Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear...

65
Advanced numerical methods for nonlinear advection- diffusion-reaction equations Peter Frolkovič, University of Heidelberg

Transcript of Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear...

Page 1: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

Advanced numerical methodsfor nonlinear advection-

diffusion-reaction equationsPeter Frolkovič, University of Heidelberg

Page 2: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

2Kiel, 23.6.2006 [email protected]

Content

Motivation and background R3T

Numerical modellingadvectionadvection + retardation + reaction advection + nonlinear retardationadvective level set equation

Page 3: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

3Kiel, 23.6.2006 [email protected]

Motivation and BackgroundUG software toolbox - Unstructured Grids

“... to simplify the implementation of parallel adaptive multigrid method on unstructured grid for complex engineering applications.”

P. Bastian et. al. 1997

Page 4: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

4Kiel, 23.6.2006 [email protected]

Motivation and BackgroundLocally adapted multilevel grid

conformingmultilevel grid structure

coarsening possible

Page 5: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

5Kiel, 23.6.2006 [email protected]

Motivation and Background

D3F application based on UG (1995-1998)

Distributed Density Driven Flownumerical modelling of gravity induced flows near saltdomes

Frolkovic, De Schepper: Numerical modeling of convection dominated transport coupled with density driven flow in porous media;Advances in Water Resources, 2001

Page 6: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

6Kiel, 23.6.2006 [email protected]

Motivation and Background

R3T application based on UG(1999-2004)

Reaction Retardation Radionuclides Transportnumerical modelling of radioactive contaminant transport

F., Lampe, Wittum: r3t - software package for numerical simulations of radioactive contaminant transport in groundwater; WiR 2005

Page 7: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

[email protected], 23.6.2006

R3T

234

Np U Pu238

U U

238 238

233

RRRT - Radionuclides Reactions (Decay)

∂tCi=

∑k λkiCk

− λijCi

decay chains of up to 40 nuclides

Page 8: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

[email protected], 23.6.2006

R3TRRRT - Transport

Nuclides in flowing groundwater

Np U Pu238

U U

238 238

233 234

convection-dispersion-diffusion PDEs (up to 40)

∂tCi + "V ·∇Ci − ∇ · Di("V )∇Ci = . . .

Page 9: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

[email protected], 23.6.2006

R3TRRRT - Retardation of transport

Nuclides in flowing groundwater

Np U Pu

immobilizationsorption

238

U U

238 238

233 234

up to 120 additional ordinary differential equations

∂t

(RiCi

)+ ki

(KiCi − Ci

ad

)+ . . .

Page 10: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

10Kiel, 23.6.2006 [email protected]

R3TIllustrative example (see video on my homepage)

∂t

(RiCi

)+ ki

(KiCi − Ci

ad

)+ . . .

Page 11: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

11Kiel, 23.6.2006 [email protected]

R3TLinear case

Nuclides in flowing groundwater

Np U Pu

immobilizationsorption

238

U U

238 238

233 234

∂t

(RiCi

)+ ki

(KiCi

− Ciad

)+ . . .

Page 12: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

12Kiel, 23.6.2006 [email protected]

R3T

Nuclides in flowing groundwater

Np U Pu

immobilizationsorption

U U

238

233 234

238238

Nonlinear case

∂t

(Ri(C)Ci

)+ ki

(Ki(C)Ci

− Ciad

)+ . . .

Page 13: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

13Kiel, 23.6.2006 [email protected]

R3T

∗ 0 0

0 ∗ 0

0 0 ∗

∂tU238

∂tP238

∂tU234

+

T 0 0

0 T 0

0 0 T

U238

P 238

U234

+

∗ 0 0

0 ∗ 0

∗ ∗ ∗

U238

P 238

U234

= 0

T := !u ·∇−∇ · D∇

234

U Pu

U

238 238

Sparsity of differential equations

Page 14: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

14Kiel, 23.6.2006 [email protected]

