Advancements in High Efficiency Semiconductor Lasers for ......DPAL: Diode-pumped alkali laser...

57
LLNL-PRES-741702 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC Advancements in High Efficiency Semiconductor Lasers for High Power Applications Institute for Energy Efficiency Seminar Series University of California, Santa Barbara Paul Leisher and Bob Deri November 16, 2017

Transcript of Advancements in High Efficiency Semiconductor Lasers for ......DPAL: Diode-pumped alkali laser...

  • LLNL-PRES-741702This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

    AdvancementsinHighEfficiencySemiconductorLasersforHighPowerApplications

    InstituteforEnergyEfficiencySeminarSeries

    UniversityofCalifornia,SantaBarbara

    PaulLeisherandBobDeri

    November16,2017

  • 2LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    § DiodelasersatLawrenceLivermoreNationalLaboratory

    § Powerscalingindiodelasers

    § Designforhighefficiencyandthermalmanagement

    § Othercausesofpowersaturation

    § Reliabilityconsiderations

    § Brightnessconsiderations

    Contents

  • 3LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Highperformancelasersystemsareneededforcriticallaboratorymissionsandalignedwithseveralcompetencyareas

    High-energydensityscience

    Directedenergy

    Additivemanufacturing

    Photo by Kate Hunts/LLNLM. Matthews et al., Optics Express, (2017).

    Spacesecurity

  • 4LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    AVLISWorld’s highest average power tunable laser

    T-REXWorld’s brightest laser gamma-ray source

    Heat Capacity LaserWorld’s highest average power solid state laser

    Nova PetawattWorld’s highest peak power laser

    NIFWorld’s most energetic laser

    ARCWorld’s highest energy petawatt system

    DPALHigh average power diode pumped alkali laser

    MercuryWorld’s highest average power 10Hz laser

    HAPLSWorld’s highest average power petawatt-class laser

    Compton Source High energy photon Compton source test bed

    LLNLhasbeendeliveringleadingedgelaserandopticssolutionsforover40years

  • 5LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Comparedtoflashlamppumping,diodesoffer:

    § Higheraveragepower

    § Greatertotalsystemefficiency

    § Increasedpeakpower

    § Improvedbeamquality

    § Betterreliability

    § Reducedcoolingrequirements

    § Improvedstability

    § Morecompactsystems

    § Reducedoperationalcosts

    Diodepumpingistheprimaryenablingtechnologyforhighperformancelasersystems

    HAPLS– Worlds’s highestaveragepowerpetawatt-classlaser

    HAPLS– World’shighestaveragepowerpetawatt-classlaser

    Diodepumpingisagamechanger

  • 6LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    DiodelasersareacriticalenablingtechnologyforhighenergylasersystemswhichspantheNIF&PSdirectorate

    CoreNIF

    DMPA:Diode-pumpingwillincreasesNIFstabilityandenablesgreaterreliableshotenergy

    APT

    HAPLS:Diode-pumpingenableslowcoststructure($/W)forcommercialapplications

    DODT

    DPAL:Diode-pumpedalkalilaserenableslowSWaP fordirectedenergyweapons

  • 7LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    LaserDiodeTechnologyatLLNL– ManykWtoMW

    GOLD– 120Hz,256kW HAPLS– 10Hz,4x800kW

  • 8LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    800kW(peak)QCWdiodearrayinaction

  • 9LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1994 1998 2002 2006 2010 2014 2018

    Rela

    tive

    Norm

    aliz

    ed S

    emic

    onuc

    tor

    Diod

    e L

    aser

    Pro

    cure

    men

    ts

    Year

    HighpowersemiconductorlasersarebecomingincreasinglyimportantatLLNL

    HAPLS– 10Hz,3.2MWGOLD– 120Hz,256kW

    1994 1998 2002 2006 2010 2014 2018

    HAPLS

    GOLD

    DPAL

    LIFE

    Fiber

    TACL

    Mercury

    Year

  • 10LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Whatarethecriticalperformanceparametersforcommercially-availablehighpowerdiodelasers?

