Advanced Gear AWD Systems - EAWD Congress

22
Michael Braunstingl AVL List GmbH (Headquarters) Public Advanced Gear Optimization for AWD Systems

Transcript of Advanced Gear AWD Systems - EAWD Congress

Page 1: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl

AVL List GmbH (Headquarters)

Public

Advanced Gear

Optimization for

AWD Systems

Page 2: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 2 Public

Content

1. Introduction

• Gears in AWD Systems

• Why is the hypoid gear so difficult to optimize?

• Optimization Method: “Design of Experiment” (DOE)

• Evaluation of DOE Results

2. Simulation Models

• Base Variant Analysis Workflow

• Assembly Static Simulation Model

• Assembly Dynamic Simulation Model

3. Gear Optimization Workflow

• General Description

• Can a single tool handle the entire optimization?

• Macro Geometry Optimization

• Micro Geometry Optimization

4. Model Validation

5. Summary and Outlook

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

Page 3: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 3 Public

Content

1. Introduction

• Gears in AWD Systems

• Why is the hypoid gear so difficult to optimize?

• Optimization Method: “Design of Experiment” (DOE)

• Evaluation of DOE Results

2. Simulation Models

• Base Variant Analysis Workflow

• Assembly Static Simulation Model

• Assembly Dynamic Simulation Model

3. Gear Optimization Workflow

• General Description

• Can a single tool handle the entire optimization?

• Macro Geometry Optimization

• Micro Geometry Optimization

4. Model Validation

5. Summary and Outlook

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

Page 4: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 4 Public

Introduction Gears in AWD Systems

Variable speed transmission with cylindrical gears

• Parameters well understood

• Analytical tooth contact equations

• Simple production process

• Stable contact pattern with increasing load

Topic today: Differential transmission with hypoid gears

• Transfer very high loads

• Contact pattern varies with increasing load “E, P, G, a”

• Tooth geometry defined by machine settings

• Complicated production processes

• Gear design based on “experience” with manual variation of parameters

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

E

P

G

α

+

-

-

+

-

+

Page 5: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 5 Public

Lapping / Grinding Cutting Heat Treatment

Introduction Why is the hypoid gear so difficult to optimize?

Define macro geometry • Machine motion • Cutter blade geometry

(+ tolerances)

Improve load carrying capacity • Introduces geometrical

distortions

Define micro geometry • Lapping as accelerated wear

(non-deterministic) • Better control over geometry

with grinding

Face Hobbing

& Lapping

NVH

Control over result

Face Milling & Grinding

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

Video: Hypoid Cutting (FH)

Page 6: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 6 Public

Introduction Optimization Method: “Design of Experiment” (DOE)

Extremum problem Find the gear geometry variant that is robust against manufacturing tolerances,

assembly errors, deflection

Geometry definition: Pressure angle Spiral angle Cutter head diameter Tooth height Tooth root radius ...

Disturbance:

Assembly Errors Manufacturing

tolerances Temperature, Load

(EPGa)

Output: TE, NVH Efficiency Life

DOE variants Transmission Error

Base variant

Efficiency

Input parameters Hypersurface

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

Page 7: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 7 Public

Introduction Evaluation of DOE Results

NVH

Efficiency Bending strength

Video: Selection of gear geometry parameters

Lead Profile

Optimized TE

Trade-off Optimized efficiency

Base version Effic

iency

Transmission Error

Targ

et

variable

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

Torque

Page 8: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 8 Public

Content

1. Introduction

• Gears in AWD Systems

• Why is the hypoid gear so difficult to optimize?

• Optimization Method: “Design of Experiment” (DOE)

• Evaluation of DOE Results

2. Simulation Models

• Base Variant Analysis Workflow

• Assembly Static Simulation Model

• Assembly Dynamic Simulation Model

3. Gear Optimization Workflow

• General Description

• Can a single tool handle the entire optimization?