R3T

Tii Tij Tik 0 0 0 0 0 0

Tji Tjj Tjk 0 0 0 0 0 0

Tki Tkj Tkk 0 0 0 0 0 0

0 0 0 Tii Tij Tik 0 0 0

0 0 0 Tji Tjj Tjk 0 0 0

0 0 0 Tki Tkj Tkk 0 0 0

0 0 0 0 0 0 Tii Tij Tik

0 0 0 0 0 0 Tji Tjj Tjk

0 0 0 0 0 0 Tki Tkj Tkk

U238i

U238j

U238k

P 238i

P 238j

P 238k

U234i

U234j

U234k

Sparsity of discrete equations

local stiff matrix for a triangle finite element

Page 15: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

15Kiel, 23.6.2006 [email protected]

R3T

Jsparse:Daa=" *00 0*0 ***";Jsparse:Taa=" a00 0a0 00a";

234

U Pu

U

238 238

Sparse matrix storage method (Neuss, 1999)

Page 16: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

16Kiel, 23.6.2006 [email protected]

R3T - numerical modellingFinite volume methods

Grid - unstructurednumerical solution given pointwisegradient easily obtained from FE interpolation

vertex-centred finite volume method (FVM)finite volume mesh dual to finite elements

i

xx k

ijxj

i

T e

!"

"e

ik

Page 17: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

17Kiel, 23.6.2006 [email protected]

R3T - numerical modellingNumerical solution

piecewise linear, continuous

piecewise constant, discontinuous

piecewise linear reconstruction, discontinuousc(tn, x) = cn

i, x ∈ Ωi

c(tn, x) = cni + ∇|T ecn · (x − xi) , x ∈ T e

c(tn, x) = cni

+ ∇|Ωicn · (x − xi) , x ∈ Ωi

Page 18: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

18Kiel, 23.6.2006 [email protected]

Motivation and Background

Numerical modellingnumerical algorithms fit analytical model

preserving physical properties, ...stable, consistent, ...

available, simple and good in general:unstructured gridsrobust for rough data, ... (1st order schemes)

precise for smooth parts, ... (2nd order schemes)

Page 19: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

19Kiel, 23.6.2006 [email protected]

Advection-Diffusion-DispersionModel equation

∂tc +∇ · "J = 0 , "J = "V c−D∇c

Page 20: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

20Kiel, 23.6.2006 [email protected]

Advection-Diffusion-DispersionModel equation

FVM

exact integral formulation:

∂tc +∇ · "J = 0 , "J = "V c−D∇c

|Ωi|cn+1i = |Ωi|cn

i −∆tn∑

Jn+1/2ij

∫Ωi

c(tn+1) =∫

Ωi

c(tn)−tn+1∫tn

∑ ∫∂Ωi∩∂Ωj

!n · !J

Page 21: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

21Kiel, 23.6.2006 [email protected]

Advection-Diffusion-DispersionModel equation

FVM

physical property - “mass”

∂tc +∇ · "J = 0 , "J = "V c−D∇c

|Ωi|cn+1i = |Ωi|cn

i −∆tn∑

Jn+1/2ij

|Ωi|cni :≈ ∫

Ωic(tn, x) dx

Page 22: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

22Kiel, 23.6.2006 [email protected]

Advection-Diffusion-DispersionModel equation

FVM

physical property - “conservation law”

∂tc +∇ · "J = 0 , "J = "V c−D∇c

|Ωi|cn+1i = |Ωi|cn

i −∆tn∑

Jn+1/2ij

Jn+1/2ij = −Jn+1/2

ji

Page 23: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

23Kiel, 23.6.2006 [email protected]

Advection-Diffusion-DispersionModel equation

FVM

fully coupled implicit discretization

multigrid linear solver, ...

∂tc +∇ · "J = 0 , "J = "V c−D∇c

|Ωi|cn+1i = |Ωi|cn

i −∆tn∑

Jn+1/2ij

Jn+1/2ij = Jij(cn+1

i , cn+1j , · · ·)

Page 24: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

24Kiel, 23.6.2006 [email protected]

AdvectionModel equation

∂tc + ∇ ·

("V c

)= 0

Page 25: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

25Kiel, 23.6.2006 [email protected]

AdvectionMotivation - exact “simulation” (see video on my homepage)

Page 26: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

26Kiel, 23.6.2006 [email protected]

AdvectionModel equation

∂tc + ∇ ·

("V c

)= 0

Page 27: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

27Kiel, 23.6.2006 [email protected]