    Averagepower

    Irradiance

    E/Oefficiency SpectralwidthCenter

    wavelength

    Peakpower

    Reliability

    Cost

    Robustness(shock/vibe)

    Divergence

    www.dilas.comwww.lasertel.comwww.lasertel.com

    www.nlight.com

  • 11LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    S&Tchallenge– LLNL/DOEdiodepumprequirementsarenotthesameasthosefortypicalindustrialapplications

    Commercialrequirements LLNLrequirements

    § Focusonfiber-coupledpumpsfortheindustrialfiberlasermarket

    § Laserheadpower>10Wto10,000hours

    § Temperaturerange:15°Cto35°C

    § Cost istheprimaryconcern

    § Primarywavelengths808and9XXnm

    § CW isimportant

    § LowSWaP isdesirable

    § FocusonbarsandstacksforhighestpeakandCWpowerdensity

    § Laserheadpower>10kWto1,000’shours

    § Temperaturerange:wider

    § Performance istheprimaryconcern

    § Primarywavelengths7XXand88Xnm

    § CWandQCWarebothimportant

    § LowSWaP iscritical

    COTSdiodepumpedsourcesareusuallynotsuitableforLLNLprogramsThismeansourdiode-pumpedlaserprogramsoftenrequiredevelopmentand/orNRE

  • 12LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    HowdowepromotediodedevelopmenttomeetLLNLneeds?

    Externalcommercialdevelopmentandprocurement

    www.lasertel.com

    3.2MWdiodebackplaneproducedbyLasertelfortheHAPLSprogram

    Examplehighpowerdiodeteststationforassessingeffectsofback-irradiance

    Internalresearch,development,andcapabilityinvestments

  • 13LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    § DiodelasersatLawrenceLivermoreNationalLaboratory

    § Powerscalingindiodelasers

    § Designforhighefficiencyandthermalmanagement

    § Othercausesofpowersaturation

    § Reliabilityconsiderations

    § Brightnessconsiderations

    Contents

  • 14LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Howdoyoumakealasermorepowerful/energetic?

    Makeitbigger!

    Why?

  • 15LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    § Increasingthecross-sectionalareareducesthermalresistanceandhencethethermalgradient

    § Maximumoutputpowerisstronglydependentonthermalresistance

    § Powerscalingcanbeachieved(tofirstorder)bymakingthelaserlarger

    Thermalresistance inhighpowerdiodelasers

    https://tinyurl.com/ybvsq77h

    0

    100

    200

    300

    400

    500

    0 100 200 300 400

    Powe

    r (W

    )

    Current (A)

    0.8 K/W

    0.4 K/W

    0.2 K/W

    0.1 K/W

    0 K/W

    808 nm50% FF cm barCW, 25°C

  • 16LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Wheredidthemissingpowergo?

    0

    2

    4

    6

    8

    10

    12

    0 2 4 6 8

    Powe

    r (W

    )

    Current (A)

    Actual

    Perfect

    808 nmCW, 25°C1.5mm x 0.2mm

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0 2 4 6 8

    Volta

    ge (V

    )

    Current (A)

    Actual

    Perfect

    808 nmCW, 25°C1.5mm x 0.2mm

    0%

    20%

    40%

    60%

    80%

    0 2 4 6 8

    Dist

    ribut

    ion

    of In

    put P

    ower

    Current (A)

    Useful Output

    Voltage Loss

    Threshold Loss

    Slope Loss

    Actual Voltage Loss21%

    Threshold Loss5%

    Slope Loss15%

    Useful Output59%

    I = 8 Amps

  • 17LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Voltageloss– diodelaservoltagedefect

    Voltagedefectinadiodelaserisanalogoustoquantumdefectinasolidstatelaser

    Epump ElaserVdiodeVphoton

    laser

    laserpump

    EEE -

    = defect Quantum

    Solidstatelaser Diodelaser

    )V()(

    241 where

    defect Voltage

    mλ.

    qhc

    V

    VVV

    photon

    photon

    photondiode

    µl»=

    -=

    heat

    P.LeisherandS.Patterson,Proc.ofDEPSSSDLTR,(2013).

