Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed...

download Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Vegetation

of 25

Transcript of Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed...

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    1/25

    US Army 

    Corps

     

    of

     Engineers®  

    Engineer

     Research

     

    and  

    Development

     

    Center

     

    Aquatic

    Plant Control Research

     

    Program  

    Advanced

     Digital Processing 

    of

     

    Echo

     

    Sounder

     

    Signals

     

    for

     

    Characterization

     

    of

     

    Very

     

    Dense

     Submersed

     

    Aquatic

     

    Vegetation 

    Bruce M . 

    Sabol,

     Janusz

     

    Burczynski,

     

    and

     

    Joel Hoffman  September  

    2002

     

    Approved fo r publ ic

     release; distribution 

    is

     unl imited. 

    2 0 0 3 0 1 0 9

     6 6

     

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    2/25

    Th e ontents

     

    of

     

    this eport re

     

    ot o e se d

     

    or dvertising, 

    publication,

     

    r romotional

     

    urposes. itation

     

    of

     

    trade

     

    ames 

    does

     

    no t

     

    constitute

     

    an

     official endorsement or 

    approval

     

    of 

    the us e

     

    of such 

    commercial

     products. 

    Th e indings 

    of this 

    report

     ar e no t to 

    be 

    construed

     

    as

     an

     official

     

    Department of 

    the

     

    Army position,

     

    unless

     so designated

     by 

    other

     

    authorized 

    documents.

     

    ®  

    PRINTED ON RECYCLED PAPER 

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    3/25

    Aquatic

     Plant 

    Control RDC/EL  TR-02-30

     

    Research Program eptember

     

    2002

     

    Advanced

     

    Digital

     

    Processing

     

    of

     

    Echo

     

    Sounder

     

    Signals for 

    Characterization

     

    of

     Very

     

    Dense 

    Submersed 

    Aquatic

     Vegetation

     

    by

     

    Bruce M . Sabo l

     

    Envi ronmental Laboratory

     

    U.S . Army Engineer

     

    Research and 

    Development

     

    Center

     

    3909

     Halls

     

    Ferry Road  

    Vicksburg,

     M S

     9180-6199

     

    Janusz

     Burczynsk i 

    Biosonics, Inc.

     

    4027 Leary Way

     

    Seatt le, WA 8107

     

    Joel Hoffman

     

    Virginia

     Institute 

    of 

    M ar ine

     Science

     

    RO . 

    Box

     1346

     

    Gloucester

     

    Point, VA 3062

     

    Final

     report

     

    Approved  

    fo r

     public  release;

     

    distribution

     

    is  unlimited

     

    Prepared

     

    for

     

    U.S . 

    Army

     

    Corps

     

    of Engineers

     

    Washington, 

    DC

     

    0314-1000

     

    Under ork

     Unit 33118 

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    4/25

    Contents

     

    Preface

    v

     

    1—Introduction

    2—Methods

    Site

     

    Description

    Analyses

    3—Results

    —Discussion 6

     

    SF298

     

    in  

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    5/25

    Preface

     

    The work reported  herein was conducted  jointly by th e U.S.

     

    Army Engineer

     

    Research and 

    Development

     

    Center

     (ERDC), Environmental 

    Laboratory

     (EL),

     

    Vicksburg,

     M S, 

    and

     

    Biosonics,

     Inc., Seattle, W A , under the 

    provisions

     of 

    th e

     

    Cooperative

     

    Research

     and 

    Development

     

    Agreement

     

    (CRDA-Ol-EL-01)

     between  

    ERDC and Biosonics, 

    Inc.

     unding fo r this work 

    was

     provided b y th e 

    Aquatic

     

    Plant Control 

    Research

     Program (APCRP), ERDC, work unit 

    number

     33118.

     

    The

     

    APCRP

     

    is

     

    sponsored

     

    b y

     

    Headquarters ,

     

    U.S.

     

    Army

     

    Corps

     

    of

     

    Engineers ,

     

    (HQUSACE),

     and is assigned to 

    ERDC

     under 

    purview

     

    of 

    th e 

    EL .

     

    he 

    APCRP

     is  

    managed

     under th e Center 

    fo r

     

    Aquatic

     Plant 

    Research

     

    and

     

    Technology

     

    (CAPRT) ,

     

    Dr.

     

    John

     W . 

    Barko,

     

    Director. 

    M r. Robert 

    C.

     

    Gunkel,

     Jr., EL , was 

    Associate

     

    Director

     

    fo r

     the CAPRT. rogram Monitor 

    during

     this 

    study

     was 

    Mr. 

    Timothy

     R. 

    Toplisek,

     

    HQUSACE.

     

    This paper was 

    originally

     presented at th e 

    Symposium

     fo r 

    Acoustics

     in  

    Fisheries

     

    and

     

    Aquatic

     Ecology, 

    Montpel l ier ,

     France, June 10-14, 2002. 

    This report was  prepared 

    by

     M r. 

    Bruce

     

    M.

     Sabol, 

    Environmental

     

    Systems

     

    Branch (ESB), Ecosystem Evaluation  

    and

     

    Engineering

     

    Division

     (EEED), EL , 

    ERDC;

     Dr.

     

    Janusz

     

    Burczynski,

     

    Biosonics,

     

    Inc.;

     

    and

     

    Mr.

     

    Joel

     

    Hoffman,

     

    Virginia

     

    Institute

     of

     Marine

     

    Science.  

    This

     investigation

     

    was

     performed 

    under

     th e

     general supervision

     

    of

     

    Dr.

     

    Edwin

     

    A. Theriot,

     

    Director,

     EL ; 

    Dr.

     

    David

     J. Tazik, 

    Chief,

     

    EEED;

     and 

    Mr. 

    Harold

     W. 

    West,

     Chief, ESB. 

    A t

     

    th e t ime 

    of 

    publicat ion 

    of

     this report, Director

     

    of

     

    ERDC was Dr.

     

    James R.

     

    Houston.

     

    omma nder

     

    and

     

    Executive 

    Director

     was 

    COL. 

    John

     

    W .

     

    Morris 

    III, 

    EN . 

    This report 

    should

     

    be

     

    cited

     as follows: 

    Sabol,

     

    B. 

    M .,

     Burczynski, J. ,

     

    and Hoffman, J.

     

    2002).

     

    Advanced digital

     

    processing of echo

     

    sounder signals 

    fo r

     characterization  

    of

     very dense

     

    submersed aquatic vegetation, ERDC/EL TR-02-30, 

    U.S.

     Army Engineer

     

    Research and Development Center, Vicksburg, 

    MS. 

    Th e contents ofthis 

    report

     

    are

     

    not

     to be usedfor advertising

    publication

     

    or

     promotional

     

    purposes.

     itation 

    of

    trade names 

    does

     no t

     

    constitute an  

    official 

    endorsement

     

    or

     approval

    for

     th e us e ofsuch commercial  products.

     

    I V  

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    6/25

    1

     

    Introduction

     

    Characterizing

     

    submersed

     

    aquatic

     vegetation (SAV) 

    is

     

    important

     

    fo r

     a 

    variety

     

    of

    purposes

     

    including

     

    ecological

     

    assessments,

     

    impact

     

    analyses

     of

    huma n

     

    activities,

     and

    planning

     

    control

     

    operations

     

    to

     

    manage

     

    nuisance

     aquatic 

    plants.