AdvectionModel equation

FVM∂tc + ∇ ·

("V c

)= 0

|Ωi|cn+1i = |Ωi|cn

i −∆tn∑

Vijcn+1/2ij

Page 28: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

28Kiel, 23.6.2006 [email protected]

AdvectionModel equation

FVM

physical property - “mass”

∂tc + ∇ ·

("V c

)= 0

|Ωi|cn+1i = |Ωi|cn

i −∆tn∑

Vijcn+1/2ij

|Ωi|cni :≈ ∫

Ωic(tn, x) dx

Page 29: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

29Kiel, 23.6.2006 [email protected]

AdvectionModel equation

FVM

physical property - “conservation law”

∂tc + ∇ ·

("V c

)= 0

Vij = −Vji , cn+1/2ij = cn+1/2

ji

|Ωi|cn+1i = |Ωi|cn

i −∆tn∑

Vijcn+1/2ij

Page 30: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

30Kiel, 23.6.2006 [email protected]

AdvectionModel equation

FVM

physical property - “characteristic curves”

cn+1/2ij :=?

|Ωi|cn+1i = |Ωi|cn

i −∆tn∑

Vijcn+1/2ij

∂tc + ∇ ·

("V c

)= 0

Page 31: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

31Kiel, 23.6.2006 [email protected]

Advection - 1st order schemeModel equation

FVM

Piecewise constant numerical solution

cn+1/2ij =

cni Vij > 0

cnj Vij < 0

|Ωi|cn+1i = |Ωi|cn

i −∆tn∑

Vijcn+1/2ij

∂tc + ∇ ·

("V c

)= 0

Page 32: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

32Kiel, 23.6.2006 [email protected]

Advection - 1st order schemeModel equation

FVM

physical property - “residence time”

∂tc + ∇ ·

("V c

)= 0

|Ωi|cn+1i = |Ωi|cn

i −∆tn∑

Vijcn+1/2ij

0 = |Ωi|− τi∑

max0, Vij

Page 33: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

33Kiel, 23.6.2006 [email protected]

Advection - 1st order schemeModel equation

FVM

physical property - “CFL condition”

∂tc + ∇ ·

("V c

)= 0

|Ωi|cn+1i = |Ωi|cn

i −∆tn∑

Vijcn+1/2ij

∆tn ≤ τi

Page 34: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

34Kiel, 23.6.2006 [email protected]

Advection - 1st order schemeCourant number = 1

Courant number > 1

Courant number < 1

Page 35: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

35Kiel, 23.6.2006 [email protected]

Advection - 1st order schemeFlux-based method of characteristicsDistributeMass(j, t0, τ , q)

t0 = t0 + τj ;if (t0 ≥ tn+1) then

bj = bj + τ q ;return;

if (t0 + τ > tn+1) then

bj = bj + (τ − (tn+1 − t0)) q ;τ = tn+1 − t0 ;

jm−1 = j ;for (jm−2 ∈ Λout

jm−1)

DistributeMass(jm−2, t0, τ ,vjm−1jm−2

vjm−1q) ;

return ;

F.: Flux-based method of characteristics for transport in porous media; CVS, 2002

Page 36: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

36Kiel, 23.6.2006 [email protected]

Advection and Reaction and Retardation

Courant number

Computation time

≈ 5

≈ 2.5 hours

Page 37: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

37Kiel, 23.6.2006 [email protected]

Advection and Reaction and Retardation

Courant number

Computation time ≈ 1.7 hours

≈ 15

Page 38: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

38Kiel, 23.6.2006 [email protected]

Advection and Reaction and RetardationExample of 3 radionuclides

R1=1, R2=3, R3=9, small physical dispersion

V = (1,0), small dispersion, linear decay chaininitially only 1st component non-zero

Page 39: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

39Kiel, 23.6.2006 [email protected]

Advection and Reaction and RetardationExample of 3 radionuclides

R1=1, R2=3, R3=9, small physical dispersion

2nd order Godunov method with many time steps

Page 40: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

40Kiel, 23.6.2006 [email protected]

Advection and Reaction and RetardationExample of 3 radionuclides

R1=1, R2=3, R3=9, small physical dispersion

standard operator splitting method, 2 time steps

2nd order Godunov method with many time steps

Page 41: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

41Kiel, 23.6.2006 [email protected]

Advection and Reaction and RetardationExample of 3 radionuclides

R1=1, R2=3, R3=9, small physical dispersion

flux-based method of characteristics

F.: Flux-based method of characteristics for coupled system of transport equations in in porous media; CVS, 2002

Page 42: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

42Kiel, 23.6.2006 [email protected]

AdvectionGodunov method

use exact solution of related simpler problem1D Riemann’s problem

justified by numerical hyperbolic equationse.g., 1D advection => 1st order upwind m.