  • 18LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Theinternaldifferentialquantumefficiencyηi

    representsthefractionofinjectedcarrierswhich(wheninjectedabovethreshold)produceaphotoninsidethelaser

    Slopeloss– externaldifferentialquantumefficiency

    Theexternal differentialquantumefficiencyηd representsthe

    fractionofinjectedcarrierswhich(wheninjectedabovethreshold)produceaphotonthatsuccessfully

    leavesthelasercavity

    Lowabsorptionlossiskey 0.00.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    0

    2

    4

    6

    8

    10

    12

    0 5 10 15

    Volta

    ge (V

    )

    Out

    put p

    ower

    (W)

    Current (A)P.LeisherandS.Patterson,Proc.ofDEPSSSDLTR,(2013).

    Electrons per second in

    Current in, ACoulombs per second

    Photons per second out

    Power out, WJoules per second

    Photons out per electron in

    Scale by charge of electron Scale by energy of photon

    LaserElectrons

    P.Crump,R.Martinsen,P.Leisher,CLEO,(2007).

  • 19LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Sowhathappensasyoutrytodriveadiodelaserharder?

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 5 10 15 20 25

    Powe

    r (W

    )

    Current (A)

    Actual

    Perfect

    808 nmCW, 25°C1.5mm x 0.2mm

    0%

    20%

    40%

    60%

    80%

    0 5 10 15 20 25

    Dist

    ribut

    ion

    of In

    put P

    ower

    Current (A)

    Useful Output

    Voltage Loss

    Threshold Loss

    Slope Loss

    Actual

    1. Additionalcurrentincreasesheatduetoimperfectefficiency

    2. Thefractionofinputpowergoingtoheatincreases(atfirst)duetohighervoltageloss(electricalseriesresistance)

    3. Thisself-heatingeventuallycausestheslopeloss(differentialquantumefficiency)togrowexponentiallywithcurrent

    4. Eventuallyapointisreachedwheremorecurrentcausesnonetincreaseinpowerduetorapiddecreaseinefficiency0

    25

    50

    75

    100

    125

    150

    175

    200

    0 5 10 15 20 25

    Junc

    tion

    Tem

    pera

    ture

    (ºC)

    Current (A)

  • 20LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Whydoesself-heatinglimittheoutputpowerofdiodelasers?

    Peak Gain vs Temperature (at N=1.5000e+012cm-2)

    Temperature (K)100 200 300

    Peak

    Gai

    n (c

    m-1

    )

    2000

    4000

    6000

    8000

    Legend:

    PeakGain

    0

    0.5

    1

    0.8 0.9 1 1.1 1.2

    Ferm

    i-Dira

    c Di

    strib

    utio

    n

    E/Ef

    300K77K

    0K

    Occupied states below this level can contribute to gain

    Occupied states above this level do not contribute to gain

    1. Differentialgaindecreaseswithincreasingtemperature,somorecarriersareneededtoreachthreshold.This,inturn,increasestheabsorptionlossinthestructure.

    P.O.Leisher,etal.,CLEO,(2010).

  • 21LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Whydoesself-heatinglimittheoutputpowerofdiodelasers?

    2. Poorclampingofthegaininsidetheactiveregioncausescarrierdensitieselsewhereinthestructuretoincreaseaswell,furtherincreasingtheabsorptionlosses.

    0E+0

    1E+17

    2E+17

    3E+17

    4E+17

    5E+17

    6E+17

    7E+17

    2.5 3.0 3.5 4.0 4.5 5.0 5.5

    Inte

    nsity

    (ar

    bitra

    ry u

    nits

    )

    Carr

    ier

    Dens

    ity (c

    m-3

    )

    Position (μm)

    375K350K325K300K

  • 22LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    From T=300K à 77K, n(T)3 is reduced by ~35X

    RAuger ~ C(T)*n(T)3

    From T=300K à 77K, C(T) is reduced by ~40X

    From T=300K à 77K, RAuger is reduced by ~1400X

    Conduction band

    Valence band

    -Dk Dk

    -DE

    DE

    Whydoesself-heatinglimittheoutputpowerofdiodelasers?

