Advanced mathematic engineering -...

19
(Principle of Least Action) Hamilton’s Principle

Transcript of Advanced mathematic engineering -...

  • (Principle of Least Action)

    Hamilton’s Principle

  • Hamilton’s Principle

    The path that a dynamical system taken in moving from point 1 at time t1

    to another point 2 at time t2 which satisfies the Newton’s law minimizes

    the functional: 2

    1

    t

    tI L dt

    L T V

    In which the Lagrangian L is:

    Where T is the “Kinetic energy” and V is “Potential energy”.

  • Example (vibrating system): For the system,

    n2

    i ii 1

    1T m x

    2

    n2

    i ii 1

    1V k x

    2

    2 2

    1 2

    1 1T Mx Mx

    2 2

    2 2 2

    1 1 2 1 2 1 2

    1 1 1V k x k ( x x ) k x

    2 2 2

    L T V

    2

    1

    t

    tI (T V )dt

  • I 0 1 1

    2 2

    F d F0

    x dt x

    F d F0

    x dt x

    1 1 2 2 1 1

    1 2 2 2 1 2

    dk x k ( x x ) Mx 0

    dt

    dk x k ( x x ) Mx 0

    dt

    2

    1

    t 2 2 2 2 2

    1 2 1 1 2 2 1 1 2t

    I

    1 1M ( x x ) k x k ( x x ) k x dt

    2 2

    1 1 2 1 2 2

    2 2 1 1 2 2

    Mx ( k k )x k x

    Mx k x ( k k )x

    1 1 2 2 1

    2 2 1 2 2

    x k k k xM 0

    x k k k x0 M

    1 1 1

    2 2 2

    x Asin( t )

    x B sin( t )

  • x sin , y cos y

    x

    l

    Datum Δh 2 21

    T m( x y )2

    x cos , y sin

    2 2 2 2 2 21 1T m (cos sin ) m

    2 2

    h cos ( 1 cos )

    V mg h V mg ( 1 cos )

    2 21L T V m mg ( 1 cos )

    2

    L d LE .L . ( ) 0

    dt

    2d

    mg sin ( m ) 0dt

    g

    sin

    Example: Motion of a Pendulum Find the angular acceleration of a pendulum of length .

  • 2

    0

    1I EIy q( x ) y ( x ) dx

    2

    Example (Deflection of a simply supported beam):

    I 0

    l

    0EIy y q( x ) y dx 0

    l l

    0 0

    2l

    20

    EIy y ( EIy ) y

    dEIy q( x ) ydx 0

    dx

    EIy ( x ) q( x ) (Euler equation of the functional above)

    EIy ( 0 ) EIy ( ) 0

    y ( 0 ) y ( ) 0

    Natural boundary conditions

    q(x)

    y(x)

  • Eq. EIy ( x ) q( x )

    0EIy y ? B.C.

    0EIy y ?

    ,

    but

    but

    but

    but

    q(x)

    x 0y ( 0 ) 0 y 0

    x 0EIy 0

    xEIy 0

    xy ( ) is not specified y 0

    x 0EIy 0

    x 0y ( 0 ) 0 y 0

    xEIy 0

    xy ( ) is not specified y 0

    0EIy y 0

    0, EIy y 0

  • 0( EIy y q( x ) y )dx 0

    Integration by parts:

    0

    0

    ( EIy y q( x ) y )dx

    EIy y 0

    by parts again:

    0

    0 0

    ( EIy y q( x ) y )dx

    EIy y EIy y 0

    EIy ( x ) q( x ) 0

    How to find the functional from corresponding Euler equation?

    dv u

    udv

    21EIy y EI y

    2

    q y qy

  • 2

    0

    0 0

    1( EIy q( x ) y )dx

    2

    EIy y EIy y 0

    STRONG FORM 0 0EIy y EIy y 0

    2

    0

    1I EIy q( x ) y ( x ) dx

    2

    EIy ( x ) q( x ) 0

    2

    0

    1I EIy q( x ) y ( x ) dx

    2

    Subject to B.C so that. :

    WEAK FORM

  • Now assume an external moment M1 at the end of the cantilever beam:

    xEIy y

    Now we solve:

    l 2

    0

    1( EIy q( x ) y )dx My 0

    2

    1xEIy M

    q(x)

    M1

    0EIy y 0

    1 x( M y )

    1 x( M y )

    What does it mean according to Hamilton’s principle?