High-resolution FVMpiecewise linear numerical solutionstructured grid - Leveque 2002unstructured grid? (e.g., Sonar 1993)

Page 43: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

43Kiel, 23.6.2006 [email protected]

Advection and retardationModel equation

Fast sorption (equilibrium)

linear case

R := 1 + 1−φφ ρK

R = R(x)

∂t (Rφc) +∇ ·(

#V c)

= 0

Page 44: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

44Kiel, 23.6.2006 [email protected]

Advection and retardationExample - Henry isotherm (see video on my homepage)

R = 2

Page 45: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

45Kiel, 23.6.2006 [email protected]

Advection and retardationModel equation

Fast sorption

nonlinear case

R := 1 + 1−φφ ρK

R = R(x, c)

∂t (Rφc) +∇ ·(

#V c)

= 0

Page 46: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

46Kiel, 23.6.2006 [email protected]

Advection and retardationExample - Freundlich isotherm (see video on my homepage)

R = 1 + up−1

Page 47: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

47Kiel, 23.6.2006 [email protected]

Advection and retardationNonlinear hyperbolic equation

shocks

correct speedsharp also with diffusion

rarefaction waves0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3 3.5

x

∂tθ + ∇ ·

(#V c

)= 0

θ = θ(c), c = θ−1(c)

F., Kačur: Semi-analytical solutions of contaminant transport equation with nonlinear sorption in 1D; Comp. Geosciences, 2006, to appear

Page 48: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

48Kiel, 23.6.2006 [email protected]

Advection and retardationImplementation (see video on my homepage)

linear sorption nonlinear sorption

Page 49: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

49Kiel, 23.6.2006 [email protected]

Advection - 1st order methodTrivial example∂tc + "V ·∇c = 0 , "V ·∇c(0, x) ≡ const

cn+1i = cn

i −∆tnconst

Page 50: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

50Kiel, 23.6.2006 [email protected]

Advection - 1st order methodConsistent for structured grid?∂tc + "V ·∇c = 0 , "V ·∇c(0, x) ≡ const

|Ωi|cn+1i = |Ωi|cn

i −∆tn∑

Vijcn+1/2ij

Page 51: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

51Kiel, 23.6.2006 [email protected]

Advection - 1st order methodConsistent for structured grid!∂tc + "V ·∇c = 0 , "V ·∇c(0, x) ≡ const

|Ωi|cn+1i = |Ωi|cn

i −∆tn∑

Vijcn+1/2ij

Page 52: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

52Kiel, 23.6.2006 [email protected]

Advection - 1st order methodNonconsistent for unstructured grid!∂tc + "V ·∇c = 0 , "V ·∇c(0, x) ≡ const

|Ωi|cn+1i = |Ωi|cn

i −∆tn∑

Vijcn+1/2ij

Page 53: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

53Kiel, 23.6.2006 [email protected]

Advection - 1st order method (200x200)t = 0

0 0.5 10

0.5

1

t = 0.19635

0 0.5 10

0.5

1t = 0.3927

0 0.5 10

0.5

1

t = 0.58905

0 0.5 10

0.5

1t = 0.7854

0 0.5 10

0.5

1t = 0.98175

0 0.5 10

0.5

1

t = 1.1781

0 0.5 10

0.5

1t = 1.3744

0 0.5 10

0.5

1t = 1.5708

0 0.5 10

0.5

1

Page 54: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

54Kiel, 23.6.2006 [email protected]

AdvectionLevel set equation

∂tc + "V ·∇c = 0 , ∇ · "V = 0

Page 55: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

55Kiel, 23.6.2006 [email protected]