• Macro Geometry Optimization

• Micro Geometry Optimization

4. Model Validation

5. Summary and Outlook

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

Page 9: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 9 Public

Base Variant Analysis Workflow

Hypoid geometry (.spa file)

Feedback loop

Testbed Model: Dynamic MBS AVL EXCITE

„Summarized mesh point‟ data

Loaded TCA Ansol CALYX

Noise vibration and harshness (NVH) Gear deflection EPGa

@ certain loads eg: - 30 % + 10 % + 50 % + 100 %

Load spectrum • Block based

model

• Condensed FE bodies

• Joints for bearings, gears, bushings

Magnitude - Pos10 5 10 15 20 25

30

35

40

100

150

200

250

300

350

400

450

500

550

600

sp

ee

d

0 50 100 150 200 250

Frequency (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2Magnitude (mm/s)

• Dynamic TE

• Campbell plots

• Structure- borne and airborne noise

Assembly Model Abaqus FEA

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

Page 10: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 10 Public

Assembly Static Simulation Model Simulia Abaqus FEA

Bearing stiffness modelling (preload, temperature, wear)

Plastic/elastic material properties (e.g. shims)

Hypoid gear contact modelling at „summarized mesh point‟ supported by numerical TCA in Finite Element solver

Housing with boundary conditions

Shaft deflections

Roller bearing Shaft Torque transfer path Bevel gear

• Constraints • Bushings • Thermal conditions

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

Page 11: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 11 Public

Assembly Dynamic Simulation Model AVL EXCITE

AVL EXCITE is a block based multi body simulation tool using finite element flexible bodies

Housing

Shafts

Rolling element bearings

Flexible cylindrical gears (analytical solution)

TCA joint (precalculated solution)

Intermediate Shaft 2

SHYP_TCA joint

Requires “summarized mesh point” data:

location, force, kinematic TE, meshing stiffness Mesh force and torque are applied onto the condensed centroid nodes of FE parts.

Pinion Shaft

Differential Case Intermediate Shaft 1

Bushing 1 Bushing 2 Bushing 3

Testbed Ground

Hypoid

Gearbox Housing

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

Page 12: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 13 Public

Content

1. Introduction

• Gears in AWD Systems

• Why is the hypoid gear so difficult to optimize?

• Optimization Method: “Design of Experiment” (DOE)

• Evaluation of DOE Results

2. Simulation Models

• Base Variant Analysis Workflow

• Assembly Static Simulation Model

• Assembly Dynamic Simulation Model

3. Gear Optimization Workflow

• General Description

• Can a single tool handle the entire optimization?

• Macro Geometry Optimization

• Micro Geometry Optimization

4. Model Validation

5. Summary and Outlook

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

Page 13: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 14 Public

Gear Optimization Workflow General Description

Tooth geometry variations

Unloaded TCA Loaded TCA

Testbed Model: Dynamic MBS AVL EXCITE

Robustness Analysis

Load, temperature

(= EPGa)

Magnitude - Pos10 5 10 15 20 25

30

35

40

100

150

200

250

300

350

400

450

500

550

600

sp

ee

d

0 50 100 150 200 250

Frequency (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2Magnitude (mm/s)

• Multi dimensional optimization / trade-off against NVH, efficiency, bending strength

• Target lowest sensitivity to EPGa deflection

Preselection

Robustness against EPGa

50-100 variants

remaining

Preselection

Robustness against TE

3-5 variants remaining

DOE plan AVL CAMEO

~ 500-1000 variants

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

Resulting geometry must be manufacturable

Page 14: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 15 Public

Gear Optimization Workflow Can a single tool handle the entire optimization?

Advantages:

• Simple user interface

• Ease-off based optimization

• Quick response

• Manufacturability guaranteed

Disadvantages:

• No automation possible

• No external access to LTCA results

• Impossible to perform the entire DOE process

Commercially available gear design software

Combination of tools necessary

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

Page 15: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 16 Public

AVL EXCITE

1. Dynamic transmission error

2. NVH

Gear Optimization Workflow Macro Geometry

From base variant:

• EPGa variation space

(load, temperature)

Gleason GEMS

1. Design of gear macro and micro

geometry Consideration of manufacturing

tolerances by applying deviations in

machine settings

2. Analysis of: Geometrical contact pattern

(Ease-off based)

Kinematic transmission error

3. Processing automation by

hijacking KissSoft / GEMS interface

4. Manufacturability guaranteed

Unloaded TCA Loaded TCA

Ansol CALYX

1. Tooth bending strength

2. EXPORT.DAT: Time based, local results

AVL Python Scripts

3. Post-processing of TCA results: Analytical lubrication model

Flank damage models

4. Loaded and kinematic

transmission error

5. AVL EXCITE

look-up tables

Machine settings

Dynamics

Pre

sele

ction:

Robustn

ess a

gain

st

EPG

a

Pre

sele

ction:

Robustn

ess a

gain

st

NVH

pote

ntial

Abaqus FEA

DOE

+

.spa EPGa

Look-up Tables

EPGa

Input:

• 5-6 geometry

parameters

Tolerance study:

• Variation of machine

settings

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

Page 16: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 17 Public

AVL Python Script / Winkler Mattress Model based TCA

1. Contact pattern and transmission error optimization by applying local flank

perturbations

2. Feedback of flank deviation information into GEMS

3. Manufacturability guaranteed

Gear Optimization Workflow Micro Geometry

From base variant:

• EPGa variation space

(load, temperature)

Unloaded TCA Abaqus FEA

Optimized macro geometry

+

EPGa

LTCA results

3 - 5 variants only

Elastic Transmission Error

FFT T

E

Kinematic Transmission Error

Kin

. TE

LTCA Dynamics Look-up Tables

.spa EPGa

Mesh order

AVL EXCITE

1. Dynamic transmission error

2. NVH

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

A

dd

itio

na

l

mo

de

ls

Time

Page 17: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 18 Public

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

Content

1. Introduction

• Gears in AWD Systems

• Why is the hypoid gear so difficult to optimize?

• Optimization Method: “Design of Experiment” (DOE)

• Evaluation of DOE Results

2. Simulation Models

• Base Variant Analysis Workflow

• Assembly Static Simulation Model

• Assembly Dynamic Simulation Model

3. Gear Optimization Workflow

• General Description

• Can a single tool handle the entire optimization?

• Macro Geometry Optimization

• Micro Geometry Optimization

4. Model Validation

5. Summary and Outlook

Page 18: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 19 Public

AVL Validiation Test Rig

Goal: Reduce development time

.

.

Validation

Improved product quality

Hypoid Gear Component Testing

Simulation Specialized Gear Rig Validation

Test bed dedicated for model validation by isolating gear pair failures

Benefits

Line of Action

Summarized

Mesh Point

Improved control over gear contact control and additional measurements

Isolation of gear pair failure modes from axle assembly

Quality control on component level: NVH, root bending life, surface and subsurface damage, efficiency

AVL philospophy: Accurate modelling reduces time required in design and prototyping

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

Page 19: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 20 Public

Content

1. Introduction

• Gears in AWD Systems

• Why is the hypoid gear so difficult to optimize?

• Optimization Method: “Design of Experiment” (DOE)

• Evaluation of DOE Results

2. Simulation Models

• Base Variant Analysis Workflow

• Assembly Static Simulation Model

• Assembly Dynamic Simulation Model

3. Gear Optimization Workflow

• General Description

• Can a single tool handle the entire optimization?

• Macro Geometry Optimization

• Micro Geometry Optimization

4. Model Validation

5. Summary and Outlook

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

Page 20: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 21 Public

Workflow Summary

1. Customer request for optimization

2. Base variant analysis • Input: Initial gear geometry, load spectrum • Output: EPGa as function of load and temperature

3. Optimization by Design of Experiment (DOE)

• Input: Variation of EPGa and gear geometry parameters (+ disturbances)

• Output: Hypersurfaces for target variables; Pareto-optimum; intersection plots

4. Model validation • Isolation of gear pair failure modes • Controlled environment

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

Page 21: Advanced Gear AWD Systems - EAWD Congress

Michael Braunstingl | EAWD19 | 10 May 2019 | 22 Public

Outlook

Pitting and Spalling safety Abaqus FEA / AVL Python Script • Mapped contact conditions from LLTCA • Enhanced material model • Subsurface crack initiation life

Manufacturing Tolerances CALYX LTCA • Coordinate Measurement Machine

(CMM) results • Effect on root bending life

Lubricated Contact Analysis (LLTCA) AVL Python Script • Analytical EHL formulation • Surface shear stress • Thermal stress

Surface damage models AVL Python Script • Fretting / scuffing • Surface wear

Loaded TCA

• Tooth bending strength • Geometrical contact

conditions • Dry contact pressure

Intr

od

uc

tio

n

Ba

se

Va

ria

nt

An

aly

sis

Ge

ar

Op

tim

iza

tio

n

Va

lid

ati

on

S

um

ma

ry

Model Validation AVL’s dedicated specialized gear rig

Page 22: Advanced Gear AWD Systems - EAWD Congress

www.avl.com

Thank You