     

    Until

     recently, 

    th e

     

    standard

     

    techniques

     for 

    characterizing

     

    SA V

     

    distribution

     and  

    conditions

     

    were

     b y 

    manual

     means (grab 

    and

     rake samples, 

    and

     

    diver

     

    observation

     

    and

     

    collection)

     and

    remote

     optical 

    techniques

     

    (aerial

     

    photography

     and digital 

    satellite

     

    image

     

    analysis).

     

    Manual

     

    techniques

     

    provided

     

    detailed

     

    and

     

    accurate

     

    information, but 

    only

     

    fo r

     

    very

     

    l imited

     areas. 

    Remote

     

    optical

     

    techniques

     

    provide

     a  

    large-area

     synoptic view of SA V 

    distr ibution

     but only in 

    l imited

     detail. These

     

    techniques

     are l imited b y water clarity, 

    commonly

     

    underestimating

     

    extent

     of 

    SA V in 

    deeper

     waters. 

    Recently,

     an automated digital 

    technique

     was 

    developed

     

    that 

    employs

     a 

    digital

     echo sounder, 

    global

     

    positioning

     system, and digital signal 

    processing

     on 

    a

     PC in near 

    real

     time.

    1

    '

    2

     This 

    technique

     fills th e 

    void

     in

     

    methodology

     b y rapidly 

    providing

     high-resolution  

    information

     on SA V 

    canopy

     

    geometry from

     

    a small survey

     boat. 

    The 

    boat-based

     

    system

     consists of 

    a

     

    digital

     echo 

    sounder

     

    and

     

    a

     real-time  

    differentially

     

    corrected

     global 

    positioning

     

    system

     (GPS) 

    l inked

     to a laptop 

    PC . 

    The

     

    hydroacoustic

     

    component

     is

     

    a Biosonics

     

    DT4000

     

    digital

     

    echo

     

    sounder

     

    (Biosonics, Inc.,

     

    Seattle,

     W A ,

    3

     

    with

     a 420-kHz,

     

    6-deg,

     

    single-beam transducer

     

    that

     

    generates

     

    short

     

    (0.1-ms) monotone

     

    pulses

     

    (pings) at

     

    a user-set

     rate. 

    Return

     

    echoes 

    are  

    digitized

     

    at

     

    high

     

    frequency

     

    and

     

    dynamic

     

    range 

    (122 

    dB).

     

    These

     

    data

     

    are 

    stored

     on  

    th e

     

    hard

     

    drive

     

    of 

    th e 

    PC

     that 

    operates

     

    th e

     system. 

    Interspersed

     

    with

     

    these

     

    signal

     data are GPS  position  

    reports

     

    (latitude

     and 

    longitude)

     

    recorded

     at a  

    slower

     rate (0.5 to 1.0 

    s

    1

    ) from a real-time differentially 

    corrected

     GPS, using

     

    broadcasted 

    corrections.

     

    The system  

    is

     typically operated b y 

    traversing

     

    preselected

     transects 

    in

     a small

     

    survey boat, using GPS  navigation guidance.

     

    Operating speed 

    is

     l imited 

    to  

    approximately

     2.5

     

    m  

    s

    1

     to avoid 

    cavitation

     around th e transducer.

     

    Transects are

     

    B.

     

    M. 

    Sabol, 

    and 

    J. 

    Burczynski.

     

    (1998).

      Digital echosounder 

    system fo r characterizing 

    vegetation  in

     shallow 

    water

     environment ,

    Proceedings 

    of

    European 

    conference 

    on

     

    underwater acoustics A. 

    Alippi

     

    and 

    G. B. 

    Canelli,

     ed., Rome, 

    165-171.

     

    2

    B. 

    M .

     

    Sabol,

     

    R.

     E. Melton, 

    R.

     Chamber la in , P. 

    Doering,

     an d

     

    K . Haunert . (2002). 

    Evaluation

     of a digital echo

     sounder

     fo r 

    detection

     of submersed aquatic 

    vegetation,

    Estuaries 25(1), 

    133-141. 

    3

     W .

     C. 

    Acker,

     J. 

    Burczynski,

     J. 

    Dawson,

     J. 

    Hedgepeth ,

     

    and D.

     

    Wiggins.

     (1999).

     

    Digital

     transducers:

     A new  sonar technology, Se a Technology

     

    40 , 31-35. 

    Chapter

      Introduction  

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    7/25

    selected perpendicular to 

    th e

     depth contours (if 

    known)

     or the 

    local

     

    shoreline

     and  

    are 

    roughly

     

    parallel

     to 

    each

     

    other

     a t a fixed spacing. Under 

    typical

     

    operations

     

    (2.5-m

     s

    1

     boa t speed

     

    and 

    5

     pings 

    s

    1

    )

     

    in 

    2-m-deep

     

    water,

     

    a

     

    circular

     

    bottom

     

    area

     

    0.2

     m

     in 

    diameter

     is 

    sampled every 

    0.5 m

     along th e

     

    transect. While this 

    is

     

    less 

    than complete coverage, th e speed and/or ping rate m ay be adjusted 

    to

     achieve

     

    more complete coverage,

     if

     desired.

     

    High spatial 

    resolution

     mapping can 

    b e

     

    performed

     at 

    around

     

    10 

    ha

     hr

    1

    .

     

    Higher

     or 

    lower

     rates, 

    with

     

    associated

     lo w and

     

    higher

     spatial 

    resolution,

     can be 

    achieved

     

    b y

     

    adjusting

     transect spacing. 

    The signal 

    fo r

     

    a

     

    typical

     

    transect

     

    containing

     SA V is 

    illustrated

     in 

    Figure 1 .

     

    The

     

    transducer

     provides

     information

     on

    th e

     

    vertical distribution

     

    of

     

    echo intensity

     

    within

     th e water 

    column.

     

    Motion

     

    of 

    th e 

    survey

     

    boa t

     

    along

     

    a

     

    l inear

     

    path

     yields 

    a

     

    two-dimensional

     

    (2-D)

     

    picture of echo

     

    intensity.

     

    The

     

    bottom

     

    usually

     

    generates

     

    th e strongest echo return and 

    is

     characterized  by th e sharpest rise 

    in

     signal echo

     

    intensity and  typically by very l imited change in depth from  

    ping

     

    to

     ping.

     

    flat, 

    unvegetated

     bottom  exhibits a strong return, with a signal  thickness

    roughly

     

    equal to th e 

    pulse

     width of 

    each

     

    ping

     (pulse 

    duration

     [0.1 

    m s]

     x speed of sound in

     

    water

     [1,500 m  

    s

    1

    ] = 0.15 

    m ).

     A t th e frequency used, 

    penetration

     into th e bottom

     

    is 

    negligible,

     

    approximately

     

    2

     cm  fo r 

    medium-grained

     sand.

     

    Figure

     

    1.

      Typical echogram  with SAV 

    Vegetation usually exhibits a contiguous vertical echo return immediately

     

    above th e bottom  

    that

     

    is

     weaker than th e 

    bottom

     return but 

    stronger

     

    than

     

    ambient

     

    water column  noise. The depth of th e 

    to p

     of th e vegetation canopy 

    is

     much

     

    more variable, from  ping to ping, than that of th e bot tom, 

    because

     of 

    patchiness

     

    ofvegetation and local 

    variability

     

    in

     canopy height.