    Electron

    Trap

    Hole

    Ec

    EtEi

    Ev

    Hole

    1 2

    3or Et – Ei

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    50 100 150 200 250 300

    Rela

    tive

    Reco

    mbi

    natio

    n Ra

    te

    Temperature (K)

    Et-Ei = 10 meV

    3. Increasingtemperaturecausesnon-radiativerecombinationtoincrease,reducingthedifferentialquantumefficiencyofthedevice.

    Shockley-Hall-Reed(trap-assisted)Recombination

    P.O.Leisher,etal.,CLEO,(2010).

    AugerRecombination

  • 23LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    § DiodelasersatLawrenceLivermoreNationalLaboratory

    § Powerscalingindiodelasers

    § Designforhighefficiencyandthermalmanagement

    § Othercausesofpowersaturation

    § Reliabilityconsiderations

    § Brightnessconsiderations

    Contents

  • 24LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Howcandiodelaserpowerbescaled?

    Option2

    Improvethermalmanagement

    Option1

    Increaseefficiency

    0

    100

    200

    300

    400

    500

    600

    0 200 400 600

    Powe

    r (W

    )

    Current (A)

    1.0 K/W

    0.6 K/W

    0.4 K/W

    0.2 K/W

    0.1 K/W

    880 nmCW, 25C50% FF cm bar

    0

    100

    200

    300

    400

    500

    600

    0 200 400 600

    Powe

    r (W

    )

    Current (A)

    45% E/O

    53% E/O

    60% E/O

    68% E/O

    76% E/O

    880 nmCW, 25C50% FF cm bar

  • 25LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Whydoeslaserdiodeefficiencymatter?

    +20%efficiency‒30%inputpower

    ‒60%coolingor

    2.5Xpowerperbar

    70% Efficiency

    1 kW OpticalOutput

    1.4 kW Electrical Input

    0.4 kW Heat

    50% Efficiency

    1 kW OpticalOutput

    2.0 kW Electrical Input

    1.0 kW Heat

    “Efficiencyisn’teverything,butit’sdamnclosetoit…”

  • 26LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Maximumpowercorrelateswellwithconversionefficiency

    P.Crump,R.Martinsen,P.Leisher,CLEO,(2007).

  • 27LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Voltagedefectreducedbybandgapanddopingoptimization

    Primaryoriginsofexcessvoltagedefect:1. Bandgapofwaveguide(turn-onvoltage)2. Bulkconductivityofthep-cladding(resistance)

    -7

    -6.5

    -6

    -5.5

    -5

    -4.5

    -4

    -3.5

    2 2.25 2.5 2.75 3 3.25

    Ener

    gy B

    and

    (eV)

    Position (um)

    Elec FermHole FermCond BandVal Band

    0 V

    -7

    -6.5

    -6

    -5.5

    -5

    -4.5

    -4

    -3.5

    2 2.25 2.5 2.75 3 3.25

    Ener

    gy B

    and

    (eV)

    Position (um)

    Elec FermHole FermCond BandVal Band

    1.2 V

    P.LeisherandS.Patterson,Proc.ofDEPSSSDLTR,(2013).

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 1 2 3 4 5 6

    Pote

    ntia

    l (V)

    Position (um)

    Dif ference

    0 V

    1.2 V

    PhotonEnergy

    ΔEWG-QW

    Rp-clad

  • 28LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Remaininglimitationsofefficiencyinlargeopticalcavitylasers

    Lossesinatraditionallargeopticalcavitylaseraredominatedbyfreecarrierabsorptioninthequantumwell

    P.Crump,R.Martinsen,P.Leisher,CLEO,(2007).

    Examplepareto ofthecalculatedabsorptionlossesinalargemodelaserbywherethey

    occurinthestructure.

