Advanced Technologies for Brain-Inspired ComputingAdvanced Technologies for Brain-Inspired Computing...

22
& www.cea.fr Advanced Technologies for Brain-Inspired Computing Fabien CLERMIDY* Rodolphe Heliot * , Alexandre Valentian * , Christian Gamrat ** , Olivier Bichler ** , Marc Duranton ** , Bilel Blehadj # and Olivier Temam # . * CEA-Leti, Grenoble, France **CEA-List, Paris, France # INRIA, Paris, France

Transcript of Advanced Technologies for Brain-Inspired ComputingAdvanced Technologies for Brain-Inspired Computing...

&

www.cea.fr

Advanced Technologies for Brain -Inspired

Computing

Fabien CLERMIDY*

Rodolphe Heliot*, Alexandre Valentian*,

Christian Gamrat**, Olivier Bichler**, Marc

Duranton**, Bilel Blehadj# and Olivier

Temam#

.

*CEA-Leti, Grenoble, France **CEA-List, Paris, France

# INRIA, Paris, France

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 2

Context: dark silicon…

Dramatic changes in the area of computing architectures

Power has become the main limiting factor for the scalability of microprocessors

� Multi-cores architectures

Simultaneous use of a limited number of transistors� Heterogenous multi-cores

� Need for versatile hardware accelerators

accelerator

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 3

…and variability

Dramatic changes in the area of computing architectures

Robustness issues

� Robust accelerators

(Borkar 2005)

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 4

for new applications

Today : scientific computing, cryptography, …

Tomorrow : data Recognition, Mining, Synthesis

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 5

A potential answer : Neural networks

Neural Networks are good candidates

They provide Robustness

Good application scope

But classically limited by 2D hardware

solutions

� Limited interconnections, costly long range ones

� But the HW situation has changed !

Optimization

ClassificationClustering

Approximation

Prediction

Signal processing

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 6

• Context

• Exploiting resistive memories

• Analogue neurons and 3D-TSV

• Towards monolithic 3D…

• Conclusion

Outline

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 7

Volatile Memory

Polarizationchange

Charge Trap Resistance Change = memristorsDRAMSRAM

SONOSFLASH FRAMRRAM

Resistancechanges

Phasedependent Resistance changes

1

2’

2

V1V0

1’ “0””

I

oxide

1

2’

2

V1V0

1’ “0””

I 1

2’

2

V1V0

1’ “0””

I

oxide

Interface or bulk Resistance changes

Current -based Programming & Reading

MRAMPRAM

Non-Volatile Memory

MagnetoCharge -based Programming & Reading

New memory technologies

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 8

Memristors

DRAM FLASH MRAM PRAM RRAM

Nand STT OxRAM CBRAM

Compatibility

with CMOS - - - - + + + + +Scalability 32nm 15nm 20-30nm 10-20 nm 10 nm 10-20 nm

Density 6-8f2 4f2 35-40f2 4-6f2 4-6f2 4-6f2

Maturity + + + + - - - - - -Byte @ YES NO YES YES YES YES

Writing cycle 50ns 0.1 ms 20ns 100 ns 150 ns 1-10 us

Endurance 1,00E+16 1,00E+05 1,00E+15 1,00E+09 →1,00E+06 1,00E+06

Plus Perf. NV

Perf. + NV +

Endurance

Perf. + NV+

density

Perf. + NV+

density

Vitesse lect+

NV+ densité

Minus Scalability

Endurance

Perf - -

Costly tech.

Delay wrt

CMOS nodes

consumptio

n

Endurance,

Forming

Endurance,

Perf.