     

    A signal mirroring th e

     

    vegetation appears below th e bot tom, presumably th e result of reverberation

     

    (multiple scattering) 

    of

     th e signal

     

    within

     th e 

    vegetation.

     

    When

     vegetation or 

    large-scale bottom  roughness occurs, th e signal around  th e bottom  appears 

    to  

    grow thicker,

     

    indicating

     

    a

     wider 

    range of 

    time

     fo r

     

    which echoes 

    are

     returning.

     

    The  signal

     processing algorithm  utilizes these features 

    to

     detect and track th e

     

    bottom,

     

    and then to detect and characterize vegetation.

     

    Chapter  Introduction  

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    8/25

    The bottom  depth 

    fo r

     a 

    local

     region (~ 2 to 3) is 

    estimated

     b y 

    determining

     th e

     

    mode

     of th e 

    depth

     of 

    th e

     

    primary

     peak in 

    echo

     

    intensity

     

    within

     th e 

    pings

     

    situated

     

    between 

    sequential

     GPS 

    reports.

     Once 

    th e

     bottom  is determined, th e 

    algori thm

     

    searches

     

    upward

     

    from  th e

     

    detected 

    bottom  

    fo r plant-like

     features. These 

    features

     

    include a 

    contiguous

     echo return 

    exceeding

     a 

    user-set

     threshold and 

    found

     below

     

    a  quiet zone

    attributed

     to open water. The height 

    of

     this feature closely matches

     

    in

     

    situ plant

     

    canopy

     

    height.

     

    This

     

    heuristic

     

    algorithm

     

    proceeds

     

    through

     

    a

     

    se t

     

    of

     

    tests

     to 

    sequentially

     

    classify

     each 

    ping

     into one of

     

    th e 

    following

     classes: 

    NOISY,

     

    OUT_OF_WATER,

     

    TOO_DEEP,

     

    UNCLASSIFIED,

     BARE, and PLANT. The

     

    first

     

    four

     classes 

    represent

     

    pings

     rejected 

    fo r

     

    data

     

    quality

     reasons or

     

    unvegetated 

    pings.

     The 

    last

     

    tw o

     

    classes

     are 

    arrived

     at b y 

    processing

     

    remaining

     

    UNCLASSIFIED

     

    pings

     through 

    a

     series of 

    tests

     to 

    definitively

     

    identify

     

    unvegetated or

     

    vegetated 

    conditions.

     

    The

     

    processor

     

    outputs depth, plant

     

    height,

     

    and plant coverage at th e GPS

     

    data rate. Plant 

    height

     

    is

     th e average plant height

     

    of PLANT

     

    pings 

    within 

    a

     

    reporting

     

    cycle 

    and 

    plant

     

    coverage 

    is

     th e

     

    port ion

     

    of

     

    PLANT pings within a reporting cycle. The logic within  this algorithm  is

     

    hardcoded, 

    al though

     th e user m ay set th e intensity and depth thresholds to

     

    optimize fo r site-specific conditions.

     

    Initial development and testing of th e algorithm  was performed in  a

     

    southwest

     

    Florida

     estuary

     system

     

    containing

     

    bladed 

    grass

     species of 

    SA V

     and

     

    a

     

    hard

     

    sandy

     

    bot tom.

     

    The

     technology 

    fo r

     

    th e

     

    patented

     

    processor,

     

    originally

     

    developed 

    b y 

    th e

     U.S. 

    A r m y

     Engineer 

    Research

     

    and

     

    Development

     Center 

    (ERDC),

     

    Vicksburg, 

    M S, 

    has

     

    been

     

    l icensed

     

    to

     

    Biosonics, 

    Inc., 

    which

     

    markets

     

    th e

     

    hardware

     

    and

     processor as 

    EcoSAV

     

    version 1.0. 

    ince 

    initial

     

    development,

     

    th e

     

    system

     

    has

     

    been used

     in 

    a

     

    wide

     

    variety

     

    of

     

    locations

     

    with

     

    varying

     

    conditions and

     

    SA V species. It h as worked 

    well

     under

     ma ny

     

    conditions

     

    common

     to SAV- 

    colonized

     areas.

    1

    '

    SA V 

    detection

     

    performance

     

    begins

     to 

    deteriorate

     

    when

     

    conditions

     

    severely

     

    depart

     

    from  th e

     

    original

     

    testing

     

    site

     

    and

     

    th e

     

    inherent

     

    assumptions

     

    within  

    th e

     

    logic. 

    Problems

     m ay result 

    from

     

    inappropriate

     selection ofprocessing 

    parameters , 

    occurrence

     of conditions 

    that

     

    violate

     one or more of th e 

    inherent

     

    assumptions 

    of 

    th e

     

    processor, 

    or 

    insufficient information content

     

    within

     

    th e

     

    signal to extract th e desired attributes.

     

    Observed problem  conditions 

    are

     listed 

    in  

    Table

     1, 

    along

     

    with

     

    probab le

     causes 

    fo r

     the problem  

    within

     

    th e

     

    algorithm,

     

    th e

     

    impact

     

    on

     

    th e

     data, 

    and

     possible 

    approaches

     

    to

     

    correct

     

    th e

     problem. 

    Fo r

     any 

    deficiency

     

    in

     

    meeting

     a processing objective, 

    it

     

    must

     

    b e

     

    determined

     

    whether there is 

    sufficient

     

    information

     

    content

     

    in

     

    th e

     

    signal

     

    to

     

    extract

     

    th e

     

    desired

     

    information

     or, if not, to 

    determine

     what type of 

    sensor

     is 

    required

     to 

    generate

     

    a

     

    signal containing th e extractable information. Obviously, it is desirable to 

    extract

     

    as

     

    much

     

    information

     

    as

     

    possible

     

    from  an

     

    existing

     

    sensor

     

    before

     

    investing

     

    in

     

    new

     

    sensors. Several approaches have 

    been

     contemplated fo r 

    resolving

     

    these

     

    B. 

    Sabol

     an d J. Burczynski, 1998, op. cit. 

    2

     B Sabol, R. E. Melton, R. Chamberlain, P. Doering, 

    an d

     

    K.

     Haunert, 

    2002,

     op . cit. 

    Chapter 

    Introduction  

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    9/25

    c

     

    a

     

    Q.

     

    O

     

    C O  

    8   O  

    GO'S 

    o>J2 

    3

     

    O  

    toco 

    S

     £5 

    ft

     < p 

    o

     

    *1? £  

    ft

      O  

    i.

     

    £

     a - 

    S.g

     

    01

     

    i- 5

    W-fflö 

    Si 

    to

     

    £

     

    c v

     

    o

     

    s

    £

     

    0>£

    c r

    -

     

    8

     o  

    2

     

    e n

     

    t

    c »  

    £ 

    u

     o  

    .

    O

      g >

     

    £

    o

     

    O)

     

    3

     

    Z TJ

     

    to

     

    f t

     

    2

     

    a

    S5   3 

    is

     

    _ o 

    O fc  

    «

     

    $ c 

    o o

     

    C O   0)  

    Jr  

    fl

     

    ff

     

    as

     > 

    o

     

    to

     

    3

     

    (0  

    of 

    tg 

    °1&

     

    » 

    T J

     

    J O

     

    Q.

