated with a CRLH MM Antenna

Measurements microwave electronics labMeasurements

Gain:Gain:

Simulation: 10 4 dBSimulation: 10.4 dB

Measurement: 10.2 dB

Power added efficiency (PAE):

Simulation: 62 %

Microwave Electronics LabMeasurement: 58 %

Page 53: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

5. Dielectric Resonator Based LHM

Microwave Electronics Lab

Page 54: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

LHM Structures Using DRs1) Two DR scheme1) Two-DR scheme• Configuration: Combination of TE & TM

resonances of DRs

H E

resonances of DRs• Features: Operational bands is narrow Adjustment

of DR resonant frequencies may be challengingTE011 mode TM011 mode

q y g g[1] C. L. Holloway et al., IEEE Trans. Antennas Propat.,

51, 2596, 2003

2) One-DR schemem p

Magnetic dipole Electric dipole)• Configuration: Mutual coupling• Features:

a) Wide operational band, compared to two-DR scheme

b) The operation is sensitive

HEM11δmode

b) The operation is sensitive to the arrangement of DRs .

[2] E. A. Semouchkina et al., IEEE Trans. MTT,53, 1477, 2005.

Microwave Electronics Lab

Page 55: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

3) One-DR Scheme in Cut-Off Background• Configuration: Combination of TE-resonant DRs and negative

epsilon background composed of cut-off parallel-plate waveguide• Features:

a) Fabrication tolerance is large compared to two-DR schemeb) Effective epsilon and mu can be designed separately.[3] T. Ueda et al, 36th European Microwave Conference 2006, 435, 2006

H

E

Incident waveDR, εDR

Ehost medium, εBG

Effective permittivity of PPWG TE d

d < λg / 2 TE mode εeff,n = εBG [1-(ωc/ω)2 ] < 0 ωc = nπc / (εBG)1/2 d

Microwave Electronics Lab

ωc nπc / (εBG) d

Page 56: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Dispersion of 2D DR Array in Cutoff Waveguide

DR discεDR = 38a = 5.10 mmh = 2.03 mm

εBG = 2.2d = 5 00 mmd = 5.00 mmp = 6.00 mm

Microwave Electronics Lab

Page 57: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Dispersion of 2D DR Array in Cutoff Waveguide

DR discεDR = 38a = 5.10 mmh = 2.03 mm

εBG = 2.2d = 5 00 mmd = 5.00 mmp = 6.00 mm

Microwave Electronics Lab

Page 58: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Numerical Verification of Negative Refractionin 2 D RH LH RH structurein 2-D RH-LH-RH structure

In Region 2

εr = 10.2(RH)

In Region 2,there are 15 DRs.Beam propagationBeam propagation along ΓX

Incident angleθLH = 45 deg

Transmitted angleθLH = -25 deg

(LH) εr = 2.2

θLH 25 degat f = 10.8 GHz

εr = 10.2(RH)

Microwave Electronics Lab

r

Page 59: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Measured Field ProfilesFields were measured by a loop antenna as a magnetic probe at positions outside 5mm away from edge lines AQ and QB

peakpeak

Microwave Electronics LabRH prism inserted in Region 2 LH prism inserted in Region 2

Page 60: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Radiation Patterns (n = 15)( )Broadside

backfireendfire

f = 11.0GHz f = 11.1GHz

Array factor using damping constant α

f = 10.9GHz

y g p gFull-wave analysisMeasurement

Microwave Electronics Lab

Page 61: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Dispersion Diagram under Periodic Conditioni d PPWGwindow Along principal axis

εεDR

DR εDR PPWG

εBGεDR

εDR = 38a = 5.10 mmh = 2 03 mmh = 2.03 mmεBG = 2.2d = 4.00 mmp = 6.00 mm

Open window: 2mm x 2mmUnbalanced case

Microwave Electronics Lab

p

Page 62: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

6 SIW CRLH6. SIW CRLH

Microwave Electronics Lab

Page 63: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Unit Cell Design and Analysis

(a) Equivalent circuit model for the SIW and HMSIW Transmission Lines

(b) Circuit model for CRLH Transmission Lines( )

Only the series capacitor is missing and needs to be introduced !

Microwave Electronics Lab

Only the series capacitor is missing and needs to be introduced !

Page 64: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Unit Cell Design and Analysis

CL: Interdigital CapacitorLL: From Via-walls

Si l I l t ti !

CR: Shunt Capacitance LR: Series Inductance

Proposed CRLH-based SIWHMSIW U it C ll D i

Simple Implementation !

The series capacitor (CL)

Microwave Electronics Lab

or HMSIW Unit Cell Design can be easily controlled.

Page 65: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Unit Cell Design and Analysis

Dispersion diagram of the CRLH SIW unit cells: Balanced

case and Unbalanced case are realized by choosing different slot

widths and lengths

Unwrapped S21 phase for the corresponding one- and three-stage

balanced CRLH SIW unit cells

Backward Wave

Microwave Electronics Lab

Backward Wave

Page 66: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

CRLH SIW and HMSIW TLs

Measured and Simulated S-Simulated S

Parameters for the fabricated SIW andfabricated SIW and

CRLH-SIW TLs

Without changing the waveguideWithout changing the waveguidesize, the passband has been

extended to a lower frequency!

Microwave Electronics Lab

q y(from 7.4 GHz to 4.8 GHz )

Page 67: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

7 Conclusions7. Conclusions

Microwave Electronics Lab

Page 68: Advances of Composite Right/Left Handed SfMi ...helper.ipam.ucla.edu/publications/meta2010/meta2010_8985.pdf · Advances of Composite Right/Left Handed SfMi AliiStructures for Microwave

Conclusions

Transmission line approach of metamaterials

Nonresonant structures

with low losses and broad bandwidth

C t f it i ht/l ft h d d (CRLH) t i lConcept of composite right/left-handed (CRLH) material

Dispersion engineering capability p g g p y

Passive components and antennas with unique features

DR based and SIW based CRLH

Microwave Electronics Lab