  • )(02

    py

    dx

    dyF

    dx

    d

    Another example: small deflections of a rotating string:

    y(x): displacement F(x): tension in the string ρ(x): linear mass density w: angular velocity of rotation p(x): intensity of a distributed laod

    Multiply by δy and integrate: 0)( 0

    )(0

    21

    2

    022

    l

    py

    l

    y

    l

    dxypdxyyydxdx

    dyF

    dx

    d

    Integrate the first term by parts:

    0)()(2

    100

    22

    0

    )(2

    1

    0

    2

    lll

    dx

    dyF

    l

    dxpydxypwdxydx

    dyFy

    dx

    dyF

  • If we impose:

    0

    0

    1

    0

    00

    lxlx

    xx

    dx

    dyForyy

    dx

    dyForyy

    0)(2

    1

    2

    1

    00

    222

    ll

    ydx

    dyFdx

    dx

    dyFpyyw

    The boundary terms vanishes and we obtain:

    )(0)(2

    1

    2

    1

    0

    222

    dxdx

    dyFpyyw

    l

    are the so-called “natural boundary conditions” The end conditions 00

    l

    ydx

    dyF

  • 2)(2

    1wySpeed of an element of the string= wy

    (Kinetic energy of string per unit length)

    pyThe work done by p (Potential energy per unit length due to P)

    2)(2

    1

    dx

    dyF Potential energy per unit length due to tension F)

  • 00

    )(

    x

    x

    Kydx

    dyF

    In case of yielding support at the end x=0

    Since this term would not vanish, we write:

    If the slope of the string at the end x=0 were prescribed as y’(0)=α

    0)2

    1()(

    2

    1

    2

    1

    0

    2

    0

    222

    x

    l

    Kydxdx

    dyFpyyw

    000

    )()()(

    xx

    x

    FyyFydx

    dyF Then

    and we write:

    0)0()0()(2

    1

    2

    1

    0

    222

    yFdxdx

    dyFpyyw

    l

  • ty

    Example: motion of an elastic string Use Hamilton’s principls to derive the wave equation for small transverse ascillations of a taut string. Solution: Let ρ : linear density T : tension

    Transverse speed of any part of the string :

    l

    dxt

    yT

    0

    2)(

    l

    dxdsTV0

    )(

    But: dxdx

    dx

    dydxdydxdxds

    21

    221

    22 )(1)()(

    Since: ...)(

    2

    11)(1 2

    21

    2

    dx

    dy

    dx

    dy

    ds

    dx y

    x x

    y

  • Since it is small oscillation we will take the first two terms:

    dxdx

    dydxds 2)(

    2

    1

    l

    dxdx

    dyTV

    0

    2)(2

    1

    dxdx

    dyT

    dt

    dyVTL

    l

    0

    22 )(2

    1)(

    2

    1

    dxdtdx

    dyT

    dt

    dyI

    t

    t

    l

    2

    1 0

    22 )(2

    1)(

    2

    1

  • Euler-Ostrogradsky:

    22

    2

    1

    2

    1yTyL

    0)()(

    y

    L

    xy

    L

    ty

    L

    0)()(

    yT

    xy

    t

    0)()(

    x

    y

    xT

    t

    y

    t

    2

    2

    2

    2

    t

    y

    Tx

    y

    Wave equation

  • Example: A bead of mass m slides freely on a frictionless circular wire of

    radius r that rotates in a horizontal plane about a point on the circular

    wire with a constant angular velocity w. show that the bead oscillates as a

    pendulum of length l=g/w2 about the line joining the center of the circle and the point of rotation.

    x r cos t r cos( t )

    y r sin t r sin( t )

    Since the motion is taken place in a horizontal

    plane, the potential energy can be taken as zero, v=0 .

    x r sin t r ( ) sin( t )

    y r cos t r ( )cos( t )

    2 21T m( x y )

    2

    r

    C r

    θ Φ=wt

    Φ=wt

    bead

    O

  • 2 2 21

    T mr ( ) 2 ( )cos ( t ) t2

    2 2 21T mr ( ) 2 ( )cos

    2

    L d L( ) 0

    dt

    2mr ( ) sin sin 0

    2sin

    2 2 2 2 2 2

    2

    2 2 2 2 2 2

    2

    r sin t r ( ) sin ( t )

    2 r ( ) sin t sin( t )1T m

    2 r cos t r ( ) cos ( t )

    2 r ( )cos t cos( t )

    gPendulum Motion : sin

    2

    g