    QW73%

    p-WG13%

    p-Clad7%

    n-WG4% n-Clad3%

  • 29LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    1. Freecarrierabsorptionlossesinthequantumwell,aswellasdivergenceangle,canbereducedbymakingthewaveguideverylarge

    2. Carefulplacementofthequantumwellensuressingle-modeoperation

    3. Doesamuchbetterjobofbalancingthelossesinthestructure(nolongerdominatedbythequantumwell)

    Superlargeopticalcavityandd/Γ

    Ref

    ract

    ive

    inde

    x

    Inte

    nsity

    (arb

    uni

    ts)

    PositionFeng,et.al.,J.ofSemiconductors,vol.30,no.6,(2009).

  • 30LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Thermalresistanceminimizedby:

    1. Junction-downbonding(maketheinterfaceasthinaspossible)

    2. Newermaterials(increasedthermalconductivity)

    3. Improvedcoolerarchitectures(higherheattransfercoefficients)

    Thermalresistanceofbroadareadiodelasers

    PhotocourtesyofCoherent/DILAS

  • 31LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    High-efficiency980nmsingle-emittersforfiber-coupledpumps

    0

    10

    20

    30

    40

    50

    60

    70

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    0 3 6 9 12 15 18Ef

    ficie

    ncy

    (%)

    Out

    put p

    ower

    (W)

    Current (A)

    976 nmCW, 25°C

    95 μm stripe3.8 mm cavity

    >16WCWfromsingleemitters(980nm,>68%peakE/O)

    0

    200

    400

    600

    800

    1000

    1200

    60 61 62 63 64 65 66 67 68 69 70

    Freq

    uenc

    y 980-nm Peak Efficiency Bin

    10 devices

    L.Bao,J.Wang,M.DeVito,Z.Chen,P.Leisher,etal.,Proc.SPIE,(2011).Disclaimer:Thisexampleselectedfromtheliteratureduetoemphasizemanufacturingdistribution.ThisisnotanendorsementofnLightCorp.oritsproducts.

  • 32LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    High-efficiency940nmbarsforpumpingofYb thindisklasers

    A.Pietrzak,Proc.SPIE,(2015).

    ~1kWQCWfromsinglebars(940nm,64%peakE/O)

    Disclaimer:Thisexampleselectedfromtheliteratureduetoemphasizemanufacturingdistribution.ThisisnotanendorsementofJenoptik Corp.oritsproducts.

  • 33LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    § DiodelasersatLawrenceLivermoreNationalLaboratory

    § Powerscalingindiodelasers

    § Designforhighefficiencyandthermalmanagement

    § Othercausesofpowersaturation

    § Reliabilityconsiderations

    § Brightnessconsiderations

    Contents

  • 34LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    0

    3

    6

    9

    12

    15

    18

    0 4 8 12 16 20Po

    wer

    (W)

    Current (A)

    3.8 mm5.0 mm7.6 mm

    12345

    0 2 4 6 8

    Rth

    (K/W

    )

    Length (mm)

    Cavitylengthscalingprovidesefficientpathtothermalresistancereductionwithoutcompromisingbeamquality

    0

    1

    2

    3

    4

    5

    6

    0

    2

    4

    6

    8

    10

    12

    14

    16

    2003 2006 2009 2012 2015 2018

    Sing

    le-e

    mitt

    er c

    avity

    leng

    th (m

    m)

    Rate

    d si

    ngle

    -em

    itter

    CW

    pow

    er (W

    )

    Year

    Single-emitteroutputpowerandcavitylengtharecloselycorrelated

    WhydidscalingstallatL=5mm?

    BasedonreportedresultsbynLight

    Improvementsinsingle-emitteroutputpowerenabledbycavitylengthscaling

    Root-causeandsolutionnotyetknown

    J.Bai,P.Leisher,etal.,Proc.SPIE,(2011).