     

    C O

     

    .1-5 I 

    Ä

     o  

    to£  

    «-

     

    ||

     

    : 8  

    W

     

    c o  

    Ä

    E

    -1

     

    O

     D

     

    |5 

    ~

     

    »

     

    »

     

    t: 

    o

     

    >• 

    5

     

    S

     

    o

     

    m

     

    Q  

    E a 

    2

     

    to

     b o 

    i*S 

    o o S

    c

     

    c8

    'S

     ff

     

    c o 

    O)

     >

     

    §

    Iss 

    0.

     

    c

     

    o

     

    ♦ 5  

    N

     

    u  

    2

     

    «0

     

    n  

    o

     

    ^t3  

    Ü

     

    0)  

    Q

     

    L.

     

    o

     

    o

     

    O L

     

    Ö) 

    JC  

    +3  

    3

     

    1 0  

    0)  

    D C

     

    1 0  

    o

     

    i = 5  

    5S

     

    B

     

    Q  

    o

     

    u  

    a  

    E

     

    S

     

    o

     

    O

     

    )

     

    .2 „-c o 

    (0 Ä ♦ -   to  

    S o 

    »

     

    ö 

    5

     

    S ..E

     c

     

    to  

    c

     o  c 

    (0 

    to

     

    Q.P  o 

    co 

    tn  

    to o  

    to

     

    to O

     

    to  

    U. J 

    u.

     

    c

     

    JS o  

    *l

     

    o

     

    5  

    S ff

     

    Ü5

     

    c

     

    JO

      c o

     

    c o 5 

    £ c

     

    Q,   C O

     

    *-

     

    .2

    1

     ft  

    o

     t

     

    111 

    JS o  

    ft

     S 

    to 

    s

    |1

     

    TJ

     

    JS o  

    ft

     

    to 

    «I 

    T J  

    si §

     

    si? >  

    u

     

    S^ C

     

    « 

    Q. 

    Off 

    to

     

    D

     

    O

     

    to o

     

    E

     

    c

    S-8 §  

    c

     o

     

    i2S

     

    Sff

     

    Q- TJ  

    S

     

    ff 

    £

     ff

     

    0- 

    8

    I

    ff  

    < °

      §

     

    >.TJ »

    g-ff

     

    its.

     

    3

     

    PS

     

    JS 

    TJ  

    f t  

    TJ

     

    C O  

    Ol 

    TJ

     

    ID

     

    E' 

    C O 

    to a 

    to

     

    ^

    ^

     c

     

    o o 

    J3 S 2  

    „-£

     

    9-.2 

    E

     

    W J

      tO

     

    1  

    . 2  

    « it

     O   Q. 

    § 

    S3

     

    TJ

      «0

     

    J S

     a 

    og

     

    r a

     

    S

     

    I.

     

    I

    s

    5

     jo 

    •81  

    t

    s

    ft

     

    s

    C O  

    c

     

    ss

     

    ft 

    D

     

    I*

     

    C O  

    fil

     

    fc-6

     

    S-2 

    jo

     

    Q. 

    C 0 0)  

    2 E  

    1 g  

    a. c 

    o  

    jo

     

    Q. 

    2c5 

    f

     

    °  

    8

     S

     

     

    c

     o

     

    to

     

    >  

    F  

    o

     

    t3 

    «1

     

    5

     

    C £

    r a

     

    't ö

     

    5

     

    (A

     

    o

     

    O  

    ft 

    1  

     

    8  

    Chapter

     

    1

     

    Introduction  

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    10/25

    limitations (Table 1 ) . These include developing different

     

    processing approaches 

    using different or

     

    multifrequency  transducers an d split-beam

     

    transducers. 

    To

     

    improve performance of

    the

     processor 

    and

    make it more effective under

     

    a

     

    wider 

    range ofconditions, we will examine each condition in light of these alternatives 

    to determining th e 

    best

     approach fo r enhancing

     

    the system's performance. 

    This

     

    report examines

     

    the

     

    dense

     

    canopy

     

    problem

     

    (conditions

     

    6

     

    an d

     

    7

     

    in

     

    Table

     

    1 ) 

    by

     using 

    multifrequency

     acoustical

     

    data 

    from

     a dense 

    Myriophyllum

     

    spicatum (milfoil) 

    site

     collected over

     th e

     course of 

    a

     growing season. Processor 

    outputs over

     

    the growing season 

    are

     examined 

    and

     th e 

    signals

     associated  with 

    successful an d

     

    unsuccessful

     

    processing are characterized. In

     

    particular, the results 

    ofusing a lower-frequency

     

    transducer

     

    in addition

     

    to the frequency customarily  

    used are examined, 

    with

     

    the expectation

     

    that 

    the

     lower frequency would

     

    be 

    less

     

    sensitive to th e vegetation and

     

    thereby

     

    have

     

    better

     ability to penetrate 

    the

     

    vegetated

     

    canopy an d correctly track the 

    bottom.

     Specific recommendations ar e 

    offered

     

    fo r

     

    means to improving

     

    processing

     

    under

     th e

     dense canopy

     

    condition.

     

    Finally, a

     

    concept fo r 

    a

     configurable  

    logic

     software processor is described in  

    which

     

    the

     

    user

     

    would

     

    define

     

    th e logical

     

    tests

     

    performed

     

    in

     

    addition

     

    to defining

     

    the

     

    features

     

    an d

     

    threshold

     

    levels

     

    used,

     

    thereby

     

    enabling

     

    greater flexibility

     

    in

     

    tailoring

     the 

    processor

     

    to 

    specific

     

    site conditions. 

    Chapter  Introduction

     

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    11/25

    2

     

    Methods

     

    Site

     

    Description 

    site

     

    seasonally

     

    colonized

     b y 

    extremely

     dense 

    patches

     of milfoil was  chosen 

    near

     th e

     

    Montlake

     

    C ut

     

    (Seattle, WA), a

     

    boating

     

    channel

     

    that

     

    connects

     

    Lake

     

    Washington

     to

     th e 

    Puget

     

    Sound. 

    A t

     

    this 

    site,

     a fixed

     t ransect 

    was

     

    selected

     

    that

     

    included a shallow beach with sparse milfoil, a deep channel lacking vegetation,

     

    and

     

    a

     

    shallow

     

    flat where

     

    milfoil

     

    canopies

     

    had

     

    been

     

    observed

     

    to

     

    reach

     

    th e

     

    surface

     

    during

     late summer . 

    Sampling

     fo r species 

    composition

     

    and

     

    regions

     of

     

    dense 

    plant

     

    colonization

     was 

    completed

     

    during

     

    th e

     previous 

    summer ,

    1

     

    when

     

    plants

     

    could

     

    be

     

    easily

     

    observed

     

    from

     th e surface. 

    Sampling was completed with a

     128-kHz, 

    6-deg,

     

    single-beam BioSonics D E

     

    transducer, a 418-kHz,

     

    6-deg,

     

    single-beam BioSonics D E transducer, and a

     

    JR C

     2000 differential 

    GPS. 

    The

     

    transducers were deployed

     at 

    th e surface 

    on

     a

     

    pole-mount

     attached to th e research vessel. The 

    transducers

     

    were

     

    not

     

    operated

     

    simultaneously;

     

    one

     

    pass

     of th e transect was completed 

    with

     

    each

     

    transducer.