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 9

Memristor as a Synapse

Concept introduced by Chua

“Memristor-The missing circuit element” - 1971

Strukov & Snider developed it

“The missing memristor found” - Nature 2008

“Spike-timing-dependent learning in memristive

nanodevices” – Nanoarch 2008

Concept “memristor = synapse weight”

So easy ? u1

u2

s=u1+u2

w=1

w=1

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 10

Crossbar of Synapses

Require “gradually” programming memristorsDifficulty is to obtain equivalent potentiation / depression phases

D. Querlioz, et al. “Immunity to Device Variations in a Spiking Neural Network with MemristiveNanodevices,” IEEE TNANO 2013

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 11

Phase-Change Memories

Material with 2 stable phasesChalcogenide alloys : GST, GeTe, …

Hysteresis cycle between 2 states

Transition by Joule heating

Polycrystal Amorphous

High conductivity Low conductivity

Reversible

Phase Change

Amorphous

tQUENCH < 10 ns

Tmelt

Polycrystal

tQUENCH > 100 ns

TX

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 12

A solution: 2-PCM Synapse

Symmetric Long-Term-Potentiation and Long-Term

depression behavior by using pulsed crystallization.

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 13

• Context

• Exploiting resistive memories

• Analogue neurons and 3D -TSV

• Towards monolithic 3D…

• Conclusion

Outline

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 14

Analogue neurons

Compact design (5x gain vs digital)

Low power consumption (20x gain vs digital)

Ability to interface sensors directly with the

processing part

Computational efficiency

Leaky Integrate and Fire Neuron in CMOS 65nm

accept spikes in 1kHz-1 Mhz range

Drawback:

Large capacitance

required (0,5-1pF)

⇒MIM

⇒ Large area (not

scalable !)

A. Joubert et al. “A robust and compact 65 nm LIF analog neuron for computational purposes,” IEEE NEWCAS 2011

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 15

Through Silicon Vias

Used for crossing circuits in 3D stacking

Present large “parasitic” capacitance

Demonstrated feasibility

A. Joubert et al., “Capacitance of TSVs in 3-D stacked chips a problem? Not for neuromorphicsystems”, DAC’12

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 16

3D integration using TSV

(a)

(d)

(b)

(c)

Threshold

W. InjectionCapacitance

Back end

TSV

Chip 1

Chip 2

Front end

(a) Standard 2D

neuromorphic architecture

(b) 3D stacking with

standard 2D neurons

(c) et (d) 3D stacking

with TSV-based neurons

Chaabouni et. al. (2010)

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 17

• Context

• Exploiting resistive memories

• Analogue neurons and 3D-TSV

• Towards monolithic 3D…

• Conclusion

Outline

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 18

Brain is 3D !

• 3D technologies

• Parallel IntegrationDies fabricated separately then vertically stacked, such as:

�Through-Silicon-Via (TSV)

�Copper-to-Copper (Cu-Cu) contact

�High-Density TSVs

• Sequential IntegrationSecond transistor layer is fabricated directly on the top of first one.(Cold process)

� 3D Monolithic Integration (3DMI)

Interposer

TSV (~10um)

Cu-Cu (~3um)

3D

ve

rtic

al

inte

rco

nn

ect

s d

iam

ete

r3

D v

ert

ica

l in

terc

on

ne

cts

dia

me

terLow-density TSV (~50 µm)

TSV (~5-10µm)

HD-TSV (~ 1µm)

Cu-Cu (~ 1µm)

3D

ve

rtic

al

inte

rco

nn

ect

s d

iam

ete

r3

D v

ert

ica

l in

terc

on

ne

cts

dia

me

ter

3D MI(~100nm)

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 19

Monolithic 3D

Integration is monolithic using a “cold” process

Allows 100 nm 3D vias pitch

=> Open perspectives for real 3D implementation

P. Batude et al., "GeOI and SOI 3D Monolithic Cell integrations for High Density Applications" VLSIT 2009

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 20

2D versus 3D mapping on NN

Using 3D TSV allows a “cube” of neurons

Drastically reduce interconnects

Example shown here is 3x more efficient in 3D

184 neurons with 1181 connections

2-D 3-D

Cliquez pour modifier le style du titre

ASPDAC –24th January 2014 | 21

Conclusion

Neuromorphic architectures are appealingSolve dark silicon issues

Adapted to modern applications

And can take benefit of advances technologiesSynapse => Memristors = RRAM, PCM

Neurons => Analogue neurons + high-capacitance TSV

Interconnections => high-density 3D

The path is open for the next neuromorphic

revolution!

Centre de Grenoble

17 rue des Martyrs

38054 Grenoble Cedex

Centre de Saclay

Nano-Innov PC 172

91191 Gif sur Yvette Cedex

Questions ?