  • 35LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Othercausesofpowersaturationinhighpowerdiodelasers

    SlideprovidedbyP.Crump

  • 36LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    § Athighbias,powers>20W/100μm,extremeconditionsarise— Highcarrierdensity— Hightemperature— Highphotonflux— Highelectricalfieldandhighcurrentdensity

    § Theseleadtointeractingmixofpowersaturationterms,including:— Current-drivenselfheating(degradedthreshold,slope) →(“T0,T1”- wellknown)— Bias-drivenleakage(BDL) →Avrutin— Gainsaturation(orspectralholeburning,SHB) →Peters— Longitudinalspatialholeburning(LSH) →Peters,Leisher— Twophotonabsorption(2PA) →Garrod,Juodawlkis— Waveguidecollapse(WC) →Crump

    § Manycanbeaddressedbydesignimprovements

    Briefsummaryofknownfactorsleadingtopowersaturation

  • 37LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Longitudinalspatialholeburning(LSHB)

    T. Hao, J. Song, and P. Leisher, Proc. SPIE, (2014).

    Spatialnonuniformityinthelongitudinalgainprofileiscausedbyextremeasymmetryoflongcavity(>2mm)

    devicesandresultsinreductioninthelaserdiodeoutputpower

  • 38LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    ExperimentalsetuptotestforpresenceofLSHB

    10

    20

    30

    40

    50

    60

    70

    80

    90

    0.0 0.4 0.8 1.2 1.6 2.0 2.4

    Aver

    age

    Gre

    y Va

    lue

    Current (A)

    MeasuredPerfect

    !"# = %&'

    808 nm, 100 μm x 1500μm

    T.Hao,J.Song,andP.Leisher,Proc.SPIE,(2014).

  • 39LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    LSHB– modeledvs.measuredresults

    5.0E+36

    1.0E+37

    1.5E+37

    2.0E+37

    2.5E+37

    3.0E+37

    73

    78

    83

    88

    93

    98

    0 300 600 900 1200 1500

    N2(1

    /cm

    6 )

    Gre

    y Va

    lue

    Cavity Length (μm)

    1.3A measured1.3A calculatedw/o LSHB

    PR HR

    5.0E+36

    1.0E+37

    1.5E+37

    2.0E+37

    2.5E+37

    3.0E+37

    73

    78

    83

    88

    93

    98

    0 300 600 900 1200 1500

    N2(1

    /cm

    6 )

    Gre

    y Va

    lue

    Cavity Length (μm)

    2.4A measured2.4A calculatedw/o LSHB

    PR HR

    T.Hao,J.Song,andP.Leisher,Proc.SPIE,(2014).

    DirectobservationofLSHBconfirmsitspresenceandaffectondiodelaserperformance

  • 40LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Challenge:samedatareproduciblewithdifferentmodels

  • 41LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    § DiodelasersatLawrenceLivermoreNationalLaboratory

    § Powerscalingindiodelasers

    § Designforhighefficiencyandthermalmanagement

    § Othercausesofpowersaturation

    § Reliabilityconsiderations

    § Brightnessconsiderations

    Contents

  • 42LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Semiconductorlasersfailgraduallyorsuddenly

    0

    1

    2

    3

    4

    5

    0 2 4 6Current (A)

    Out

    put p

    ower

    (W) Time zero

    + 1 week 3.5 A+ 1 week 4.5 A+ 1 week 6.0 A

    Dislocationnetworkgrowth→Increasednonradiativerecombination

    Defect-initiatedthermalrunaway→catastrophicoptical(mirror)damage

    808nm laser diode

    Laser

    Sub-mount

    Laser

    Sub-mount

    COMD

    808nm laser diode

    Laser

    Sub-mount

    Laser

    Sub-mount

    COMD

    SuddenFailure

    GradualDegradation

  • 43LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Catastrophicopticalmirrordamage

    0 50 100 150

    Inte

    nsity

    (arb

    . uni

    ts)

    Position (μm)

    Local intensityspike (filament)

    0 50 100 150

    Inte

    nsity

    (arb

    . uni

    ts)

    Position (μm)

    COD

    0 50 100 150

    Inte

    nsity

    (arb

    . uni

    ts)

    Position (μm)

    COD threshold

    0 50 100 150

    Inte

    nsity

    (arb

    . uni

    ts)

    Position (μm)

    Local defect

    COD threshold

    0 50 100 150

    Inte

    nsity

    (arb

    . uni

    ts)

    Position (μm)

    Long timescales

    COD threshold

    0 50 100 150

    Inte

    nsity

    (arb

    . uni

    ts)

    Position (μm)

    Short timescales?