     

    Both 

    transducers

     

    were

     set to 

    operate

     at 5 

    pings

     s

    1

     

    with

     a 

    pulse-width

     of

     0.1

     msec 

    and 

    threshold

     of-130 dB , verified settings.

    The transect was 

    sampled

     

    on

     four 

    different

     dates 

    throughout

     th e growing 

    season, 

    representing

     late winter 

    growth

     (27 Mar 2001), early 

    growth

     (15 Ju n

     

    2001), 

    midsummer

     growth (13

     

    July 2001), and peak 

    summer

     growth 

    (16

     A ug

     

    2001). 

    On-board 

    navigation

     was completed using a commercia l navigational

     

    software package.

     

    Transects were not

     

    perfectly 

    replicated

     because of weather

     

    conditions and presence of recreational boaters;

     

    at mos t transects differed  by

     

    15

     m. In

     th e analysis, we did  not assume that th e exact same plant locations were

     

    sampled

     

    on

     

    repeated surveys, and

     

    we

     

    therefore did

     not 

    a t tempt

     

    any one-to-one

     

    matching

     between 

    surveys.

     

    Rather,

     

    regions

     

    within

     

    th e

     t ransect 

    were

     

    considered

     to  

    represent

     

    th e

     same 

    general

     

    location,

     

    which

     

    probab ly

     has 

    similar plant

     conditions. 

    J. Burczynski 

    an d 

    J. Hoffman, 

    unpublished

     

    data.

     

    2

     B. Sabol, R. E. Melton, R. Chamberlain, P. 

    Doering,

     

    and

     R. Haunert. 

    2002,

     op. cit. 

    Chapter  

    2  M e thods 

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    12/25

    Analyses 

    Th e 

    path ofeach

     

    transect

     was 

    plotted

     

    an d

     

    clipping

     

    points 

    were

     selected

     

    to

     

    form

     

    a common beginning 

    an d

     ending

     

    point fo r

     

    al l 

    transects.

     Echograms of

    the

     

    clipped

     

    transects were

     

    plotted

     

    using common 

    scales

     an d colorization to visualize 

    the

     

    signal.

     

    Parameters

     

    fo r

     

    signal processing were

     

    selected

     

    by

     

    iteratively

     

    processing the data to achieve maximum  detection rates in al l areas except th e

     

    unvegetated

     channel (a list 

    of

    specific parameters 

    used

     in this processing may  be 

    obtained

     

    from

     th e 

    first

     author).

     

    The

     

    focus

     of

    this

     

    analysis

     is 

    on

    bottom

     detection, 

    which

     is th e prerequisite 

    fo r

     correct vegetation detection an d characterization. 

    Plots of th e detected

    bottom

     were generated fo r each 

    transducer

     and survey to  

    detect successful versus 

    unsuccessful

     processing.

     

    Th e

     

    echo intensity ofadjoining 

    pings 

    in

     an area subject to late summer

    processor

     failure are 

    plotted

     and 

    compared

     

    with those from

     

    the same location

     

    taken 

    earlier

     

    in

     

    the growing season 

    during

    which

     th e 

    processing

     was successful. Finally, output vegetation height 

    an d 

    bottom

     

    depth

     

    within this region

     

    were 

    also

     plotted

     

    to identify specific modes 

    ofprocessor

     

    failure. 

    Chapter

     2

     

    M e thods 

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    13/25

    3

     

    Results

     

    The

     echograms (Figure 

    2)

     representing th e 2-D  distribution  of echo

     

    intensity

     

    indicate that 

    similar

     

    plant

     

    regions

     

    were

     sampled in 

    repeated

     surveys. Note that 

    echograms fo r th e 128- and 

    428-KHz

     

    transducers

     

    represent

     

    horizontal

     mirror

     

    images

     

    of each

     other since they 

    were

     ru n 

    in

     

    opposite

     

    directions

     

    (128

     

    K Hz

     south 

    to north; 428 K Hz north to south).

     

    Similar bathymetric  condit ions are 

    evident

     

    between t ransducer and

     

    sampling month,

     

    indicating no  great depth differences

     

    between

     

    repeated

     

    transects.

     

    Canopy 

    development

     

    is

     

    evident

     through th e growing season (Figure 2) . 

    In  

    March, th e milfoil is already quite tall 

    toward

     th e south end of

     

    th e transect; in

     

    other areas,

     it

     

    is

     

    evident

     but relatively 

    short. 

    Fo r 

    subsequent

     samplings in M ay

     

    and July, th e milfoil

     

    gets taller 

    and

     apparently increases

     

    in density.

     

    Only th e

     

    dredged channel 

    area 

    consistently

     

    shows 

    little 

    to  

    no

     plant growth.

     

    T he Augus t

     

    survey shows

     

    a

     

    considerably 

    different 

    condition.

     

    The canopy

     

    has

     

    reached

     

    maximum

     height and  

    th e

     

    bottom

     

    is

     not 

    evident

     in 

    ma ny

     

    locations,

     

    particularly

     

    with

     th e 128-KHz 

    transducer.

     

    Unlike

     

    earlier

     

    months,

     

    echo

     

    intensity

     

    between

     

    th e

     

    canopy

     

    to p and th e bottom  has decreased.

     

    The

     

    detected

     

    bottom

     

    depth

     

    fo r

     

    a

     

    280-m

     

    segment

     

    of

     

    th e

     

    transect

     

    is

     

    illustrated

     

    (Figure

     3) .

     

    This 

    segment

     is ru n

     

    in a 

    northerly

     or 

    southerly

     

    direction

     so that depth 

    is

     

    plotted

     

    against

     latitude. 

    Slight

     global 

    depth

     

    adjustments

     

    were

     

    made

     

    to

     

    achieve

     

    a

     

    better

     match 

    because

     of 

    slight

     

    variations

     in water level and 

    depth

     of t ransducer 

    mounting

     from survey 

    to

     survey. 

    Detected

     depths ar e in close 

    agreement

     fo r 

    March

     and 

    M ay

     

    surveys

     

    fo r

     both 

    transducers .

     In 

    July,

     th e 

    detected

     

    bottom

     

    is

     

    occasionally

     more 

    shallow

     in areas of

     

    dense 

    vegetation.

     By 

    August,

     

    th e

     

    detected

     

    depth 

    is

     much more shallow 

    fo r

     

    vegetated

     areas, 

    particularly

     fo r th e 128-KHz

     

    transducer.

     

    Within a 

    region

     of

     failed

     

    bottom

     

    detects

     in th e August 

    survey

     

    (around

     

    latitude

     

    47.64466

     deg

    N ),

     th e 

    echo

     

    intensities

     

    fo r

     

    four

     

    adjoining

     

    pings

     are 

    plotted

     

    (Figure

     

    4)

     

    fo r both

     

    frequencies

     

    and

     

    March

     

    and

     

    August

     

    surveys.

     

    There

     

    is 

    not

     

    a

     

    one-to-one

     

    correspondence

     

    between

     pings from each

     

    survey, 

    but

     

    they

     

    should be

     

    representative

     of

    th e

     same 

    approximate

     location. A t 

    this

     location 

    both

     

    transducers

     

    successfully

     

    detected

     

    th e

     

    bottom

     

    (around

     3 m ) in 

    th e

     

    March

     

    survey

     

    b ut

     

    failed

     in  

    th e

     

    Augus t

     survey 

    (Figure

     3) . While 

    even

     

    March

     vegetation was 

    dense,

     

    th e

     

    bottom 

    mos t

     often 

    generated

     

    th e

     

    largest

     

    echo

     

    returns

     (typically 

    around

     -4 7 dB 

    fo r

     

    th e

     128-KHz t ransducer 

    and

     

    around

     -4 0 dB  

    fo r

     

    th e

     428-KHz 

    transducer) .