AdvectionLevel set equation

FVM

|Ωi|cn+1i = |Ωi|cn

i −∆tn∑

Vijcn+1/2ij

∂tc + "V ·∇c = 0 , ∇ · "V = 0

Page 56: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

56Kiel, 23.6.2006 [email protected]

AdvectionLevel set equation

FVM

physical property - “value”

|Ωi|cn+1i = |Ωi|cn

i −∆tn∑

Vijcn+1/2ij

cni :≈ c(tn, xi)

∂tc + "V ·∇c = 0 , ∇ · "V = 0

Page 57: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

∂tc + "V ·∇c = 0 , ∇ · "V = 0

57Kiel, 23.6.2006 [email protected]

AdvectionLevel set equation

FVM

physical property - “characteristic curves”

|Ωi|cn+1i = |Ωi|cn

i −∆tn∑

Vijcn+1/2ij

cn+1/2ij := c(tn,Xij(tn))

Page 58: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

∂tc + "V ·∇c = 0 , ∇ · "V = 0

58Kiel, 23.6.2006 [email protected]

Advection - 2nd order schemeLevel set equation

FVM

physical property - “characteristic curves”

|Ωi|cn+1i = |Ωi|cn

i −∆tn∑

Vijcn+1/2ij

cn+1/2ij := c(tn,Xij(tn))

cn+1/2ij := cn

ij − ∆tn

2!Vi ·∇cn

i

Page 59: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

59Kiel, 23.6.2006 [email protected]

Advection - 1st versus 2nd order method

0,20 0,8

X

Y

0,4

0,6

0,8

0

1

0,2

10,60,4

t = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page 60: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

60Kiel, 23.6.2006 [email protected]

Advection - 1st order method (200x200)t = 0

0 0.5 10

0.5

1

t = 0.19635

0 0.5 10

0.5

1t = 0.3927

0 0.5 10

0.5

1

t = 0.58905

0 0.5 10

0.5

1t = 0.7854

0 0.5 10

0.5

1t = 0.98175

0 0.5 10

0.5

1

t = 1.1781

0 0.5 10

0.5

1t = 1.3744

0 0.5 10

0.5

1t = 1.5708

0 0.5 10

0.5

1

Page 61: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

61Kiel, 23.6.2006 [email protected]

Advection - 2nd order method (200x200)t = 0

0 0.5 10

0.5

1

t = 0.19635

0 0.5 10

0.5

1t = 0.3927

0 0.5 10

0.5

1

t = 0.58905

0 0.5 10

0.5

1t = 0.7854

0 0.5 10

0.5

1t = 0.98175

0 0.5 10

0.5

1

t = 1.1781

0 0.5 10

0.5

1t = 1.3744

0 0.5 10

0.5

1t = 1.5708

0 0.5 10

0.5

1

Page 62: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

62Kiel, 23.6.2006 [email protected]

Advection - 2nd order method (200x200)t = 0

0 0.5 10

0.5

1

t = 0.3927

0 0.5 10

0.5

1t = 0.7854

0 0.5 10

0.5

1

t = 1.1781

0 0.5 10

0.5

1t = 1.5708

0 0.5 10

0.5

1t = 1.9635

0 0.5 10

0.5

1

t = 2.3562

0 0.5 10

0.5

1t = 2.7489

0 0.5 10

0.5

1t = 3.1416

0 0.5 10

0.5

1

Page 63: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

63Kiel, 23.6.2006 [email protected]

Advection

Flux-based level set method (see video on my homepage)

F., Mikula: High resolution flux-based level set method; 2005

Page 64: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

64Kiel, 23.6.2006 [email protected]

Nonlinear advective level set equation

Example with topological changes (see video on my homepage)

F., Mikula: Flux-based level set method: finite volume emthod for evolving interfaces; 2002

Page 65: Advanced numerical methods for nonlinear advection- …pfrolkovic/kiel.pdffor nonlinear advection-diffusion-reaction equations Peter Frolkovič, University of Heidelberg Kiel, 23.6.2006

65Kiel, 23.6.2006 [email protected]

ConclusionsNumerical modelling

numerical algorithms fit analytical model preserving physical properties, ...stable, consistent, ...

available, simple and good in generalunstructured gridsrobust for rough data, ... (1st order schemes)

precise for smooth parts, ... (2nd order schemes)