    COD

  • 44LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    1. QuantumWellIntermixing

    MitigationofCOMD– Facetpassivation

    http://www.intenseco.com/technology/default_pdf.asp M.Peters,V.Rossin,andE.Zucker,USPatentEP1903646B1

    Scribe Markslaserbars

    1. Wafer section preparation (pre-scribe) 2. Load into modified MBE & evacuate

    3. Bar cleave & stack in vacuum 4. Deposit ZnSe, both facets

    N.Chand,etal.Electron.Lett.,vol.32,pp.1595–1596,1996.R.Lambert,et.al.,IEEEJ.LightwaveTech.,vol.24,no.2,(2006).

    2. Etched/RegrownFacets

    3. Si/Si3N4 Passivation 4. ZnSeepitaxialmirroronfacet(EMOF)

  • 45LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    MitigationofCOMD– Facetpassivation

    R.M.Lammert,et.al.,Proc.SPIE,(2005).

    FacetpassivationgreatlyincreasestheCOMDlimit

  • 46LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    BulkCODvs.COMD

    COD SEMCOD SEM

    Facetpassivationmethodologieshavebecomesoeffectivethatmanydiodesnowfailatdefectswithinthebulkofthedevice

    BulkCatastrophicOpticalDamage CatastrophicOpticalMirrorDamage

  • 47LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    § DiodelasersatLawrenceLivermoreNationalLaboratory

    § Powerscalingindiodelasers

    § Designforhighefficiencyandthermalmanagement

    § Othercausesofpowersaturation

    § Reliabilityconsiderations

    § Brightnessconsiderations

    Contents

  • 48LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Definitionoflaserbrightness

    Related to the optical invariant

    Brightnessisafixedquantityofalasersource.Itcannotbeincreasedthroughtheuseofpassiveopticsalone.

  • 49LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    § Reducedabsorptionlengthat976nmincreasesthresholdfornonlinearities

    § Broadgainbandwidtharound915nmreducestemperaturecontrolrequirements

    Applicationofhigh-brightnesspumps– fiberlaserpumping

    Highbrightnessenablesnon-linearitysuppressionviahighmodaloverlapwhich

    allowsforreducedfiberlength

    Highpowerfiberlasersrequirehighbrightnessdiodelaserpumpsources

    HighermodalgainShorterfibers

    Pump Δλ FWHM QuantumDefect

    915nm >50nm 8%

    976nm 9nm 5%

  • 50LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Brightpowerislimitedbyearlyrollofchipbrightness

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0

    2

    4

    6

    8

    10

    12

    14

    0 3 6 9 12 15

    Slow

    -Axi

    s Li

    near

    Brig

    htne

    ss

    (BPP

    , W/m

    m-m

    rad)

    Pow

    er (W

    )

    Current (A)

    LIVrolloverat18WBIVrolloverat10W

    60%

    65%

    70%

    75%

    80%

    85%

    90%

    0

    10

    20

    30

    40

    50

    60

    70

    0 3 6 9 12Current (A)

    Coup

    ling

    Effic

    ienc

    y (%

    )

    Pow

    er (W

    )

    Fiber-coupled

    Collimated

    Fiber-couplingefficiencyrollswithdrivecurrent

    J.Bai,P.Leisher,etal.,Proc.SPIE,vol.7953,(2011).