     By 

    August,

     th e 

    canopy

     

    to p

     

    consistently

     

    generates

     

    th e

     

    largest

     

    echo

     

    intensity.

     

    A

     

    minor

     

    peak

     

    corresponding

     

    to

     th e 

    bottom

     

    is

     

    evident

     in th e August data, 

    but

     

    it

     

    is

     

    typically

     

    Chapter 3

     

    esults 

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    14/25

    a. arch

     

    survey,

     128-KHz t ransducer

     

    I

    :

     

    Ü  

    S M S  

    11  

    Bflraft? 

    jfUju^H 

    ji |jl i |jL,||(

     

    ,

     . 

    ~

    ~  

    ^vr |ii  i  

    w î^wp 

    WTfWgl

     

    --: 

    b. ay survey,

     

    128-KHz 

    t ransducer

     

    c.

     

    u ly

     

    survey,

     128-KHz t ransducer  

    d. ugus t survey,

     

    128-KHz 

    t ransducer

     

    Figure 2.  Echograms 

    fo r

     each sampl ing month and t ransducer used 

    Chapter

     

    Resul ts

     

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    15/25

    e. arch survey, 428-KHz t ransducer 

    f.

     ay

     

    survey,

     

    428-KHz

     

    t ransducer

     

    g. u ly  survey, 428-KHz t ransducer 

    h. 

    ugus t

     

    survey,

     

    428-KHz

     

    t ransducer

     

    Figure

     

    2 .  (Concluded) 

    1 0  

    Chapter 3  Resul ts 

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    16/25

    _ 4

     

    onth

     

    of

    Survey  

    arch 

    M ay  

    - 4 - 8 ly  

    ugust 

    .5.6

     

    47.644 

    7.6445 

    7.645 

    7.6455 

    Lat i tude

     

    47.646 

    47.6465

     

    a. 28-KHz

     

    t ransducer  

    47.644

     

    7.6445

     

    7.645

     

    7.6455

     

    Lat i tude  

    47.646  

    47.6465 

    b. 

    28-KHz

     

    t ransducer

     

    Figure

     

    3.  Detected bottom  depth

     by 

    month and

     

    t ransducers  

    Chapter

     3 Resul ts 

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    17/25

    a. arch

     

    survey

     128-KHz

     t ransducer; 

    depth approximately

     3. 3

     

    b.

     

    arch

     survey, 

    428-KHz  

    t ransducer; depth approximately 3. 2 m. 

    Figure 4. scil loscope view 

    of

      four adjoining pings in

     

    region 

    of

     

    dense 

    milfoil

     

    12   Chapter  3  Resul ts 

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    18/25

    c. ugus t

     

    survey, 128-KHz

     

    t ransducer; depth approximately 

    3. 2

     m  

    d.

     ugus t

     

    survey,

     

    428-KHz

      t ransducer;

     depth

     approximately 

    3.0m

     

    Figure

     

    4. 

    Concluded) 

    Chapter

     

    Resul ts 

    13

     

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    19/25

    around

     10 dB  

    below

     

    that

     

    of

     th e

     canopy

     top. 

    For

     the 428-KHz 

    transducer, this

     

    bottom

     peak 

    is

     

    typically

     th e second largest peak 

    after

     th e canopy 

    top. 

    For 

    th e 

    128-KHz transducer, th e 

    bottom

     

    peak

     is less obvious, 

    frequently

     being 

    th e

     third

     

    or 

    fourth

     largest peak after 

    canopy

     top.

     

    Processor 

    outputs

     

    within

     this 

    problematic

     

    region,

     

    including

     

    detected

     

    depth

     

    and to p

     

    of

     

    canopy,

     

    are

     

    illustrated

     

    fo r the

     

    March

     

    and

     

    August

     

    surveys

     

    (Figure

     

    5).

     

    The processor 

    generated

     

    reasonable

     

    values

     

    fo r

     

    th e

     

    March

     survey, based 

    on

     

    comparison

     

    with

     th e

     corresponding

     

    echograms (Figure

     2) .

     Outputs fo r

     th e 

    Augus t

     

    survey show

     

    tw o modes of 

    processor 

    failure.

     

    The first

     

    type

     

    is failure 

    to

     correctly

     

    detect

     th e 

    true

     

    bottom

     

    depth

     

    (approximately 

    3.0 

    to 3.3 

    m). 

    This

     

    subsequently

     

    results 

    in

     artificially  lo w estimates of plant

     

    height

     

    and coverage because th e

     

    algorithm  looks upward from  the  detected bottom  (actually canopy top) and

     

    finds little additional vegetation.

     

    A second mode of failure 

    is

     evident when th e

     

    bottom  depth is correctly detected, but no  vegetation 

    is

     detected in spite of

     

    obvious

     vegetation 

    within

     th e 

    echogram

     at 

    that

     

    location

     

    (Figure

     2) . This 

    is

     

    specifically evident

     

    fo r

     th e

     

    128-KHz t ransducer 

    at

     

    location

     

    47.64455 

    de g

     

    in  

    August.

     

    14

    hapter

     3 Results 

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    20/25

    -0.8

     

    -4.8 

    -5.6 

    128 KH z  detected

     

    bottom

     

    128 KH z  detected

     

    canopy

      top 

    42 8 KH z  detected bottom  

    42 8 KH z  

    detected

     

    canopy

      top 

    47.6445

     

    7.6446

     

    7.6447

     

    7.6448

     

    Latitude

     

    47.6449

     

    47.645

     

    a.

     arch

     

    survey  

    -4.8 

    -5.6 

    120 KH z  detected bottom 

    120 KH z  detected canopy   top 

    42 0 KH z  detected bottom 

    42 0

     

    KH z

     detected canopy

      top 

    47.6445

     

    47.6446 7.6447 7.6448 

    Latitude 

    47.6449  

    47.645

     

    b.

     

    ugus t

     

    survey

     

    Figure 

    5.  Processor 

    detected bottom

     depth

     

    and

     canopy 

    height  

    within

     

    dense 

    milfoil area  

    Chapter

     

    3

     

    Results

     

    15  

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    21/25

    4

     

    Discussion

     

    Plants

     

    exhibited

     

    rapid

     vertical 

    growth

     

    during

     th e 

    first

     

    half 

    of th e 

    growing

     

    season. Strong 

    contiguous

     

    echo

     

    signals

     

    were

     

    evident

     

    from

     

    th e

     

    to p

     of

     

    th e 

    plants

     to  

    th e bot tom,

     

    indicating a fairly uniform distribution  of scatterers 

    over

     th e length of

     

    th e stem. The 

    bottom

     was  

    still

     th e strongest acoustic target during this part of th e

     

    season. 

    Later

     in 

    th e

     season, a 

    highly

     

    reflective

     

    canopy

     

    developed

     at th e to p of

     

    th e 

    fully elongated stems and echo intensity below th e canopy 

    diminished  

    significantly.