  • 51LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Brightnessrollcausedbyslowaxisblooming

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0

    2

    4

    6

    8

    10

    12

    14

    0 3 6 9 12 15

    Slow

    -Axi

    s Li

    near

    Brig

    htne

    ss

    (BPP

    , W/m

    m-m

    rad)

    Pow

    er (W

    )

    Current (A)0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    0 3 6 9 12 15 18 21

    FWH

    M S

    low

    -Axi

    s An

    gle

    (º)

    Current (A)

    ABOLN (EMOF20-10)3.8 mm chip25ºC

    ModelledBaseline

    Measured

    Causedbyincreaseinslow-axis-divergence(andreductioninbeam

    quality)withincreasingdrivecurrent

    LIVrolloverat18WBIVrolloverat10W

    J.Bai,P.Leisher,etal.,Proc.SPIE,vol.7953,(2011).

  • 52LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Shortdescriptionofslowaxisblooming

    Diode Stripe (top down view)

    Slow Axis Divergence at I1

    Slow Axis Divergence at I2 > I1

    • Increase in slow axis divergence driven by gradients in the active region temperature • The slow axis divergence in broad area diode lasers increases as the diode drive current

    increases• The diode is often capable of providing reliable power well in excess of what can be efficiently

    coupled into the fiber.

    As the diode drive current increases the spot size increases. overfilling the real space aperture. decreasing fiber coupling and endangering the fiber reliability.Tighter focusing risks overfilling the fiber numerical aperture

    Fiber acceptance angle

    Diode Stripe

    Spot overfills aperture

    Ascurrentincreases,slow-axisbloomingoverfillstheacceptanceNAofthefiber

    ImagecourtesyofS.Patterson

  • 53LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Time-resolvedindexmodelasafunctionofdrivecurrent

    CW, Junction down, 3.8mm, 1.4 etch depth

    3.399

    3.400

    3.401

    3.402

    3.403

    3.404

    3.405

    3.406

    1.18 1.20 1.22 1.24 1.26 1.28 1.30 1.32

    Inde

    x of

    Ref

    ract

    ion

    Position Along Slow Axis (mm)

    3W

    6W

    9W

    0W

    CW, Junction down, 3.8mm

    0.0E+00

    2.0E-04

    4.0E-04

    6.0E-04

    8.0E-04

    1.0E-03

    1.2E-03

    1.4E-03

    1.6E-03

    0 3 6 9 12 15In

    dex

    Diff

    eren

    ce (Δ

    n)Current (A)

    Δn

    J.Bai,P.Leisher,etal.,Proc.SPIE,vol.7953,(2011).

    Slow-axisbloomingiscausedbythermallensingalongtheslowaxisofthediodelaser

  • 54LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    Mitigationofthermallensing:1)Engineertheheatsource

    Longercavitylengths→Higherrateablepower

    J.Bai,P.Leisher,etal.,Proc.SPIE,vol.7953,(2011).

  • 55LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    -20 -15 -10 -5 0 5 10 15 20

    Slow

    -Axi

    s Fa

    r Fie

    ld In

    tens

    ity

    (arb

    . uni

    ts)

    Angle (º)

    CW, 25ºC12 Amps

    Controldesign

    Experimentaldesign

    Mitigationofthermallensing:2)Engineertheheatflow

    AuPlating

    Chip

    J.Bai,P.Leisher,etal.,Proc.SPIE,vol.7953,(2011).

    Promote1Dheatflowtoreducelateralgradientbyformingvoidsinthebondlineoneithersideoftheemitter

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    0 10 20 30 40 50 60 70 80 90 100Gold thermal path thickness h (µm)

    Thermal resistance

    Temperature gradient

    Emitter

    Gold pad

    Front view after bondingTop view before bonding

    X-view after bondingX-view before bonding

    Front view after bondingTop view before bonding

    X-view after bondingX-view before bonding

  • 56LLNL-PRES-741702 – P. Leisher – UCSB IEE Seminar – November 16, 2017

    § AdvancedlaserdevelopmentatLLNLrequiresanddriveshighpowerdiodelaserdevelopment

    § Self-heating theprimarycauseofpowersaturation

    § Efficiency isking– itisbettertonotgeneratetheheatthantrytodealwithit

    § Scalingcavitylengthhasenabledrecentimprovements(5mm,