     

    This

     

    would

     b e

     

    caused

     

    either b y

     a

     

    reduct ion

     

    of

     

    b iomass

     

    density

     

    below

     

    th e

     fully 

    developed

     canopy or

     

    b y 

    reduced

     

    acoustic

     

    energy

     

    penetrating

     th e 

    canopy

     to 

    measure

     

    scatterers

     below. 

    Frequently

     th e 

    bottom

     

    was

     

    not

     

    acoustically

     

    visible

    below

     th e dense 

    canopy.

     

    These

     

    observations

     are in 

    general

     

    agreement

     

    with

     

    morphological

     

    descriptions

     of

     milfoil

     

    growth

     

    and

     

    canopy

     

    formation

     

    over

     the 

    course

     of 

    a

     

    growth

     season.

    Early

     in 

    th e

     season, th e processing 

    algorithm

     

    appeared

     to  perform well.

     

    Bottom depths were consistent and reasonable,

     

    and vegetation 

    showed

     a steady

     

    increase 

    in

     height and density. A s th e canopy formed 

    later

     in th e season, th e

     

    bottom

     

    tracking function progressively failed, resulting 

    in

     subsequent failure 

    to  

    correctly detect and characterize  vegetation.

     

    Additional ly,

     

    decreased signal from

     

    plant

     

    material

     

    below

     

    th e

     

    canopy,

     

    possibly

     

    th e

     

    result

     

    of

     

    sloughing

     

    of

     

    leaf

     

    material

     

    below th e

     canopy,

    1

     

    frequently

     

    resulted 

    in 

    no

     

    detection of plants even

     

    when

     

    th e

     

    true

     

    bottom

     

    was

     

    successfully detected.

     

    The authors originally hypothesized that th e lower-frequency 

    t ransducer 

    (128-KHz) would have better canopy penetration ability and would exhibit better

     

    bottom  tracking performance.

     

    This was clearly not th e 

    case. 

    Between th e two, th e

     

    higher-frequency t ransducer (428-KHz) exhibited a more 

    distinct

     

    bottom

     signal

     

    under dense canopy conditions 

    and,

     consequently, better bottom  detection

     

    performance.

     

    This appears counterintuitive, since th e lower 

    frequency

     

    is

     less

     

    sensitive 

    to

     

    small

     objects

     

    (scattering b y plant material). Either way,

     we

     conclude

     

    that lower

     

    frequency 

    is

     not 

    th e

     direction 

    to

     improved

     

    performance. A sensor

     

    option

     

    not tested

     

    as

     

    part

     

    of

     

    this

     

    study

     is

     

    th e

     

    use

     

    of

     

    a

     

    428-KHz

     

    t ransducer

     

    with

     

    a

     

    narrower beam  width.

     

    It m ay 

    be

     possible fo r a narrower beam  to  more easily find

     

    gaps in  th e canopy and thus detect the bottom  

    with

     

    greater

     

    regularity.

     

    J. 

    W .

     Barko an d

     

    R. M. 

    Smart.

     (1981).  Comparat ive 

    influences

     

    of

     l ight and  

    temperature

     

    on

     

    th e growth an d

     

    metabolism

     

    of selected 

    submersed

     freshwater

     

    macrophytes ,

    cological Monographs

     

    51(2),

     

    219-235. 

    16 hapter 4  Discussion  

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    22/25

    The

     

    modes

     of

     failure

     point

     to

     

    directions fo r

     

    seeking

     

    performance

     

    improvement.

     Of

    th e

     

    two, th e second 

    is 

    most

     

    easily addressed.

     

    Here th e

     

    processor

     

    fails 

    to

     detect vegetation  represented b y a canopy  reflectance but no contiguous

     

    echo

     signal above th e selected

     

    threshold

     between 

    th e canopy and

     

    th e correctly

     

    detected bot tom. The oscilloscope graphic (Figure 4) reveals that there is 

    in

     fact a

     

    contiguous signal, around

     -80

     

    to

     

    -75 

    dB, depending

     

    on

     

    th e frequency,

     

    below

     

    th e

     

    canopy top,

     

    which is typically greater than that from  the

     

    open 

    water

     

    quiet

     zone.

    The solution

     is

     simply

     to

     lower th e

     

    noise and

     

    plant

     

    detection

     threshold 

    to

     

    that

     

    level 

    (-70

     dB and -65

     

    dB were originally used fo r processing th e

     

    128-KHz and

     

    428-KHz

     signals, respectively).

     

    This 

    problem

     originated  from th e assumption

     

    that

     there must be a contiguous signal 

    between

     th e 

    to p

     and bottom  of

     

    th e 

    plants

     to

     

    generate a detection.

     

    This 

    requirement

     serves to 

    reject

     

    suspended

     and swimming

     

    objects (fish) 

    within

     th e water column, and it works 

    well

     fo r 

    grass-like

     SAV,

     

    which

     exhibit more uniform b iomass distribution 

    over

     the height of

     

    th e plants.

     

    The 

    first

     

    mode

     of

     failure

     is more problematic. 

    Correct 

    bottom  

    tracking

     fails 

    because

     th e bottom is 

    obscured

     b y 

    vegetation

     and

    represents

     only 

    a

     minor peak

     

    within

     th e signal. Several algorithm  improvements m ay 

    b e

     possible. Since th e

     

    bottom

     

    is 

    still

     

    evident below

     

    th e

     

    canopy

     

    (Figure

     

    4)

     

    as

     

    a

     

    secondary

     

    or

     tertiary

     

    peak, 

    it

     m ay be possible 

    to

     histogram the depth of multiple peaks, weighting each

     

    by

     it s 

    ranking

     

    within

     

    th e

     

    return signal, 

    or

     b y 

    its

     distance

     

    to

     

    th e

     

    previously

     

    estimated bottom  depth. Another modification would be easier 

    to

     implement but

     

    would 

    have an

     

    operational

     

    requirement 

    in

    th e ma nner

     

    surveys are

     

    performed.

     The  

    depth

     of

     

    th e

     first

     

    object

     

    encountered

     

    above

     

    a

     se t 

    intensity

     threshold is

     easily

     

    detected

     

    and

     is typically 

    th e

     

    to p

     of 

    th e

     SA V canopy. 

    Multi temporal

     

    surveys

     of

     

    fixed transect, designated b y

     GPS

     waypoints , could

     

    be

     

    performed.

     

    Bottom

     

    depths

     

    could

     

    accurately

     

    b e

     

    determined 

    based 

    on

     processor 

    output

     

    from

     

    surveys

     

    during

     

    periods

     of

     lo w

     

    vegetation.

     These 

    could b e

     

    combined

     

    with

     

    later

     

    surveys

     

    to

     

    estimate 

    plant

     

    height,

     giving careful 

    attention

     

    to

     transect 

    navigation,

     

    changes

     in  

    water

     level, and t ransducer mounting 

    depth. 

    These modifications and others yet 

    to

     b e 

    identified

     would require basic

     

    coding

     

    changes

     

    to

     th e 

    current

     algorithm. 

    This

     is 

    a

     

    costly

     

    operation

     

    requir ing

     

    t ime

     

    to 

    make th e modifications 

    and

     t ime

     

    to

     

    verify and

     

    val idate

     

    th e changes

     

    with

     

    testing. 

    It would 

    be fa r

     

    superior 

    to 

    define specific

     

    logic

     

    tests

     required 

    within

     

    th e

     

    algorithm

     using an 

    input

     

    configuration

     file. This 

    has

     

    given

     

    rise

     

    to

     

    th e

     

    concept

     of

     a

     

    configurable

     logic 

    processor.

     

    Currently,

     we 

    use

     a 

    configuration

     file 

    to

     

    specify

     all  

    intensity

     and 

    depth/distance

     

    thresholds

     

    within

     th e 

    algori thm,

     

    al though

     

    th e

     logical 

    tests are hardcoded. Configurable logic would allow th e user to :

     

    a. 

    dentify

     channels to be used within a 

    multifrequency,

     multiplexed  signal.

     

    b.

     

    efine

     

    th e

     

    specific

     

    features

     

    to

     

    be

     

    extracted

     

    and used.

     

    c.

     

    pecify filters and processors to

    b e

     ru n on 

    these

     features, such 

    as

     th e

     

    moda l filter currently 

    used

     fo r 

    bottom

     tracking.

     

    d. 

    pecify

     

    th e

     sequence of

     logical

     

    tests

     performed 

    to

     

    detect

     and 

    quantify

     

    attributes

     of

     th e

     shallow 

    water

     environment. 

    Chapter 

    4  Discussion 7 

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    23/25

    e.

      Specify outputs and formats, and final postprocessing data quality

     

    checks.

     

    Such

     

    a

     

    capabil i ty

     

    would

     

    end

     

    th e

     

    need

     

    fo r

     

    recoding

     to

     achieve

     

    specific detection

     

    objectives and

     

    would serve a

     

    very flexible research 

    tool.

     This capabil i ty would

     

    have tw o components . The first would be th e configurable logic processing

     

    engine.

     

    The

     

    second

     

    would

     

    be

     a

     

    l ibrary

     

    of

     

    configuration

     

    files

     

    that

     

    could

     

    be

     

    used

     

    to

     

    achieve specific processing objectives. 

    EcoSAV

     1.0 would be one  

    configuration

     

    file

     

    representing

     a 

    good

     

    general-purpose

     processor. Specialized  conditions,

     

    such

     

    as

     dense canopy-forming

     SAV,

     rocky bottoms,

     

    low-density

     

    SAV,

     

    etc. would

     

    each be represented in a specialized configuration file developed fo r

     

    processing

     

    these conditions.

     

    Biosonics,

     

    Inc.,

     

    is currently developing th e 

    configurable

     logic

     

    processing 

    engine.

     Biosonics

     

    and  their associated user communi ty 

    are

     developing

     

    specifications 

    fo r

     th e various

     

    specialized configuration 

    files. 

    18 hapter 4  Discussion  

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    24/25

    REPORT 

    DO CU ME N TATI O N

     PAGE 

    Form  Approved 

    OM B

     

    No.

     0704-0188 

     reporting

     

    burden for this collection

     

    of information

     

    is estimated to 

    average 

    ou r pe r response,

     

    including the  t ime for reviewing

     

    instructions,

     

    searching existing 

    data

     sources ,

     

    gathering 

    an d 

    maintaining

     

     data

     

    needed,

     

    an d completing

     

    an d

     

    reviewing this collection

     

    of information. en d

     

    comments regarding this

     

    burden

     

    estimate

     or

     

    an y

     other aspec t of this collection of information,

     

    including

     

    suggestions  for

     

     this burden to 

    Depar tment

     of Defense, Washington

     

    Headquar ters Services,

     

    Directorate for Information 

    Opera t ions

     an d

     

    Reports 

    (0704-0188),

     

    1215 Jefferson

     

    Davis Highway,

     

    Sui te

     

    1204, Arlington,

     

     2202-4302 . 

    espondents

     

    shou ld

     be aware 

    that

     notwithstanding an y other provision 

    of

     law, no person shall be sub ject 

    to

     an y penal ty

     

    for

     

    fail ing to comply with a collection 

    of

     

    information

     if

     

    it does no t

     

     a currently

     

    valid OM B 

    control

     number . LEASE DO NO T RETURN YOUR FORM  

    TO TH E 

    ABOVE

     

    ADDRESS .

     

     R E P O R T  DA TE 

    DD-MM-YYYY

    September

     2002

     

    2.

     R E P O R T

     

    T Y PE  

    Final

     

    report 

    3. DA TES C O V E R E D 

    From

     -

     

    To

     AN D SU BT IT L E  

    5a .

     C O N T R A C T  N U M BE R  

    Advanced

     

    Digital

     Processing of

    Echo

     

    Sounder

     Signals 

    fo r

     

    Characterization

     of 

    Very Dense

     

    Submersed Aquatic Vegetation

     

    5b .

     

    G R A N T

     

    N U M B E R

     

    5c . P R O G R A M E L E M E N T N U M B E R  

     A U T H O R ( S ) 

    Bruce

     

    M.

     Sabol, 

    Janusz

     

    Burczynski,

     

    Joel

     

    Hoffman

     

    5d .

     P R O J E C T N U M B E R 

    5e .

     

    T A S K

     

    N U M B E R  

    5f. W O R K 

    UNIT

     N U M B E R 

    33118

     

    . P E R F O R M I N G O R G A N I Z A T I O N  N AM E ( S) AN D ADDRESS(ES)  

    reverse.

     

    8.

     

    P E R F O R M I N G

     O R G A N I Z A T I O N  R E P O R T  

    N U M B E R 

    ERDC/EL TR-02-30 

     S P O N S O R I N G

    /

     M O N I T O R I N G A G E N C Y N AM E ( S) AN D ADDRESS(ES)  

     Army Corps of

     

    Engineers

     

     

    DC

     0314-1000

     

    10 .

     S P O N S O R / M O N I T O R ' S A C R O N Y M ( S ) 

    11. S P O N S O R / M O N I T O R ' S R E P O R T  

    N U M BE R( S) 

     DISTRIBUTION

     /

    AVAILABILITY

     

    STATEMENT 

     

    for

     public release; distribution is unlimited.

     

    3 SUPPL M NT RY NOTES

     

    4

    STR CT 

    n algorithm

     has

     been 

    developed

     an d 

    previously

     described fo r

     

    detecting 

    and  characterizing

     submersed 

    aquatic

     

    vegetation 

    using 

    the

     

     signal of 

    a

     vertically oriented, single-beam, single-frequency  echo 

    sounder.

     It 

    ha s

     performed well under most conditions fo r

     

     of submersed vegetation

     

    in

     

    shallow

     

    fresh

     an d estuarine 

    waters.

     Several 

    types

     of

     conditions

     have 

    proven

     

    to

     

    be

     

     These include detection ofextreme low-density

     

    vegetation (

  • 8/18/2019 Advanced Digital Processing of Echo Sounder Signals for Characterization of Very Dense Submersed Aquatic Veget…

    25/25

    7.

     

    Concluded). 

    U.S. Army Engineer

     

    Research and

     

    Development

     

    Center  

    Environmental Laboratory

     

    3909

     

    Halls 

    Ferry

     Road  

    Vicksburg, 

    MS

     9180-6199;

     

    Biosonics,

     

    Inc.

     

    4027 Leary W ay  

    Seattle, W A 8107; 

    Virginia

     Institute

     of 

    Marine

     

    Science 

    P.O. 

    Box

     1346 

    Gloucester

     

    Point, VA 3062